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Natural convection over a vertical plate: Integral solution 

 

Hello everyone. So, in today’s class we will solve natural convection over a vertical flat 

plate using integral method. We have already learned this integral method in module 4, 

lecture 1. We have derived the momentum integral equation, in module 4, lecture 2 we 

have derived the energy integral equation. 

So, please refer these derivations. In today’s class we will use the momentum integral 

equation and energy integral equation with some modification, because we have a 

buoyancy term in the boundary layer equations for natural convection flow and we will 

solve for the unknown variables δ. 

So, if you remember in post convection we have two unknowns; one is hydro (Refer 

Time: 01:31) boundary layer thickness δ and thermal boundary layer thickness δT and we 

had two integral equations and we solve for δ and δT. In natural convection will assume 

that δ =δT. For these we solve this equations and we will find the unknown variable δ and 

another unknown variable velocity profile. 

Although, we are assuming that δ = δT, but later will show that the solutions; whatever 

we will be deriving using this integral analysis it will be valid for wide range of Prandtl 

number. 
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So, let us consider natural convection over a vertical flat plate. The plate is maintained at 

uniform wall temperature Tw and the quiescent medium temperature is T∞ and that is also 

maintained at constant temperature. Here, we have these assumptions 2 dimensional 

steady laminar flow with constant properties, we have Boussinesq approximation valid 

and Tw is constant, T∞ is constant and we are neglecting the viscous dissipation. 

So, in this integral solution we will assume δ ≈ δT; that means, Pr ≈1, but we will write 

the solution in terms of Prandtl number and we will show that the solution is reasonable 

reasonably valid for wide range of Prandtl number. 

So, first let us write the boundary layer equations for a natural convection over a flat 

plate. So, we have already derived these equations, boundary layer equations. So, 

continuity equation, the momentum equation is  
2

2

v v v
u v g T T

x y x
  

  
   

  
. So, in 

this case x is perpendicular to the wall and y is along the vertical wall and energy 

equation, 
2

2

T T T
u v

x y x


  
 

  
. 

So, you refer module 4, lecture 1 and 2 for derivation of these integral equation. So, if 

you derive you will get momentum integral equation as; so, using the continuity equation 

you can derive the momentum integral equation from this momentum equation as 
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 2

0

0 0

x

d v
v dx g T T dx

dy x

 

    


    

  and energy integral equation you can write 

as   0

0

T

x

d T
v T T dx

dy x



 


   

 . So, you can see 0x

T
K

x



 


 will give you wall heat flux 

and here alpha is thermal diffusivity. 

So, now, we will assume δ ≈δT. So, here the integral, we will integrate up to δ. We will 

solve for two unknowns; one is δ which is function of y and another is unknown velocity 

profile. So, some will derive later, some velocity v0, so which will be function of y. So, 

these are the two unknowns we will use this two integral equations and will solve for 

δ(y) and v0(y). 

So, what is the next step while using the integral method? So, you have to assume the 

velocity profile and temperature profile, then once you get the velocity and temperature 

profile you have to invoke those in the integral equations. 

(Refer Slide Time: 07:27) 

 

So, first let us see what is the assumed velocity profile. So, we will use here fourth 

degree polynomial for velocity. So, will use,  

         2 3

0 1 2 3x,v y a y a y x a y x a y x    . 
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So, we have to find these coefficients a0, a1, a2, and a3. So, there are four coefficients. So, 

how many boundary conditions we need? So, we need four boundary conditions, two 

boundary condition you know easily; one is the wall you have velocity 0 at x →∞ you 

have velocity 0 and also at x →∞ you have velocity gradient is 0, because it is a 

quiescent medium. Another boundary condition you have to derive; so, from the 

momentum equation. So, that is the derived boundary condition, these already we have 

discussed in module 4. 

