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Lecture – 28 

Natural convection over a vertical plate: Similarity solution of energy equation 

 

Hello everyone. So now, we are studying laminar Natural convection over a vertical 

plate. In last class, we started with the momentum equation and using similarity 

transformation method, we converted the PD to OD and we discussed about the 

boundary conditions. Now, let us consider energy equation and we will use similarity 

transformation method to convert this PD to OD. 

(Refer Slide Time: 01:02) 

 

So, these are the assumptions we have already discussed in last class; 2 dimensional 

steady; laminar flow with constant properties, Boussinesq approximation is valid. We are 

considering uniform wall temperature; that means Tw is constant and uniform ambient 

temperature, T∞ is also constant and we are neglecting the viscous dissipation. So, we 

can write the energy equation as 
2

2

T T T
u v

x y x


  
 

  
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So, we are neglecting the viscous dissipation, and this is boundary layer energy equation. 

And you can see here δT is your thermal boundary layer thickness, and how the 

temperature is varying as Tw > T∞. So, temperature is maximum at the wall and gradually 

it is baring to the free stream where you have quiescent fluid temperature T∞.  

Now, let us consider non dimensional temperature ( )
w

T T

T T
  







. So, now, if you write 

this equation in terms of non dimensional temperature then you can write as; 

2

2
u v

x y x

  


  
 

  
. 
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Now we will use the similarity variable eta and will convert this PD to OD.  

So, in last class we have already shown that 
1

4

y

x
Ra

y
  , and we know 

1
4

yRa

x y





and

4y y

 
 


. This already we have derived in last class. And Ψ, the stream 

function; also we have defined as  
1

4 , PryRa f   . 
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So now, you can write the velocity u and v as 
1 1

4 4
3

'
4 4

y yu Ra f Ra f
y y

 
   . So, this we 

have derived in last class and velocity 
1

2 'yv Ra f
y


  .  

Now, let us find the derivative of θ with respect to x and y. So, you can see 

1
4

'
yRad

x d x y

  




 
 

 
.  

And 

1
22

2 2
''

yRa

x y








. And '

4

d

y d y y

   




  
   

   
.  

So now, we have energy equation 
2

2
u v

x y x

  


  
 

  
, if you 

write

1 1
4 2

1 1 1
4 4 2

2

3
' ' ' ' ''

4 4 4
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y y y

Ra Ra
Ra f Ra f Ra f

y y y y y y

   
    

    
             

. So, if you 

multiply, then you will get 

1
2

1 1 1
2 2 2

2 2 2 2

3
' ' ' ' ' ''

4 4 4

y

y y y

Ra
Ra f Ra f Ra f

y y y y

  
          .  

So you can see here, here you can write, so these two terms you can see, this will cancel 

out. This term and this term will cancel out; Now divide both sides by, 
1

2

2 yRa
y


; now 

you will get, 
3

' ''
4

f  . So, you can see this is your equation 
3

'' ' 0
4

f   .  

So you can see, this is ordinary differential equation. This is second order linear ordinary 

differential equation and you need the velocity distribution from the solution of 

momentum equation. Because here (Refer Time: 9:49) is there so; obviously, that will be 

your you can get the solution from the solution of momentum equation. But you can see, 

these both equations are coupled, because in the momentum equation temperature term is 

there θ, and in energy equation you have the term f which you will get from the velocity 

distribution. So, in the coupled way with the proper boundary condition you need to 

solve.  
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So you can see the whatever we have derived, so we have derived the momentum 

equation as 
21 ' 3

'' '''
Pr 2 4

f
ff f 

 
    

 
. So, you will get the velocity profile from this 

equation and the energy equation is
3

'' ' 0
4

f   .  

So you can see, in this equation θ is there and in this equation f is there. So, these are 

coupled, so together you need to solve and get the velocity distribution from the first 

equation and temperature distribution from the second equation. And what are the 

boundary conditions?  

