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Module - 08
Natural Convection - |
Lecture - 27
Natural convection over a vertical plate: Similarity Solution

Hello everyone. So, in last class, we derived the laminar boundary layer equations for a
Natural convection over a vertical plate. We derived continuity equation, y momentum

equation and energy equation.

So, we have three partial differential equations. In today’s class, we will use similarity
method and we will convert these three partial differential equations to ordinary
differential equations. Let us write down the governing equations, whatever we derived

in last class in non-dimensional form.

(Refer Slide Time: 01:19)

Non-dimensional governing equations
i

o
«’-‘-Q%-O i T
u}:«”%:”%fﬁﬂt‘*‘r-) & 4‘

.
3T 2T . &5 s
*wVR S

Y fornaman Lnget | W

Men- davnumadonsd prsaamadans,

‘.\

= ¥
A '.2— ' D':—i
7.';3;. 3'-%, e -\-):,n v Uny Torr S
v dirematerind anpasicn
e S o
et gt MCT TP
.2 _\,1_3_‘_'._' ol l'?"'; 4 @ e 8
S TV T Reyax” = s
PSS T BPRCLS | Yl M. =
T Y Ra Byt ~ .

471



. . . - .. .0u au
So, if you see that we have derived in last class; continuity equation |sa—+5 =0; then,
X

2
we derived the momentum equation as u?+v@:v%+ gB(T-T,)and also, we
X X
. 0T oT o
have Energy equationu—+VvV—=a—-.
OX oy OX

So, if you know that we have consider vertical plate and this is your x and this is your y.
In x direction, we have velocity u and y direction, we have velocity v. Ambient fluid is

quiescent and it is having temperature T..

We have gravitational acceleration in negative y direction that is g and this wall is
maintained at uniform surface temperature that is your T,. So, now, we will choose to
reference scale, one is for length and one is for velocity. Let us choose that your

reference velocity is Ure.

We do not have any free stream velocity in this case. So, we are choosing some reference
velocity that is your U and reference length, let us choose H; where, H is the height of
the fluid or you can choose any other reference length. Now, we will use this non-

. : . . . : X
dimensional parameters, x* is the non-dimensional x coordinate, x* = R y* = % then

u*:L, v*:L; then temperature, we will take 6 = Ll .
Uref Uref Tw _Too

So, with this now, if you put it here and if you rearrange, you will get the non-

. . . . . . ou* ov*
dimensional ~equations. Non-dimensional equations as——+——=0, then we

ox* oy*

* * 2y T,-T,)H
haveu*av +V*8v = 1 ov +gﬂ( " ‘”)
OX* oy* Re, OX*? U2

ref

€. So, using these non-dimensional

parameters, you put all those things in the momentum equation. Then, if you rearrange,
you will get the equation in this form; where in the viscous term, you will get 1 by

Reynolds number and the buoyancy term you will get like this.
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So, we will simplify it later. First let us write the non-dimensional energy equation,

oo 00 1 0%
+V =
ox*  oy* Re, Prox*

9f(T,-T)H _ v* gB(T,-T,)H’
Uz _Uz H2 V2 '

ref ref

*

. So, if you see these term in the buoyancy term, so if

you rearrange it, you will get

So, these term is now one another non-dimensional number that is known as Grashof

number ; Grashof number.

So, how Grashof number is defined Grashof number is the ratio of buoyancy force to the
viscous force because in the numerator, you can see this is coming from the buoyancy
force and in the denominator v is there, so it is coming from the viscous force. So,

Grashof number is the ratio of buoyancy force to the viscous force. So, and it is written

g,B(TW—TDO)H3 .

2
14

in this from Gr,, =

So, Grashof number based on H . So, now, you can write this term. So, momentum

* * 2y, %
equation you can write asu*av +V*8v = 10 VZ + Gr,;
OX* oy* Re, ox* Rey

So, this is your momentum equation. So, here we will define another non-dimensional
number which is your Grashof number by Reynolds number square and it is known as
Richardson number.

Gry

2

. So, this
Re},

So, this is known as Richardson number and denoted as, Ri, =

Richardson number has physical significance that it compares which force is dominant;

buoyancy force or your inertia force.
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So, Richardson number ok. So, this is Ri,, = . S0, you can see Richardson number,

so it is kind of buoyancy force to the inertia force . So, if it is so, now you can see three
different cases. If Richardson number >> 1, so what will happen?

So, if Richardson number >> 1, so now, you can see that Richardson number >> 1; that

means, Gr, > Re?, . So, what does it mean? It means that buoyancy force will dominant.

