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Module-08
Natural Convection -I
Lecture — 28
Natural convection over a vertical plate: Similarity solution of energy equation

Hello everyone. So now, we are studying laminar Natural convection over a vertical
plate. In last class, we started with the momentum equation and using similarity
transformation method, we converted the PD to OD and we discussed about the
boundary conditions. Now, let us consider energy equation and we will use similarity

transformation method to convert this PD to OD.
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So, these are the assumptions we have already discussed in last class; 2 dimensional
steady; laminar flow with constant properties, Boussinesq approximation is valid. We are
considering uniform wall temperature; that means T, is constant and uniform ambient

temperature, Too is also constant and we are neglecting the viscous dissipation. So, we

) ) oT oT o°T
can write the energy equationas U—+V—=a—.
OX oy OX
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So, we are neglecting the viscous dissipation, and this is boundary layer energy equation.
And you can see here ot is your thermal boundary layer thickness, and how the
temperature is varying as T,, > T... So, temperature is maximum at the wall and gradually

it is baring to the free stream where you have quiescent fluid temperature T..

. . . T-T . .
Now, let us consider non dimensional temperature €(n) = _Ii° . S0, now, if you write

w 0

this equation in terms of non dimensional temperature then you can write as;

00 00 3%
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Now we will use the similarity variable eta and will convert this PD to OD.

. X
So, in last class we have already shown that 77=—Ra§, and we know
y

Ra*
on =—1 and6—77 =~ This already we have derived in last class. And ¥, the stream

OX y oy 4y

function; also we have defined asy = aRaf f(n,Pr).
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So now, you can write the velocity u and v as u = - Raynf +j Ra/ f . So, this we
y y

have derived in last class and velocity v = _ Ra{z f.
y

Now, let us find the derivative of 0 with respect to x and y. So, you can see

00 _doon _,, Ra/*

X dn&x y

2 Ra’
And 299" png 999900 _o( 1|
ox* y oy dpoy 4y
. 060 06 0’6 .
So now, we have energy equation U—+V—=a—, if you
OX oy OX
Ra* Ra/?
Write[ —Ra/n fr 32 Ra%*fj — g —gRafff'(—lH'jza 2 0". So, if you
4y 4y y y 4y y
% 3a o_x % Ra’
multiply, then you will get ——Ra n f ¢9+—Ra . Rajnf'd'=a—-0".
4y* 4y* 4y*

So you can see here, here you can write, so these two terms you can see, this will cancel

out. This term and this term will cancel out; Now divide both sides by, %Ra?; now
. 3.0 au . : W 3
you will get, 2 f@'=0". So, you can see this is your equation 8"-—f8'=0.

So you can see, this is ordinary differential equation. This is second order linear ordinary
differential equation and you need the velocity distribution from the solution of
momentum equation. Because here (Refer Time: 9:49) is there so; obviously, that will be
your you can get the solution from the solution of momentum equation. But you can see,
these both equations are coupled, because in the momentum equation temperature term is
there 0, and in energy equation you have the term f which you will get from the velocity
distribution. So, in the coupled way with the proper boundary condition you need to

solve.
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So you can see the whatever we have derived, so we have derived the momentum

I2
equation as %(%—% ff J =—f"+60. So, you will get the velocity profile from this

equation and the energy equation is 0“—% fo'=0.

So you can see, in this equation 6 is there and in this equation f is there. So, these are
coupled, so together you need to solve and get the velocity distribution from the first
equation and temperature distribution from the second equation. And what are the
boundary conditions?

So, already we have discussed for velocity at x = 0, you have u = 0; that means, at n=0
you will get f = 0 and v = 0. You will get at n~= 0 f'=0. And what is temperature?
Temperature T is T,y; so you will get tBas 1. And at X —oo; that means, at the edge of the
boundary layer, you will get v = 0.

So, you will get at n—oo, f'=0and T will be T, so at n—o, you will get 6as 0. So, with
suitable numerical integration technique you can solve these two; ordinary differential
equation with given boundary condition. And you can find the velocity distribution as
well as the temperature distribution. Once you get that, then you will be able to calculate

the heat flux, heat transfer coefficient and Nusselt number.
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So, you can see the solution of temperature ah, so you can see theta versus eta it is
plotted for different Prandtl number. So, you can see as Pr— . All the temperature

profile collapse into a single curve.

You can see here, and this is the solution of G, which actually gives the velocity versus
eta. So, you can see that velocity v is actually we have written in terms of G, so this will
give the velocity distribution; and here also you can see as n— oo, S0 or you can see that

as Prandtl number increases because it is Prandtl number 0.01, 1, 10, 100 and 1000.

