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Hello everyone. So, till now we have considered forced convection. In forced convection 

the fluid is forced to flow over a surface or inside a tube by external means like using 

pump or blower. Today, we will start natural convection which is also known as free 

convection.  

In natural convection fluid motion starts in natural way due to the temperature difference 

and hence, there will be density difference and in the presence of acceleration like 

gravitational acceleration. 

(Refer Slide Time: 01:16) 

 

So, you can see natural or free convection flow arises when a heated or cold object is 

placed in a quiescent fluid. The density of which varies with temperature. So, these are 

some typical applications; heat transfer from pipe, dissipation of heat from a coil of a 

refrigeration unit to the surrounding air, heat transfer from a heater to room air, and 

atmospheric circulation. 
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So, as I told before the two conditions are required, for fluids to set in motion in natural 

convection, the presence of an acceleration field like gravity and a density gradient in the 

fluid which may occur due to temperature gradient. So, you can see here in the right 

hand side figure. So, if you keep one hot egg in a plate then; obviously, surrounding 

fluids temperature is lower than the hot egg. 

So, the fluid which is coming into contact with hot egg will have higher temperature and 

it will have lower density and it will go up. So, warm air will go up and cool air will 

come to the hot egg. Again it will get heated and it will go up. So, in this way you can 

see that fluid motion starts.  

Another example of this cold soda; so, it is actually warmed up in presence of the 

ambient air. So, you can see when you keep it in the ambient air, warm air will come into 

contact, there will be heat transfer its density will increase and it will go down.  

So; obviously, warm air will come into contact in the upper half and there will be heat 

transfer due to that a density will increase and cool air will come down. So, these are 

some examples of natural convection. We can have simplest natural convection solution 

for flow over vertical plate. 

(Refer Slide Time: 03:32) 
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So, if you consider this vertical plate which is maintained at temperature Tw and the 

quiescent fluid is having temperature T∞ and its density is ρ ∞ there will be acceleration 

field and that is your gravity.  

So, we are taking x as normal to this vertical plate and velocity in that direction we will 

consider as u and along the plate we are taking y coordinate and velocity in that direction 

will be v. As Tw > T∞; obviously, your fluid will go up and thermal boundary layer and 

hydrodynamic boundary layer will form over this plate. So, here you can see in the first 

figure. 

So, there will be a hydrodynamic boundary layer formation, whose hydrodynamic 

boundary layer thickness is δ and you can see the velocity distribution; obviously, for no 

slip condition, on the vertical wall velocity will be 0 and outside ambient is quiescent 

fluid so; obviously, at the edge of the boundary layer velocity will be almost 0. So, 

maximum velocity will occur inside this hydrodynamic boundary layer. 

If you consider the thermal boundary layer; so, similarly it will also start from the bottom 

and δ T is the thermal boundary layer thickness. It will grow as you go up; that means, 

with increase in y δ T will also increase and T∞ < Tw.  

So, this will be the temperature distribution. So, at the wall you have Tw and at the edge 

of the thermal boundary layer you have temperature T∞. If you consider Tw < T∞ so in 

that case your boundary layer will start forming from the top edge. So, that will be your δ 

and also you have thermal boundary layer δT. So, this is your δT and this is your δ and 

this is your direction y and this is your x this is your Tw and quiescent medium is having 

temperature T∞. 

So, first we will write down the governing equations for flow over vertical plate. Let us 

first make the assumptions. So, you can see the flow is steady laminar and two 

dimensional viscous. Dissipation term is neglected and; obviously, we will have 

boundary layer approximation is valid. 

And if we consider the height of the vertical plate as H then we can consider that T

H


will 

be << 1. Temperature difference between the plate and the fluid is small, in which case 

the fluid maybe treated as having constant properties. So, we are considering the 
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temperature difference as low and the thermal physical properties like viscosity, thermal 

conductivity, specific heat, we will assume that these to be constant.  

Also, with one exception the fluid is incompressible the exception invokes accounting 

the effect for the effect of variable density in the buoyancy force since it is this variation 

that induces fluid motion. So, you can see another important assumptions we are taking 

that we are considering ρ to be constant.  

So, that it will become incompressible, but as temperature difference will be there, there 

will be density difference and that density difference effect will take into account in 

buoyancy term only and rest other terms like continuity equation and the in inertia term 

of the momentum equation, we will take ρ as constant. 

