Fundamentals of Convective Heat Transfer
Prof. Amaresh Dalal
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Module - 09
Natural Convection — 11
Lecture — 29
Natural convection over a vertical plate: Integral solution

Hello everyone. So, in today’s class we will solve natural convection over a vertical flat
plate using integral method. We have already learned this integral method in module 4,
lecture 1. We have derived the momentum integral equation, in module 4, lecture 2 we

have derived the energy integral equation.

So, please refer these derivations. In today’s class we will use the momentum integral
equation and energy integral equation with some modification, because we have a
buoyancy term in the boundary layer equations for natural convection flow and we will

solve for the unknown variables 6.

So, if you remember in post convection we have two unknowns; one is hydro (Refer
Time: 01:31) boundary layer thickness 6 and thermal boundary layer thickness &t and we
had two integral equations and we solve for & and 1. In natural convection will assume
that & =4+. For these we solve this equations and we will find the unknown variable 6 and

another unknown variable velocity profile.

Although, we are assuming that & = dr, but later will show that the solutions; whatever
we will be deriving using this integral analysis it will be valid for wide range of Prandtl

number.
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So, let us consider natural convection over a vertical flat plate. The plate is maintained at
uniform wall temperature T,, and the quiescent medium temperature is T,, and that is also
maintained at constant temperature. Here, we have these assumptions 2 dimensional
steady laminar flow with constant properties, we have Boussinesq approximation valid

and T,, is constant, T,, is constant and we are neglecting the viscous dissipation.

So, in this integral solution we will assume 6 = &t; that means, Pr ~1, but we will write
the solution in terms of Prandtl number and we will show that the solution is reasonable

reasonably valid for wide range of Prandtl number.

So, first let us write the boundary layer equations for a natural convection over a flat

plate. So, we have already derived these equations, boundary layer equations. So,

oV

continuity equation, the momentum equation isu?+v%=v;+gﬂ(T ~T,). So, in
X X

this case x is perpendicular to the wall and y is along the vertical wall and energy
or oT o7
equation, U—+V—=a—.
OX oy OX
So, you refer module 4, lecture 1 and 2 for derivation of these integral equation. So, if
you derive you will get momentum integral equation as; so, using the continuity equation

you can derive the momentum integral equation from this momentum equation as
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) 5
dijpvzdx :—,u?L_o +ngﬁ(T -T, )dx and energy integral equation you can write
y 0 X 0

asiTv(T -T )dx——aa—Tl So, you can see —Kgl will give you wall heat flux
d ) 0 6X x=0" 1y 8X x=0 y

and here alpha is thermal diffusivity.

So, now, we will assume 6 ~d1. So, here the integral, we will integrate up to 6. We will
solve for two unknowns; one is & which is function of y and another is unknown velocity
profile. So, some will derive later, some velocity vo, S0 which will be function of y. So,

these are the two unknowns we will use this two integral equations and will solve for
5(y) and Vo(y).

So, what is the next step while using the integral method? So, you have to assume the
velocity profile and temperature profile, then once you get the velocity and temperature

profile you have to invoke those in the integral equations.
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So, first let us see what is the assumed velocity profile. So, we will use here fourth

degree polynomial for velocity. So, will use,

V(X Y)=ag(y)+a(y)x+a, (y)x* +a(y)x.
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So, we have to find these coefficients ay, a;, a,, and as. So, there are four coefficients. So,
how many boundary conditions we need? So, we need four boundary conditions, two
boundary condition you know easily; one is the wall you have velocity 0 at X —co you
have velocity 0 and also at x —o you have velocity gradient is 0, because it is a
quiescent medium. Another boundary condition you have to derive; so, from the
momentum equation. So, that is the derived boundary condition, these already we have

discussed in module 4.

So, boundary conditions at x = 0, you have v = 0, at X = §, you have v = 0, also the

. . . . . ov
velocity gradient is 0, because you have a quiescent medium. So, a—:O and another
X

boundary condition that is derived from the momentum equation. So, at x = 0 you can
2
: v
write 8—2 = —%(TW -T,).
OX v
So, in a momentum equation the inertia term will become 0, because u ,v at 0. So, this is

2

your viscous term and at wall you have T = T,,; so, you can writeg—\zl = —%(TW -T,).
X v

So, if you use invoke this boundary condition and find the coefficients you will get ag =0

T,-T,)0 T,-T T,-T
al:gﬁ(w ») ,azz_gﬂ(w ») anolaSz_gﬂ(w -)
4y 2v 4vo
So, now this coefficient if you substitute in the assumed velocity profile, then you will
get the velocity profile. So, if you see substituting the values of the coefficient we get;
so, if you substitute here, so we will get the velocity profile

T,-T 2
asy= 9P =T) 5y pX X1
4y o O

2
If you rearrange it, you will getv ={ (1—%] . S0, you can see the first

98(T, -T.)5" [x
4y o

term in the right hand side in the inside the bracket. So, these term can form the

characteristic velocity.