So, in that case obviously, buoyancy force is dominating, then you can consider that it is
natural convection. So that means, forced convection effects may be neglected. If Ri<<1,

S0 in that case you can see inertia force will dominant .

So that means, it will be forced convection. So, in this case, your natural convection
effects may be neglected and if Ri = 1, then what will happen? Your buoyancy force is
comparable to inertia force. So, you cannot neglect either buoyancy force or inertia
force.

So, you will have both natural convection and forced convection and that is known as
mixed convection or combined convection. So, for Ri = 1, so you will get mixed
convection which is known also as combined convection. So, in this case, you need to

consider both forced and natural. So, you can see this example.
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So, if natural convection is happening, say you have a sphere hot sphere, then

Gr,
Re?,

=Rz, >> 1. L is the any characteristic length. So, in this case you will have only

natural convection. So, due to buoyancy, you can see the you will have a flume and it

will go up.

Now, if Ri << 1, then natural convection can be neglected and you have a forced
convection. So, you can see this velocity is generated using some fan and over this hot
sphere, this flow will takes place and heat transfer will takes place and that is your forced

convection.

But if you have Ri = 1, then you will have both natural convection and buoyancy effect
will be there. So, in this case, g is there and also in this case g is there. So obviously, you
can see you will have buoyancy effect. So, this flume will go up, but you have forced
convection also in the x direction. So, you will see the flume is go up in a inclined

manner. So, it is known as mixed convection.

Now from here, you can see that if you choose the velocity scale in such a way that the
coefficient in the buoyancy term in the 6 will become 1. So, in that case, you can see
because reference velocity is arbitrary right. So, it can be chosen to simplify the form of

the equation.

So, it is convenient to choose; convenient to choose U2, =gA(T, —T,)H so that your

ref

the term with the 6, so you can see this term. So, ifU?% = gB(T, —T,)H , then this will

ref

become 1. If it becomes 1; then obviously, it is kind of Richardson number will become
1.

And for this case you can see your Re?, =Gr, right. That is we have already defined

because this is your ratio right. Rz, =S—r;'and Re,, =.,/Gr, . So, you can see that
e

H
Grashof number place the role same role in the natural convection, what Reynolds
number place the role in forced convection right.

Now, let us use similarity transformation method and convert this three partial
differential equation to ordinary differential equation so that we can have the numerical
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solution. Now, you can see in last class, we have found scales for different quantities like
thermal boundary layer thickness, then velocity v and also, Nusselt number and those are
tabulated in this table.

(Refer Slide Time: 16:03)
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So, you can see for Prandtl number >> 1, the boundary layer thickness &, ~ HRa;*. And

also, velocity scale % Ra/* and Nu,, ~ Ra/# and you can see that the velocity looks like

this.

So, because at the wall, you will have 0 velocity and at the edge of the boundary layer,
we will have 0 velocity. So, your maximum velocity occur in between this boundary

layer and this is the known as wall jet velocity profile.

So, you can see at different location, you will get this type of profile and if you can say if
you see at this location; let us say it is y; and this is your y,. So, you will get some profile
like this and you can see that if you scale down this velocity profile with a proper scale,

then you can bring down to this profile.

So that means, if somehow we can convert this partial differential equation to ordinary
differential equation using some scale factor, then your similarity transformation exists

and we can write this partial differential equation to ordinary differential equation.
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So, now how to choose these similarity variable? So, you here in that table, you can see

that we have this &, ~ HRa/*. So, this scale we can take for the similarity variable eta

. o
and we have also velocity scale q Ra/:.

So, what we can do? You can so, this similarity variable n; similarity variable 7 =5
T

So, we can write for Prandtl number > 1 , so thermal boundary layer thickness you can

see 5. ~ HRa /.

: X : . _ .
So, we can write 77 = 5 So, you can write; so, this o; ~ yRay% . S0, In this case we can
T

Writenzﬁi:iRaﬁ. So, it is a in the numerator we have written. So, we are equally

T

depend + 1/4.

3 p—
So, here Ra, :gﬂﬂ_ So, now, you can see 6?(77, Pr):_: -I_;j" . So, in this case, you
av w - ]

can see this is the temperature profile and this also you can use some scale factor so that

it will become same or all the temperature profile will collapse, if you plot it with 7.