So, as Prandtl number increases, the velocity profile extends farther and farther into the
isothermal fluid . So, once you know the temperature profile and the velocity profile, you
will be able to calculate the heat flux and heat transfer coefficient and hence Nusselt

number. So, let us find these parameters.

(Refer Slide Time: 13:39)
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So, we know that 7 = 2= Ra/* and on _"&
y x oy
And 6?:_: —=__ S0, now, you can see, we can write the local heat flux. Soq;,, local

. oT . . o
heat flux at wall. So, ¢, =-K &L:O. Because if you have a vertical plate and this is
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your X and this is your y so; obviously, normal gradient is Z—llx_o you need to find the

heat flux.

. 00 .
So, now you can write —K(TW—Tw)a—k:o- So, now we can write
X

—K(TW—Tw)j—Hln_og—Zand Z—Zthis you can write. So you can
n

write —%(TW ~T,)Ra/0'(0).

So, can you tell how this heat flux varies with y. So you can see from this equation. So,
in the Rayleigh number expression, what is the Rayleigh number expression?

_ 3
ra _9B(L-T.)y

y av

. So, in the Rayleigh number you see y°, so Ra? means y%.

And, here in the denominator vy is there. So, it will be -1. So, you can see it will be y‘%.

So, q, ~ y*%1 for uniform wall temperature case.

Now, once you know the heat flux at the wall, you will able to calculate the local heat
transfer coefficient because local heat transfer coefficient, you can calculate from the
Newton’s law of cooling and h will be your g double prime w divided by the temperature

difference.

So, local heat transfer coefficient . So, from Newton’s law of cooling you can

writeh = % So, from this expression directly you can write —% Ra?@'(O) .

w 0

So once you know the temperature gradient at the wall, you will be able to calculate the

- h
heat transfer coefficient. Now, you can calculate the local Nusselt number. So, Nu = %

So, from this expression you can see it will be —Ray%e'(O) .

So, from the solution of the ordinary differential equation, once you get the temperature
gradient at the wall which is function of Prandtl number as well, then you will be able to

write the Nusselt number.
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Now, similarly you can calculate the average heat transfer coefficient and average
Nusselt number. So, the average heat transfer coefficient for a plate of length H, here

vertical plate so the height of the plate is H.

H
You can write h :%J‘hdy. Where h is the; local heat transfer coefficient; so that we
0

K[ 9B(T, —Tw)_%‘

H
have already found. So, you can write —— 9'(0)_[ y 4y .
H av 0

- V4

T -T
So, if you integrate it then you will get—g M
av

4
0'(0)—H”,
()3

So, this H* you insert in this bracket, so that you can get back the Rayleigh number. So,

if you write that, then you can write —%E Raﬁ@'(O) :

So, hence you can write average Nusselt number. So, average Nusselt number you can

write as N_u:h—H.
K

: 4 o — 4
So, you can write ~3 Ra/*6'(0) . So, in this case you can see, the Nu = 3 Nu |y:H :
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So, you can see the similarity solution heat transfer results for natural convection,
boundary layer along a vertical isothermal wall. So, NuRa;%, where Nusselt number is

the local Nusselt number. So, for different Prandtl number, these are the values.

So, this is obtained from the Ostrach’s solution. So, once you know these values then

you will be able to calculate the Nusselt number.

So, at the extreme case for Pr — oo, you can write Nusselt number,

Nu = 0.503Ra/*and Nu = 0.671Ra/: .

And for Pr — 0 you can write Nu = 0.6(Ra, Pr)%‘ ,and Nu =0.8(Ra,, Pr)".

So you can see here, that in this case you have for Pr — oo; that means, the case where

Prandtl number is very high so; obviously, from the scale analysis we have shown

that Nu ~ Ra/”.

And, when Pr < 1 then we have shown from the scale analysis that Rayleigh that

(Ray Pr)%t and from this expression you can see that.

So, till now we considered uniform wall temperature case so; that means, T, is constant.

We can also consider where in some applications you can have the uniform wall heat
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flux condition. Like, when the solar radiation falls on a body then you will get uniform
wall temperature case and in industrial application also we can have use of this uniform

wall heat flux case.

So, the simplified case we will take. So we will consider again, vertical flat plate keeping
the other assumptions constant, only we will assume that heat flux at the wall will be

kept constant.

(Refer Slide Time: 24:13)
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So, you can see that from the uniform wall temperature case, already we have

shown o; ~ y%‘. So, it is a vertical wall, T,, > T,, so; obviously, you will get the thermal
boundary layer like this and your &; ~ y%. And, also we have shown that as

your AT =T, —T_, we are keeping constantq" ~ y” . So this also we have shown today.