So, boundary conditions at x = 0, you have v = 0, at x = δ, you have v = 0, also the 

velocity gradient is 0, because you have a quiescent medium. So, 
v

x




=0 and another 

boundary condition that is derived from the momentum equation. So, at x = 0 you can 

write  
2

2 w

v g
T T

x







  


. 

So, in a momentum equation the inertia term will become 0, because u ,v at 0. So, this is 

your viscous term and at wall you have T = Tw; so, you can write  
2

2 w

v g
T T

x







  


. 

So, if you use invoke this boundary condition and find the coefficients you will get a0 = 0 

 
1

4

wg T T
a

 




 , 

 
2

2

wg T T
a






   and 

 
3

4

wg T T
a






  . 

So, now this coefficient if you substitute in the assumed velocity profile, then you will 

get the velocity profile. So, if you see substituting the values of the coefficient we get; 

so, if you substitute here, so we will get the velocity profile 

as
  2

2
1 2

4

wg T T x x
v x




  

  
   

 
. 

If you rearrange it, you will get
  22

1
4

wg T T x x
v

 

  


   

    
  

. So, you can see the first 

term in the right hand side in the inside the bracket. So, these term can form the 

characteristic velocity. 

Now, we will say that it is the characteristic velocity and v0 which is function of y and 

this is to be found from the solution. So, this is another 
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unknown
  2

0 ( )
4

wg T T
v y

 




 . So, you can see δ is function of y. So, v0 is also 

function of y. So, this is the second unknown, first unknown is the δ we have to find and 

another unknown v0 we have to find . 

(Refer Slide Time: 13:27) 

 

So, now you can write the velocity profile as 

2

0

1
v x x

v  

 
  

 
. Now, you know the 

velocity profile; assume velocity profile and that from that we can find the maximum 

velocity location. So, at which location you will get the maximum velocity. So, if you 

take the derivative of velocity v, then make it 0, then we will be able to find at which 

location you will get the maximum velocity, at which x location right. 

So, the maximum velocity and its position, distance from the wall in x direction at any y 

can be obtained as. So, you can write 
v

x




 =0 so; that means, 

2

0 2
1 2 0

x x x
v

x   

  
    

   
. So, you see v0 is function of y and δ is also function of y. 

So, you can take it outside the derivative. 
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So, you can write
2 3

2 3
2 0

x x
x

x  

 
   

  
, because v0 is function of y and δ is function of 

y right and from here if you see; so, you will get, 
2

2
1 4 3 0

x x

 
   . 

If you rearrange it you will get 
2 24 3 0x x     and you will get   3 0x x    . 

You can see x = δ you have velocity,v= 0. 

So, there will not be maximum velocity. So, x ≠δ, because at x = δ you have v = 0 right. 

So, you have 3x  =0; that means, 
3

x


 . So, you can see at 
3

x


  you will get the 

maximum velocity. So, therefore, v is maximum at 
3

x


 and its value if you find, it will 

be vmax , after simplification I am writing
  2

max

4

27 4

wg T T
v

 




 . 

So, we have found the velocity distribution now, let us find the temperature profile, 

assume temperature profile. So, for that also we will use a third degree polynomial. 

(Refer Slide Time: 17:43) 

 

So, assumed temperature profile we will use third degree polynomial. So, if it is so then 

you can write       2

0 1 2,T x y b y b y x b x   . 
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So, now you need three boundary conditions to find the three unknowns b0 , b1 and b2. 

So, you know at wall you have temperature Tw, at x → ∞ you have temperature T∞ 

which is the quiescent free temperature, as well as x → ∞ your temperature gradient is 0. 

So, you can write boundary conditions at x = 0 you have T = Tw, at x →∞ you have 

T=T∞ and also the temperature gradient is 0. 

So, applying boundary conditions and solving for the coefficients we get, applying 

boundary conditions and solving for coefficients we get b0 = Tw, 

 
1

2 wT T
b




  and

 
2 2

wT T
b




 . So, if you put these values in the assumed 

temperature profile, then you will get    
2

, 1w

x
T x y T T T


 

 
    

 
. 