So, theta you can write this way and we know the vertical velocity scale as v ~ g Ra?
y

for Pr > 1. This we are considering. So, this we can write velocity scale

v=%Ra{2F (n,Pr). So, this is your dimensionless similarity profile of the wall jet. So,

this scale we can use and we can now find what is the value of ¥ from this expression .
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So, now we will use 7 = —Raf and if you put the value of Ray, then you can write in
y

%
terms of 'y as x(wj y’%. So, now, you can find
av
on _1 Ray and ( 9pAT )%(— }/ )Y’% So, now, you rearrange it and then, you
oX Yy 8y av 4 o ’ '

o _

can simplify it and you will get = _4ly after simplification.

Now, we have v. So,v:gRai/ZF(n,Pr). Now, we will find the stream function from
y

this velocity v and once stream function is known, then you will be able to calculate the

2
velocity u and velocity gradient like 6_v il and a—\zl
ox ' oy OX

So, now, let us find what is stream function ¥. So, you can define v = —%—W. So, if you
X

dy on . So. on

put it here, you will get; so, this you can write —
on ox OX

——already we have found

here. So, you can write _owl Ra/*.
ony
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So, now, if you put these. So, you can find ov )1/Ray y RaffF. So, now if it is so,
on

o
on

now we can write =—aRa?F. Now you can integrate it. So, integrating you can

write y = aRay%*I—Fdn and the integration constant is put inside this integral.

So, now, we will define a new variable small f. So, that your g—f =—Fdn. So, if it is so,

now you can writey = aRa’* f (1,Pr).

So, you can see from here F will be just —Fd# integration constant is involved here. So,
you can write f (7,Pr). So, now, we have found the stream function ¥. So, you will

able to calculate the velocity u right.

(Refer Slide Time: 25:19)
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And von Mises transformation, again we will use it. So, let us write these von Mises

transformation. So, in this case it is a vertical plate, so we will use i|y = i|X a—77|y , We
OX on ~ oX
will write asik = i|X 8—77|X +£|,, .
oy on oy oy

So, we will use these a transformation while finding the derivative. So, stream function

you have found w:aRai{‘f and in terms of y if you write, then you will get

%
a(ﬂJ y%f . S0, that we have written outside.
av

So, now velocity u =%—V; and %—V; if you write, then this transformation you have to
use. So, if you use these transformation, you can see
%
soa—l//:aRay%f N +a(MJ Ey’%f .
oy 4y av 4

So, if you rearrange it. So, you will get—% Rafff '+i—a Ra?f . So, we have found the
y y

velocity u.

Now, let us write the velocity v in terms of f. So, in terms of capital F already we have

written. So, you know that we have written v = i RafF and this you can see F = d—a.

dr
. a . . gpAT %
So, you can write —V Ra? f ' and in terms of y if you take —a(—j yefe
av

So, we are writing in this form because we need to find the derivative with respect to y

that is why we have taken y outside. So, that it will be easiest to integrate. Now, you can

. . : OV oV o°v
see in the momentum equation, we have the velocity gradient ' v and PV So, that
X X

let us find from this expression.
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So, if you use 2—\/ So, again this von Mises transformation this one we will use. So, you
y

%
can see, it will e o Rt - |_ o 9PAT ly%f ', Now, let us find the
oy y 4y av 2

derivative of v with respect to x.

Ra*
So that means, N__a Ra/* f "—~.
OX y
. . e - . (04 3 . 82V [04 3 Ra%
So, if you simplify it, you will get —7 Raff " and again, pa = —7 Raff TV

So, if you simplify it, you will get—ﬁ3 Ra, f"™. So, now let us put all these in the
y

momentum equation. What IS your momentum equation?
2
u@jtv@ :V6_\2/+ 9B(T-T,).
ox oy X

So, now, if you put the value here. So, first u; So, this if u if you put, so you will get

O Ry 3% Rttt ~ZRakf'|-ZRa% | ZLRak f - Raltf
4y 7 by 7 y: y 4y 2y

So, left hand side, the inertia terms we have written; now in the right hand side, you

write the viscous terms v(—% Ra, f J + gﬂ(T —Tw) ,
y

So, now, we have H:I_le" . So, this term gA(T,,—T,)6. So, you multiply it first,

w 0

then simplify it.
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So, this if you do, then you will get

2
“”Raff" 3a” "0”7Raff"+2—Raf'2
y®

4y* 4y 4y*

Then, we have the  viscous term,—a—:Rayf'"Jra—:Raye. You  see
y y

94T, -T.)Y’

av

Ra, =

, . S0, now, you can see this two terms will get cancelled; this term

2
and this term. Now, you can write this equation; divide both side by a—s Ra, .
y

So, if you divide by these, then first term what you can write? So, you can see, it will be

12
—§ ff "+f—=—K f "'+KH and you know the definition of Prandtl number, Pr=1.
4 2 a a a

I2
So, if you put it here, so you can see it will be—% ff "+fT =Pr(-f"+0).