Now, we will say that it is the characteristic velocity and vy which is function of y and

this is to be found from the solution. So, this is another
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98(T,-T,)6°
dy

function of y. So, this is the second unknown, first unknown is the 6 we have to find and

unknownv, (y) = . S0, you can see 6 is function of y. So, vp is also

another unknown vy we have to find .
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2
So, now you can write the velocity profile as lzg(l—gj . Now, you know the
VO

velocity profile; assume velocity profile and that from that we can find the maximum
velocity location. So, at which location you will get the maximum velocity. So, if you
take the derivative of velocity v, then make it 0, then we will be able to find at which

location you will get the maximum velocity, at which x location right.

So, the maximum velocity and its position, distance from the wall in x direction at any y
. . ov

can be obtained as. So, you can write ™ =0 so; that means,
X

2

9 voi 1—25+X—2 =0. So, you see vy is function of y and ¢ is also function of y.
oX| o o O

So, you can take it outside the derivative.
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2 3

So, you can write%{x_zx_+ X

5 —3} =0, because Vo is function of y and & is function of
)

2
y right and from here if you see; so, you will get, 1—4§+3% =0.

If you rearrange it you will get 5 —45x+3x* =0 and you will get (5 —x)(5—3x)=0.
You can see X = ¢ you have velocity,v= 0.
So, there will not be maximum velocity. So, x #3, because at x = & you have v = 0 right.

So, you have 6-3x=0; that means, x:g. So, you can see at x:g you will get the

maximum velocity. So, therefore, v is maximum at x = g and its value if you find, it will

4 9p(T,-T,)s°
27 4y '

be Vmax , after simplification I am writingv,_, =

So, we have found the velocity distribution now, let us find the temperature profile,

assume temperature profile. So, for that also we will use a third degree polynomial.
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So, assumed temperature profile we will use third degree polynomial. So, if it is so then

you can write T (X, y)=by (y)+b, (y)x+b,x*.
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So, now you need three boundary conditions to find the three unknowns by , b; and b,.
So, you know at wall you have temperature Ty, at X — oo you have temperature T,,
which is the quiescent free temperature, as well as x — oo your temperature gradient is 0.
So, you can write boundary conditions at x = 0 you have T = Ty, at X —o you have

T=T, and also the temperature gradient is 0.

So, applying boundary conditions and solving for the coefficients we get, applying
boundary conditions and solving for coefficients we get by, = Ty,

o 20T

T,-T
andb, (5—2“’) So, if you put these values in the assumed

2
temperature profile, then you will getT (x,y) =T, +(T, _T‘”)[l_gj .

So, now, we have assumed the velocity profile as well as the temperature profile. Now,
you want to put this profiles into the integral equations. So, because you have the
momentum equation where you have temperature profile as well as you have the velocity
profile. So, in the momentum integral equation you need the temperature profile as well

as the velocity profile.
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So, if you put there; so, you have momentum integral equation so that is your,

d ¢ , v e . .
— | pvidX=—pu—| .+ T-T )dx. Now, ut the wvelocit rofile and
dy'([p luaxlx:O }’;pgﬁ( ij) p y p
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2
temperature profile. So, you have v=v0§(1—§j and temperature profile

2
X
T=T +(T,-T. ) 1-2| .
o (Tw w)( 5j

So, here you can see you have T -T.. These equation if you divide both sides by p then if

5V2

. d a x )
ou rearrange you will get — | 2 x dx=-— —+ T,-T 1-— | dx.
y gey g dyI5 ( 5) v+ 9/ )I( 5)

0 0

So, now, evaluating the integrals and rearranging, you will get,

1 d Vv
B(T,-T,)5-v-=L.
105dy( ) g ( ) VcS

Now, similarly you put the value of temperature profile in the energy integral equation.

)
So, energy integral equation if you remember. So, it has di.[v(T ~T, )dx=— ﬂ|

So, put the velocity profile and the temperature profile here. So, you will get

S 4
l: fx(l——j }:—a(TW—Tm)(—g). So, from here you can see,
0

oT 2 . . . 1d o
—I._,=|—=|(T,—-T,). So, just rearranging, you will get——(v,8)=—". So, you can
~ o (J(W ,)- S0, j ging, y get g5 gy (¥00) =5 - S0y

see we have got first order ordinary differential equation. So, this is one equation and this
is another equation. These are first order ordinary differential equation and we need to

find vg and d from here.