So, now, we have assumed the velocity profile as well as the temperature profile. Now, 

you want to put this profiles into the integral equations. So, because you have the 

momentum equation where you have temperature profile as well as you have the velocity 

profile. So, in the momentum integral equation you need the temperature profile as well 

as the velocity profile. 

(Refer Slide Time: 20:43) 

 

So, if you put there; so, you have momentum integral equation so that is your, 

 2

0

0 0

x

d v
v dx g T T dx

dy x

 

    


    

  . Now, put the velocity profile and 
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temperature profile. So, you have 

2

0 1
x x

v v
 

 
  

 
and temperature profile 

 
2

1w

x
T T T T


 

 
    

 
. 

So, here you can see you have T -T∞. These equation if you divide both sides by ρ then if 

you rearrange you will get  
4 22

20 0

2

0 0

1 1w

v vd x x
x dx g T T dx

dy

 

 
   



   
        

   
  . 

So, now, evaluating the integrals and rearranging, you will get, 

   2 0
0

1 1

105 3
w

vd
v g T T

dy
   


   . 

Now, similarly you put the value of temperature profile in the energy integral equation. 

So, energy integral equation if you remember. So, it has   0

0

x

d T
v T T dx

dy x



 


   

 . 

So, put the velocity profile and the temperature profile here. So, you will get 

   
4

0

0

2
1w w

vd x
T T x dx T T

dy




  

 

    
         

     
 . So, from here you can see, 

 0

2
x w

T
T T

x 
 

  
    

  
. So, just rearranging, you will get  0

1

60

d
v

dy





 . So, you can 

see we have got first order ordinary differential equation. So, this is one equation and this 

is another equation. These are first order ordinary differential equation and we need to 

find v0 and δ from here. 
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So, we assume the solution for two dependent variables of the form v0 which is function 

of y. So, we will use  0

mv y Ay , because it is function of y and   ny By  where A, 

B, m, n, are constants . 

So, now if you put these values in the ordinary differential equation; so for momentum 

equation we got this ordinary differential equation and find the value of A, B and m and 

n. So, you will get    2 0
0

1 1

105 3
w

vd
v g T T

dy
   


   . 

So, put the v0 and δ expression here. So, you will get 2 2 2

0

m nv A By  . So, if you take the 

derivative with respect to y, then you will get,  

 2 2 12 1

105 3

m n n m n

w

m n A
A By g T T By y

B
   




   and another ordinary differential 

equation we have, so that is your  0

1

60

d
v

dy





 . So, if you see 

0

m nv ABy  . So, you 

can take the derivative with respect to y.  

So, you will get
1

60

m n nm n
ABy y

B

  
 . So, you can see, we have these equation and we 

have these equation and to satisfy the equations at all values of y, the exponents of y in 

each term must be identical. 
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So, to satisfy the equations at all values of y the exponents of y in each term must be 

identical. So, if it is so then you can write 2 1m n n    and also you can write n =m - n 

and you can write 1m n n    . 

So, from here you can find so, you can see from here you can find m = 2 n and if you put 

it here. So, you will get n = 1 /4 and m =1/2. So, now, you can see we have found the 

exponent m and n, m =1/2 and n = 1 /4. So, now, we have to find other two constants that 

is A and B. 

(Refer Slide Time: 31:11) 

. 

So, now these exponents you put in those equations. After simplification you will get 

 21 1

84 3
w

A
A B g T T B

B
     and if you simplify it, so you will get; so, this is one 

equation you will get an another equation you will get 
1

80
AB

B


 . So, what we are 

doing? So, we are substituting the value of m and n in this equation and in this equation. 