I2
So, if you write in this way, so it will be%(%—% ff J =—f"™+60. So, you can see that

choosing the similarity variable, we could convert the three partial differential equations;
continuity equation; momentum equation and energy equation to ordinary differential

equation.
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So, if you see that using the similarity approach, we could convert the momentum
equation which is your partial differential equation to ordinary differential equation. You
can see this is the third order differential equation and it is non-linear because you can

see this is ™, so this is third order and you have ff" that means, it is non-linear

ordinary differential equation.

But here you can see in this ordinary differential equation, in the momentum equation
also you have term 6 which is your temperature . So that means, this equation also will
depend on the temperature profile. So, what are the boundary conditions now?

So, for a vertical plate if you see, so this is your X, this is your y right and | am going to
write T,, and this is your T,, which is uniform and there will be hydrodynamic boundary
layer like this, which is your 9; at any location, you can find what is the 8. So, now, you
can see what are the boundary conditions.

So, we can see at X = 0, you have no slip boundary condition; that means, u = 0 and v= 0.
So that means, at n=0, if you put u = 0, so you can see the us scale. So, you can see from

here. So, here you can see that if u =0, then f'=0.

So, let us say that at n=0, so first find v = 0. So, if v = 0, then you can see from this

expression. If v =0 from this expression, f'= 0; from this expression, f'= 0. So, you

can see it willbev =0, it will be f'=0.

So, if f'=0, then for u = 0. So, u is the this is the expression. So, f' is already 0. So, f
will be 0. So, this is the stream function actually. So, you are putting stream function
value as O because it is a vertical plate, so up will give you the stream function and
vertical plate, you can see it is a streamline and along a streamline your stream function

will be constant; so, f=0.

So, and x —o. So, near to this edge of the boundary layer. Obviously, you will get the
velocity 0. So that means, again you have v = 0. So, you have v = 0. So, at n—o0 you will

get f'asO.

Now, you can solve this ordinary differential equation using these boundary conditions,

using some numerical technique and you can find the velocity distribution . But you

483



cannot solve it alone because along with these you need to solve the energy equation,

because theta is involved.

So, you have to solve in coupled way. So, you have to apply boundary condition for
velocity in this equation and when you solve the energy equation, you need to invoke the
temperature boundary condition and together, numerical you need to solve these two
equations and you will find the velocity distribution as well as the temperature

distribution.

So, if you see that when we wrote the governing equations for flow over vertical plate
when with uniform temperature boundary condition, what are the assumptions we took?
Obviously, it is two-dimensional steady and laminar flow and we have invoke the
bossiness approximation and you can see the properties like thermal conductivity,
specific heat and the viscosity are constant and the ambient temperature T, is also

constant and T,, which is your wall temperature that is also constant.

So, in the next class, we will solve the energy equation and we will convert this partial
differential equation to ordinary differential equation, using the same similarity variable.
So, in today’s class, first we wrote the non-dimensional form of the boundary layer

equations for natural convection over a vertical plate.

So, we have introduced with two non dimensional numbers; one is Grashof number
which is the ratio of buoyancy force to the viscous force and another non-dimensional
number that is Richardson number which is defined as Grashof number divided by
Reynolds number square. This actually gives the ratio of buoyancy force to the inertia
force. So, depending on the value of Richardson number, you can see which is the

dominant force.

So, for Richardson number >> 1; obviously, you can neglect the forced convection and it
will be purely natural convection. If Richardson number << 1, then you can see that
inertia force will be dominant and it you can have the forced convection and effect of

natural convection you can neglect.

But when Ri = 1, then both are significant natural convection as well as forced
convection. So, this is known as mixed or combined convection. Then, we have used the

similarity transformation approach and using the similarity variable eta and we have

484



defined a velocity v from the scale of velocity v, we converted this momentum equation

which is your partial differential equation to ordinary differential equation.

So, first we found the stream function from the velocity v and once you know the stream
function; from there, we found the velocity u and the velocity gradientg—i : 2—; and 2—)2(\2/ :

So, all those terms if you put in the momentum equation, then you could get third order
non-linear ordinary differential equations and the boundary conditions already we have
discussed that at the wall you have velocity v = 0 which will give f ' is 0 and at the wall
again u is 0 and it will give stream function as 0. So, f = 0 and as n—-o; that means, v

will be 0and f ' will be 0.

So, in the next class, we will derive the ordinary differential equation for the energy

equation.

Thank you.
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