507



(Refer Slide Time: 26:21)

Natural convection over a vertical plate: Integral Solution
Ve amsiuwa e goludion Je duro dapemdand andabies ot farom

ny, L) * A’xm A, B,m.m - ermat
sty =%
ey, %/_,L‘T_,-- Sy s %
= 25 )y

e (Tu-Tn) 8™~ ¥ R
o 2od ATS Y =‘!3':l"’ “=im) 03 L)

109

We alse hame St
A (93) = S b= AT

\ 2(-\».):;

(3]
B bl

§ -n
At pRY  =g¥ -
_ anOﬁ}
ot oAk elaus &Y, dhe anp

Brnam=l =T M Mm-m
mam=| = =" B s

’“:-{- "Ms-&

So, we assume the solution for two dependent variables of the form vy which is function

of y. So, we will usev, (y)=Ay", because it is function of y and &(y)=By"where A,

B, m, n, are constants .

So, now if you put these values in the ordinary differential equation; so for momentum

equation we got this ordinary differential equation and find the value of A, B and m and

. 1 d 1 v
S0, you will get ———(v28) == g (T, ~T, )5 —v L.
n. So, you will ge 105dy(V° ) 3gﬂ( W—T.) v

So, put the Vo and & expression here. So, you will getv;s = A’By*™". So, if you take the

derivative with respect to Y, then you will get,
Zr:ogn A’By*™ " = % 94(T, -T.)By" —Svy”‘” and another ordinary differential

equation we have, so that is your%di(vod) :%. So, if you see v, = ABy™™". So, you
y
can take the derivative with respect to y.

m+n

So, you will get ABy™ " = % y™". So, you can see, we have these equation and we

have these equation and to satisfy the equations at all values of y, the exponents of y in
each term must be identical.
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So, to satisfy the equations at all values of y the exponents of y in each term must be
identical. So, if it is so then you can write 2m+n—1=n and also you can write n =m - n

and you can writem+n—-1=-n.

So, from here you can find so, you can see from here you can find m = 2 n and if you put
it here. So, you will get n = 1 /4 and m =1/2. So, now, you can see we have found the
exponent m and n, m =1/2 and n = 1 /4. So, now, we have to find other two constants that
is Aand B.
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So, now these exponents you put in those equations. After simplification you will get

%AZB—— B(T,-T )B—gv and if you simplify it, so you will get; so, this is one

. . : : 1
equation you will get an another equation you will get %AB =%. So, what we are
doing? So, we are substituting the value of m and n in this equation and in this equation.

So, from the first equation you are getting this and from the second equation you are

getting this. So, from here you can write A= 8220{

equation. So, what you will get? So, substitute the value of A in the first equation, top

80a v
B

equation. So, what you will get? i(SOa

j 3-20p(1,-T.)
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So, what you do? You multiply both side by B*. So, if you rearrange it, so you will

g t6;120 o? __gﬂ(TW ~T,)B*~80av. So, from here you will find that B; so, if you

see it will come almost 76.19.

3

So, we are writing 76.19. So, 54280a2(g+76.19j iz After
a 80 JgB(T,-T.)v
rearrangement you will get these and this 76.19 3(1)

Y
M} . S0, now, you

So, we can write the value of B=3.93Pr" }/(PH 21) {
1%

will be able to find the value of A= 805‘

2

T,—T
get A=5. 17v(Pr Zj {M} So, now you know the value of A and B, m
14

and n; so, you will be able to write the velocity profile and the boundary layer thickness
J.
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We have m =1/2, n =1/4 the expression of A, B. So, you will be able to find the velocity,

v,=Ay" . So, if you put all these values and you will get,

yz
[ gp(T,-T
5.17V(Pr+§j {—gﬂ(w w)} v

2
14

So, now what we will do? You can see if we put inside here y® then it will represent the

T,-T.)y° . _ _
Grashof numberGry=g’B( — -)Y , S0 that will give you the non dimensional

14

number Grashof number. So, we will put inside y?, so it will be and we will subtract

%
from here. So, after rearrangement you will get v, =5.17K(Pr+ %j Gry% :
y

9A(T,-T.)y’

Where Gr, = 5 and we have 6 = By".
1%
20Y*[ 9B(T,-T.) 1"
So, §=3.93Pr 7 (Pr+zj SN 2l yA,
|4

And similar way here we will also put inside y> and we will rearrange and we will
5 (o 20, . .

get— =3.93Pr Pr+Z Gr, 7. So, Prandtl number and into Grashof number what it
y

will give? It will give Rayleigh number . So, Ra, =Gr, Pr. So, if you write it you will

b4
get, 2 = 3.93(1+§ij Ra, .
y 21 Pr

So, you can see this equation will give you the boundary layer thickness along Y. So, the
above equation gives the variation of 6 along Y and if you remember we have assumed

d~d 1, but we have written the expression in terms of Prandtl number .
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So, now we will find the heat transfer parameter. So, we will find the local heat flux then
heat transfer coefficient and the Nusselt number. So, let us write the local heat flux from

the wall.