So, already we have discussed for velocity at x = 0, you have u = 0; that means, at η=0 

you will get f = 0 and v = 0. You will get at η= 0 'f =0. And what is temperature? 

Temperature T is Tw; so you will get tθas 1. And at x →∞; that means, at the edge of the 

boundary layer, you will get v = 0.  

So, you will get at η→∞, 'f =0 and T will be T∞, so at η→∞, you will get θas 0. So, with 

suitable numerical integration technique you can solve these two; ordinary differential 

equation with given boundary condition. And you can find the velocity distribution as 

well as the temperature distribution. Once you get that, then you will be able to calculate 

the heat flux, heat transfer coefficient and Nusselt number.  
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So, you can see the solution of temperature ah, so you can see theta versus eta it is 

plotted for different Prandtl number. So, you can see as Pr→ ∞. All the temperature 

profile collapse into a single curve. 

You can see here, and this is the solution of G, which actually gives the velocity versus 

eta. So, you can see that velocity v is actually we have written in terms of G, so this will 

give the velocity distribution; and here also you can see as η→ ∞, so or you can see that 

as Prandtl number increases because it is Prandtl number 0.01, 1, 10, 100 and 1000. 

So, as Prandtl number increases, the velocity profile extends farther and farther into the 

isothermal fluid . So, once you know the temperature profile and the velocity profile, you 

will be able to calculate the heat flux and heat transfer coefficient and hence Nusselt 

number. So, let us find these parameters. 

(Refer Slide Time: 13:39) 

 

So, we know that 
1

4

y

x
Ra

y
   and

1
4

yRa

x y





.  

And 
w

T T

T T
 







. So, now, you can see, we can write the local heat flux. So ''

wq , local 

heat flux at wall. So, 
''

0w x

T
q K

x



  


. Because if you have a vertical plate and this is 
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your x and this is your y so; obviously, normal gradient is 0x

T

x






you need to find the 

heat flux.  

So, now you can write   0w xK T T
x


 


  


. So, now we can write 

  0w

d
K T T

d x


 


 


  


and 

x




this you can write. So you can 

write  
1

4 '(0)w y

K
T T Ra

y
  .  

So, can you tell how this heat flux varies with y. So you can see from this equation. So, 

in the Rayleigh number expression, what is the Rayleigh number expression? 

  3

w

y

g T T y
Ra






 . So, in the Rayleigh number you see y

3
, so 

1
4

yRa  means
3

4y .  

And, here in the denominator  y is there. So, it will be -1. So, you can see it will be 
1

4y


. 

So,  
1

4''

wq y


 for uniform wall temperature case. 

Now, once you know the heat flux at the wall, you will able to calculate the local heat 

transfer coefficient because local heat transfer coefficient, you can calculate from the 

Newton’s law of cooling and h will be your q double prime w divided by the temperature 

difference.  

So, local heat transfer coefficient . So, from Newton’s law of cooling you can 

write
''

w

w

q
h

T T




. So, from this expression directly you can write 
1

4 '(0)y

K
Ra

y
 .  

So once you know the temperature gradient at the wall, you will be able to calculate the 

heat transfer coefficient. Now, you can calculate the local Nusselt number. So, 
hy

Nu
K

 . 

So, from this expression you can see it will be 
1

4 '(0)yRa  . 

So, from the solution of the ordinary differential equation, once you get the temperature 

gradient at the wall which is function of Prandtl number as well, then you will be able to 

write the Nusselt number. 
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Now, similarly you can calculate the average heat transfer coefficient and average 

Nusselt number. So, the average heat transfer coefficient for a plate of length H, here 

vertical plate so the height of the plate is H.  

You can write 
0

1
H

h hdy
H

  . Where h is the; local heat transfer coefficient; so that we 

have already found. So, you can write 
 

1
4

1
4

0

'(0)

H

wg T TK
y dy

H






 
  

 
 .  

So, if you integrate it then you will get
 

1
4

3
4

4
'(0)

3

wg T TK
H

H






 
  

 
.  