Now, for uniform wall heat flux case what is the heat flux? Generally, we

tellq"=-K ?3_1 . So, what will be the order?q" ~ K A5—T , because x ~6r.
T

So, from here we can get theAT~%. Obviously, your qg"at the wall we are

considering. So, this is your at the wall.
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So, from here, you can see we can find for Pr> 1, we have already derived for uniform

surface temperature case. What is the 52 &, ~ HRa,/*.

gpATH?®

%
} . So, this we have derived for the uniform wall
av

So, we can write o, ~ H{

temperature case. Now, in this expression you see the temperature difference A T. We

will put AT ~%.

949,06 H°

%
} . So, from here you can see if you bring this o
av

So, you will get o; ~ H{
in this side, so now, you can write after rearrangement, &, ~ HRa/*.

So, you do the rearrangement and here, this Rayleigh number based on g, is defined as,

_9paH"

Ra.,
H avK

So it is non dimensional number right. So, from this expression you can see your dr. So,

&t what is the order? So, it will be &, oc y* .

And what is about your 6. So, AT ~ % So, AT « y%. So, you can see in this figure,

for uniform wall heat flux case, when flow is taking place you can see your thermal

boundary layer thickness will vary as y%whereas, for uniform wall temperature it is y%.

And as it is uniform wall heat flux condition. Your AT o y%. So, that we have. So now,

and for uniform wall temperature AT is constant andq" ~ y* . So, now, we can see; what

is the order of Nusselt number in case of uniform wall heat flux case. So, 61 we have

already found.
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S0, &, ~ HRa,/*and this is the case for Pr>> 1 and AT ~ q?W HRa./? .

And we know, we have shown earlier that Nu ~ ; So from this expression, the first
T

expression you can write Nu ~ Raffa. So here, you remember that this Rayleigh number

is modified Rayleigh number based on wall heat flux.

Similarly, now for Pr<<1 . We can write, for uniform wall temperature case. Already we

have found &, ~ HRa,/* Pr”. And AT ~ % :

So, if you put these AT in the expression of Rayleigh number where A T is there, then for

uniform wall heat flux case, you can write &, ~ H (Ra.,, Pr)_%.

And Nusselt number and AT ~ q?w H (Ra., Pr)_% and Nu ~ ; . S0, Nu ~ (Ra., Pr)%.

T

So, we have shown the Nu ~(Ra.,, Pr)%for Pr << 1 and for high Prandtl number fluids it

depends on Rayleigh number. So, Ra/s .
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So, using similarity method you can solve this problem, but we will not go into details,

just we will show some results for uniform wall heat flux case using similarity variable.

(Refer Slide Time: 33:04)
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So, the similarity solution was reported by Sparrow and Gregg; So, what we need to

find? We need to find T, as a function of y and Nusselt number right. So, from here, you

9pa,y*

avK

can see that in this case R& =

P
gﬁqu“} |

And &7 for high Prandtl number case, we have defined as 8, ~ y{ K
av

So, from the solution the surface temperature variation is given as

2.4"4 %
foIIows.TW(y):Tw{%} 6(0). 6(0) is the temperature, at n= 0. So these

depend on Prandtl number. And you can see, Prandtl number for different Prandtl

number what is the #(0). So, at 0.1 you have - 2.7507, 1 it is - 1.3574, 10 it is 0.76746

and for 100 it is - 0.46566. And local Nusselt number is given by,

Nu = | 989" .
_ L _
57K | 6(0)
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So, in literature you will find many correlations. So, Fuji and Fuji proposed this

correlations to find the temperature at 6 = 0. So, Fuji and Fuji proposed,

4+9Pr%+10pr |*
0(0)=- 5Pr? '

So, this is valid in the range of 0.001 <Pr< 1000 . And as a special case, for Prandtl

number special case Pr—o. Nu :0.616Raf; and you can see from the scale analysis

also, we have found that Nu ~ Ra’* and Pr— 0.

Nu =O.644(Ra,ky Pr)%, this also we have shown for Pr< 1 the Nusselt number varies

as(Ra,ky Pr)% .

So, these results we have shown from the similarity solution, but using integral solutions
also many researchers have proposed correlations we will just write down what Sparrow

proposed.

(Refer Slide Time: 38:33)
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So, Sparrow carried out an integral solution and propose the local Nusselt number as,
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So, in today’s class we started with the energy equation and using the similarity variable,
we converted this PD to OD and we have shown the boundary conditions for both
momentum and energy equations and we have shown the solution of 6 and g which is
your representation of velocity v versus n. And we have also shown the local heat
transfer coefficient and local Nusselt number and average heat transfer coefficient and

average Nusselt number for the case of uniform wall temperature case.

Later, we considered uniform wall heat flux case, and from the scale analysis we have
found the order of Nusselt number and 61. Then we have shown some similarity solution
what are available in the literature, and also we have shown the local Nusselt number

expression from the integral solution of Sparrow.

Thank you.
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