So, from the first equation you are getting this and from the second equation you are 

getting this. So, from here you can write 
2

80
A

B


 and this you substituted in the first 

equation. So, what you will get? So, substitute the value of A in the first equation, top 

equation. So, what you will get?  
2

2 2

1 80 1 80

84 3
wB g T T B

B B B

  
 

 
   

 
. 
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So, what you do? You multiply both side by B
3
. So, if you rearrange it, so you will 

get  2 46400 1
80

84 3
wg T T B     . So, from here you will find that B

4
; so, if you 

see it will come almost 76.19. 

So, we are writing 76.19. So, 
 

2
4 2

2

76.19 3 1
80

80 w

B
g T T

 


  

 
  

 
. After 

rearrangement you will get these and this 
76.19 20

80 21
 . 

So, we can write the value of
 

11 44
1

2

2

20
3.93Pr Pr

21

wg T T
B







   
    

   
. So, now, you 

will be able to find the value of
2

80
A

B


 .So, B value substitute and rearrange you will 

get
 

1
21

2

2

20
5.17 Pr

21

wg T T
A








  
    

   
. So, now you know the value of A and B, m 

and n; so, you will be able to write the velocity profile and the boundary layer thickness 

δ. 

(Refer Slide Time: 35:55) 
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We have m =1/2, n =1/4 the expression of A, B. So, you will be able to find the velocity, 

0

mv Ay  . So, if you put all these values and you will get, 

 
1

21
2 1

2

2

20
5.17 Pr

21

wg T T
y








  
   

   
. 

So, now what we will do? You can see if we put inside here y
3 

then it will represent the 

Grashof number
  3

2

w

y

g T T y
Gr






 , so that will give you the non dimensional 

number Grashof number. So, we will put inside y
3
, so it will be and we will subtract 

from here. So, after rearrangement you will get 

1
2

1
2

0

20
5.17 Pr

21
yv Gr

y




 
  

 
. 

Where 
  3

2

w

y

g T T y
Gr






 and we have nBy  .  

So, 
 

11 44
1 1

2 4

2

20
3.93Pr Pr

21

wg T T
y








   
    

   
. 

And similar way here we will also put inside y
3
 and we will rearrange and we will 

get

1
4

1 1
2 4

20
3.93Pr Pr

21
yGr

y

   
  

 
. So, Prandtl number and into Grashof number what it 

will give? It will give Rayleigh number . So, Pry yRa Gr . So, if you write it you will 

get, 

1
4

1
4

20 1
3.93 1

21 Pr
yRa

y

  
  

 
. 

So, you can see this equation will give you the boundary layer thickness along Y. So, the 

above equation gives the variation of δ along Y and if you remember we have assumed 

δ≈δ T, but we have written the expression in terms of Prandtl number . 
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So, now we will find the heat transfer parameter. So, we will find the local heat flux then 

heat transfer coefficient and the Nusselt number. So, let us write the local heat flux from 

the wall. 

So, we have 
''

0qw x

T
K

x



  


 and we have shown that you will get, 

 ''

0

2
qw x w

T
K K T T

x 
 

  
       

  
. So, this we will get  

2
w

K
T T


 . So, the local 

heat transfer coefficient you can write 
''qw

w

h
T T




. So, this is from Newton’s law of 

cooling. So, you will get h=
2K


. 

So, δ expression you know. So, if you put the value then you will 

get

1
4

1
4

2 1 20 1
1

3.93 21 Pr
y

K
h Ra

y



 
  

 
. So, this we are writing from this expression. So, you 

can see we have δ(y). So, this expression, from this expression we are writing the value 

of heat transfer coefficient. 
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Now, you can write the local Nusselt number . So, you will get 
hy

Nu
K

 so, it will 

be 2
y


. So, if you put this value of

y


, then you will get

1
4

1
4

20 1
0.508 1

21 Pr
yNu Ra



 
  

 
. 
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So, now the average heat transfer coefficient; the average heat transfer coefficient you 

can write as 
0

1
H

h hdy
H

  and put the values then you will get, 

 
1

41
4

1
4

0.508 20 1
1

21 Pr

wg T TK
y dy

H







  
   

   
 . 