So, this H
3
 you insert in this bracket, so that you can get back the Rayleigh number. So, 

if you write that, then you can write 
1

4
4

'(0)
3

H

K
Ra

H
 . 

So, hence you can write average Nusselt number. So, average Nusselt number you can 

write as 
hH

Nu
K

 .  

So, you can write 
1

4
4

'(0)
3

HRa  . So, in this case you can see, the
4

3
y HNu Nu   . 
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So, you can see the similarity solution heat transfer results for natural convection, 

boundary layer along a vertical isothermal wall. So, 
1

4

yNuRa


, where Nusselt number is 

the local Nusselt number. So, for different Prandtl number, these are the values.  

So, this is obtained from the Ostrach’s solution. So, once you know these values then 

you will be able to calculate the Nusselt number. 

So, at the extreme case for Pr → ∞, you can write Nusselt number, 

1
40.503 yNu Ra and

1
40.671 HNu Ra .  

And for Pr → 0 you can write  
1

4

0.6 PryNu Ra , and  
1

40.8 PrHNu Ra .  

So you can see here, that in this case you have for Pr → ∞; that means, the case where 

Prandtl number is very high so; obviously, from the scale analysis we have shown 

that
1

4

yNu Ra . 

And, when Pr < 1 then we have shown from the scale analysis that Rayleigh that 

 
1

4

PryRa and from this expression you can see that.  

So, till now we considered uniform wall temperature case so; that means, Tw is constant. 

We can also consider where in some applications you can have the uniform wall heat 
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flux condition. Like, when the solar radiation falls on a body then you will get uniform 

wall temperature case and in industrial application also we can have use of this uniform 

wall heat flux case.  

So, the simplified case we will take. So we will consider again, vertical flat plate keeping 

the other assumptions constant, only we will assume that heat flux at the wall will be 

kept constant. 

(Refer Slide Time: 24:13) 

 

So, you can see that from the uniform wall temperature case, already we have 

shown
1

4

T y . So, it is a vertical wall, Tw > T∞ so; obviously, you will get the thermal 

boundary layer like this and your 
1

4

T y . And, also we have shown that as 

your wT T T   , we are keeping constant
1

4''q y . So this also we have shown today.  

Now, for uniform wall heat flux case what is the heat flux? Generally, we 

tell ''
T

q K
x


 


. So, what will be the order? ''

T

T
q K




, because x ~δT.  

So, from here we can get the
''

w Tq
T

K


 . Obviously, your ''q at the wall we are 

considering. So, this is your at the wall.  
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So, from here, you can see we can find for Pr> 1, we have already derived for uniform 

surface temperature case. What is the δT?
1

4

T HHRa


.  

So, we can write

1
43

T

g TH
H








 
 
 

. So, this we have derived for the uniform wall 

temperature case. Now, in this expression you see the temperature difference Δ T. We 

will put
''

w Tq
T

K


 .  

So, you will get 

1
4'' 3

w T
T

g q H
H

K

 






 
 
 

. So, from here you can see if you bring this δT 

in this side, so now, you can write after rearrangement, 
1

5

*T HHRa


.  

So, you do the rearrangement and here, this Rayleigh number based on ''

wq  is defined as, 

'' 4

*
w

H

g q H
Ra

K




 .  

So it is non dimensional number right. So, from this expression you can see your δT . So, 

δT what is the order? So, it will be
1

5

T y  . 

And what is about your δT. So, 
''

w Tq
T

K


 . So, 

1
5T y  . So, you can see in this figure, 

for uniform wall heat flux case, when flow is taking place you can see your thermal 

boundary layer thickness will vary as 
1

5y whereas, for uniform wall temperature it is
1

4y .  

And as it is uniform wall heat flux condition. Your 
1
5T y  . So, that we have. So now, 

and for uniform wall temperature T is constant and
1

4''q y . So, now, we can see; what 

is the order of Nusselt number in case of uniform wall heat flux case. So, δT we have 

already found. 
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So, 
1

5

*T HHRa


and this is the case for Pr>> 1 and 
1

5

''

*
w

H

q
T HRa

K


 .  