So, we have q;V:—Kaa—Ik_o and we have shown that you will get,

q, =-K QLZO =-K —E(TW ~T,)|. So, this we will getZ—K(TW—TOO). So, the local
OX ) o
heat transfer coefficient you can write h :q—WT. So, this is from Newton’s law of

cooling. So, you will get h:%.

So, & expression you know. So, if you put the wvalue then you will

eth=— —
g 21 Pr

ZKL(ZOL
y 3.93

%
+1j Raff‘ . S0, this we are writing from this expression. So, you

can see we have d(y). So, this expression, from this expression we are writing the value

of heat transfer coefficient.
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: . h L
Now, you can write the local Nusselt number . So, you will get Nu =%so, it will

"
beZ; So, if you put this value of— then you will get Nu =0. 508@(1) Ij +1j Raiﬁ .
y r
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So, now the average heat transfer coefficient; the average heat transfer coefficient you

can write as =—jhdyand put the values then you will get,

%
0.508K (@iﬂj gﬂ(T T _[y ydy
H 21 Pr av

Y
So, if you integrate it and rearrange you will geth _g 0. 538K (;gpiﬂ) Raﬁ. So,
r

now, Nusselt number, average Nusselt number you can write Nu :?so, you will get,

,% _
gxo 508(§Pi+1J Ra/*. From here you can see the Nu = % Nu |y:H :
r

— 4 N
So, from here you can see that your Nu =3 Nuly:H . S0, now we will discuss about two

limiting cases; one is the Pr — 0 and another is Pr — 0. You know when Pr<< 1 your
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Nusselt number will be function of Rayleigh number and Prandtl number and when

Pr—oo that means when you have a high Prandtl number fluids then your Nusselt number

will be function of only Rayleigh number. So, already we have found the value of o first
y

let us write that K expression.
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50,2 :3.93[%+ Pr} (Ra, Pr) " S0, now, consider the limiting case for Pr— 0. So, if

y

Pr— 0, you can see this term you can put 0.

4 ]
So, you can writeé=3.93(§j (Ra, Pr) % S0, from here now you can write the
y

expression of Nusselt number .You know Nu = 2%. So, these expression if you put local

Nusselt number now, you can write from the integral solution. After rearranging, you

will get Nul,,,.. =0.515(Ra, Pr)".

integral
solution

And if you remember these Nusselt number from the exact solution from the similarity

solution we have written Nul :0.6(Ray Pr)% and for Pr— oo another limiting case

exact
solution
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%
we can write the expression ofé =3.93(§i+1j Ra;%. So, as Pr— oo, you can see
y

Pr

these term will become 0, because 1 /Pr is there.

So, we can writeé:3.93Ra;%; obviously, now Nu = 2%. So, from integral solution, if
y

you write it will get Nul :0.508Ra§ and you can see for high Prandtl number

integral
solution

fluids, it depends on only the Rayleigh number and if you remember we have written the

exact solution from the similarity solution as Nul = O.503Raf .

exact
solution

So, you can see here and this is almost 1 % variation, for Pr— oothere is a 1 % variation
and maximum variation occurs as Pr— 0; so, these around 14 % you will get. So, in
these two limiting cases you can see these variation of this Nusselt number between the

integral solution and the exact solution varies between 1 % to 14 %.

So, you can see although, we have assumed that & ~ &1, but still this gives a reasonable
good solution for the different Prandtl numbers.
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The following observations are made regarding the comparisons of Nusselt number between
integral solution and exact solution.

The error ranges from 1 % for Pr— wto 14% for Pr = 0

Although the integral solution is based on the assumption that & = 8y (Pr = 1), the solution i
reasonable accurate for 2 wide range of Prandtl numbers.

So, the observation whatever we have made you can see the error ranges from 1 % for
Pr— oo to 14 % for Pr— 0 and although the integral solution is based on the assumptions

that 6 =~ o7 the solution is reasonable, accurate for a wide range of Prandtl numbers.
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So, in today’s class we have solved the boundary layer equations using integral method.
So, first we integrated the momentum equation and the energy equation and we have
written the momentum integral equation and energy integral equation, then we have
assumed the velocity profile and temperature profile and invoking those expression in

the integral equation.

We have written two ordinary differential equations then we have written the expression

for 6 and vp and we have put in the ordinary differential equation, and we have found the

value of o and from there we have found the heat transfer parameters like heat transfer
y

coefficient Nusselt number.

And we have also shown the two limiting cases where Pr— 0 and Pr— o and we have
shown that in these limiting cases your error of integral solution compared to the exact
solution varies between 1 % to 14 %.

Thank you.
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