So, if you integrate it and rearrange you will get

1
4

1
4

4 0.508 20 1
1

3 21 Pr
H

K
h Ra

H



 
   

 
. So, 

now, Nusselt number, average Nusselt number you can write 
hH

Nu
K

 so, you will get, 

1
4

1
4

4 20 1
0.508 1

3 21 Pr
HRa



 
  

 
. From here you can see the

4

3
y HNu Nu   . 

So, from here you can see that your
4

3
y HNu Nu   . So, now we will discuss about two 

limiting cases; one is the Pr → 0 and another is Pr → ∞. You know when Pr<< 1 your 
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Nusselt number will be function of Rayleigh number and Prandtl number and when 

Pr→∞ that means when you have a high Prandtl number fluids then your Nusselt number 

will be function of only Rayleigh number. So, already we have found the value of 
y


first 

let us write that K expression. 

(Refer Slide Time: 46:33) 

 

So,  
1

4 1
420

3.93 Pr Pr
21

yRa
y

  
  

 
 So, now, consider the limiting case for Pr→ 0. So, if 

Pr→ 0, you can see this term you can put 0. 

So, you can write  
1

4 1
420

3.93 Pr
21

yRa
y

  
  

 
. So, from here now you can write the 

expression of Nusselt number .You know 2
y

Nu


 . So, these expression if you put local 

Nusselt number now, you can write from the integral solution. After rearranging, you 

will get  
1

4

int 0.515 Pregral y
solution

Nu Ra  .  

And if you remember these Nusselt number from the exact solution from the similarity 

solution we have written  
1

4

0.6 Prexact y
solution

Nu Ra  and for Pr→ ∞ another limiting case 

514



we can write the expression of

1
4

1
4

20 1
3.93 1

21 Pr
yRa

y

  
  

 
. So, as Pr→ ∞, you can see 

these term will become 0, because 1 /Pr is there. 

So, we can write
1

43.93 yRa
y

 
 ; obviously, now 2

y
Nu


 . So, from integral solution, if 

you write it will get 
1

4

int 0.508egral y
solution

Nu Ra   and you can see for high Prandtl number 

fluids, it depends on only the Rayleigh number and if you remember we have written the 

exact solution from the similarity solution as
1

40.503exact y
solution

Nu Ra  . 

So, you can see here and this is almost 1 % variation, for Pr→ ∞there is a 1 % variation 

and maximum variation occurs as Pr→ 0; so, these around 14 % you will get. So, in 

these two limiting cases you can see these variation of this Nusselt number between the 

integral solution and the exact solution varies between 1 % to 14 %. 

So, you can see although, we have assumed that δ ~ δT, but still this gives a reasonable 

good solution for the different Prandtl numbers. 

(Refer Slide Time: 50:11) 

 

So, the observation whatever we have made you can see the error ranges from 1 % for 

Pr→ ∞ to 14 % for Pr→ 0 and although the integral solution is based on the assumptions 

that δ ≈ δT the solution is reasonable, accurate for a wide range of Prandtl numbers. 
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So, in today’s class we have solved the boundary layer equations using integral method. 

So, first we integrated the momentum equation and the energy equation and we have 

written the momentum integral equation and energy integral equation, then we have 

assumed the velocity profile and temperature profile and invoking those expression in 

the integral equation. 

We have written two ordinary differential equations then we have written the expression 

for δ and v0 and we have put in the ordinary differential equation, and we have found the 

value of 
y


and from there we have found the heat transfer parameters like heat transfer 

coefficient Nusselt number.  

And we have also shown the two limiting cases where Pr→ 0 and Pr→ ∞  and we have 

shown that in these limiting cases your error of integral solution compared to the exact 

solution varies between 1 % to 14 %.  

Thank you. 
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