And we know, we have shown earlier that
T

H
Nu


. So from this expression, the first 

expression you can write
1

5

*HNu Ra . So here, you remember that this Rayleigh number 

is modified Rayleigh number based on wall heat flux.  

Similarly, now for Pr<<1 . We can write, for uniform wall temperature case. Already we 

have found
1 1

4 4PrT HHRa


. And
''

w Tq
T

K


 .  

So, if you put these ΔT in the expression of Rayleigh number where Δ T is there, then for 

uniform wall heat flux case, you can write  
1

5

* PrT HH Ra


.  

And Nusselt number and  
1

5

''

* Prw
H

q
T H Ra

K


 and

T

H
Nu


. So,  

1
5

* PrHNu Ra .  

So, we have shown the  
1

5

* PrHNu Ra for Pr << 1 and for high Prandtl number fluids it 

depends on Rayleigh number. So,
1

5

HRa . 
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So, using similarity method you can solve this problem, but we will not go into details, 

just we will show some results for uniform wall heat flux case using similarity variable. 

(Refer Slide Time: 33:04) 

 

So, the similarity solution was reported by Sparrow and Gregg; So, what we need to 

find? We need to find Tw as a function of y and Nusselt number right. So, from here, you 

can see that in this case
'' 4

*
w

y

g q y
Ra

K




 .  

And δT for high Prandtl number case, we have defined as

1
5'' 4

w
T

g q y
y

K








 
 
 

. 

So, from the solution the surface temperature variation is given as 

follows.  

1
52 ''4

4

5
( ) 0w

w

q y
T y T

g K







 
   

 
.  0  is the temperature, at η= 0. So these 

depend on Prandtl number. And you can see, Prandtl number for different Prandtl 

number what is the  0 . So, at 0.1 you have - 2.7507, 1 it is - 1.3574, 10 it is 0.76746 

and for 100 it is - 0.46566. And local Nusselt number is given by, 

 

1
5'' 4

2

1

5 0

wg q y
Nu

K



 

 
   

 
. 
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So, in literature you will find many correlations. So, Fuji and Fuji proposed this 

correlations to find the temperature at θ = 0. So, Fuji and Fuji proposed, 

 

1
1 5

2

2

4 9Pr 10Pr
0

5Pr


  
  

 
. 

So, this is valid in the range of 0.001 <Pr< 1000 . And as a special case, for Prandtl 

number special case Pr→∞. 
1

5

*y0.616Nu Ra  and you can see from the scale analysis 

also, we have found that 
1

5Nu Ra and Pr→ 0.  

 
1

5

*0.644 PryNu Ra , this also we have shown for Pr< 1 the Nusselt number varies 

as  
1

5

* PryRa .  

So, these results we have shown from the similarity solution, but using integral solutions 

also many researchers have proposed correlations we will just write down what Sparrow 

proposed. 

(Refer Slide Time: 38:33) 

 

So, Sparrow carried out an integral solution and propose the local Nusselt number as, 

1
5

1
5

1
5

*y

2 Pr

4360 Pr
5

Nu Ra

 
 

  
 
 

.  
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So, in today’s class we started with the energy equation and using the similarity variable, 

we converted this PD to OD and we have shown the boundary conditions for both 

momentum and energy equations and we have shown the solution of θ and g which is 

your representation of velocity v versus η. And we have also shown the local heat 

transfer coefficient and local Nusselt number and average heat transfer coefficient and 

average Nusselt number for the case of uniform wall temperature case.  

Later, we considered uniform wall heat flux case, and from the scale analysis we have 

found the order of Nusselt number and δT. Then we have shown some similarity solution 

what are available in the literature, and also we have shown the local Nusselt number 

expression from the integral solution of Sparrow. 

Thank you. 
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