(Refer Slide Time: 08:19) 

 

So, in natural convection whatever we discussed just now that is known as Boussinesq 

approximation. The basic approach in this approximation is to treat the density as 

constant in the continuity equation and the inertia terms of the momentum equation, but 

allow it to change with temperature in the gravity term. So, this is important assumptions 

we are taking which is known as Boussinesq approximation. 

So, in this approximation what we are telling; that we will take density as constant in the 

continuity equation as well as in inertia terms of momentum equation, but we will take 
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the effect of its change in the buoyancy term. So, first let us write the governing 

equations. So, what are the governing equations? First is continuity equation.  

So, we consider two dimensional flow. So, it will be 0
u u

x y

 
 

 
and x momentum 

equation. So,
2 2

2 2

u u p u u
u v

x y x x y
 

      
     

       
and y momentum equation 

2 2

2 2

v v p v v
u v g

x y y x y
  

      
      

       
. 

Now, first write down the boundary layer equations. So, as we discussed in the forced 

convection in boundary layer approximation that δT << H k. So, in this particular case 

you can see that δ is the hydrodynamic boundary layer thickness and δT is your thermal 

boundary layer thickness and that will be much-much smaller than the height of the 

plate. 

So, in this case now you can have the assumptions. So, if you have the similar way as we 

have done in the forced convection you can neglect 
2

2

v

y




and here in x momentum 

equation all these terms will become negligible only from here so, all this terms will 

become negligible and you will have
p

x




=0. And as 

p

x




 is 0, p is function of y only, then 

y momentum equation you can write as
2

2

v v dp v
u v g

x y dy x
  
   

     
   

. So, this is 

your boundary layer equation for flow over vertical plate and this is your y momentum 

equation. In x momentum equation you will get 
p

x




=0. Now, let us write the energy 

equation. 

So, in general your energy equation is
2 2

2 2p

T T T T
C u v K

x y x y


     
    

      
. So, if you 

write the boundary layer equation then it will be 0. So, this is your energy equation.  
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So, you can write
2

2

T T T
u v

x y x


  
 

  
. Now, you see the y momentum equation. In the y 

momentum equation in the left hand side we have density ρ. So, invoking the Boussinesq 

approximation will take ρ as constant and it will be same as ρ∞ . 

So, in the first impression whatever you have ρ∞ which is actually quiescent medium. So, 

that will be ρ = ρ∞. So, invoking the Boussinesq approximation will take the ρ in the left 

hand side of the y momentum equation as ρ∞ which is your quiescent medium density ρ∞. 

So, you can see this ρ∞.  

(Refer Slide Time: 14:07) 

 

So, you can write down all these boundary layer equations now. So, you can write these 

boundary layer equations. So, whatever we invoked we have taken x ~ δT, y ~H and we 

have assumed δT << H and we have dropped 
2

2y




 these terms.  

So, your continuity equation is, your continuity equation will remain same 

0
u u

x y

 
 

 
and invoking the Boussinesq approximation and rearranging you can write 

the y momentum equation as
2

2

1v v dp v
u v g

x y dy x




  

  
    

  
.  
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Now, you have buoyancy term. So, what is your buoyancy term. So, buoyancy term will 

become g




 . So, now here you can see how you will calculate the
dp

dy
. So, 

dp

dy
you 

can write as
dpdp

dy dy

 , because 
u

x




= 0. So, whatever pressure is there outside the 

boundary layer so that will be impressed inside the boundary layer. So, now, in the 

quiescent medium so you can write the hydrostatic pressure right. So, what will be 

the
dp

dy

 ? 

So, this you can write as g . So, this is your from hydrostatic pressure distribution 

you can write it. So; obviously, you can see now these two terms together you can write 

this term and this term you can write as
1 dp

g g g
dy

 

   


   

    . 

So, it will become g
 







. So, your momentum equation buoyancy term you can write 

as, g
 







 and now you can expand the ρ in Taylor series, expanding ρ in Taylor 

series. So, what you can write?  T T HOT
T


   


    


.  

So, neglect this high order term and you also you can have volumetric expansion 

coefficient as volumetric expansion coefficient, you can write
1

p
T




 
 

.  

So, here this is the  volume at constant pressure. So, in terms of density if you write. 

So, it will be
1

p
T




 
 

  
. So, it will be

1
p

T






 


. So, what you can write p

T





  


. 

So, similarly you can write
T


 


  


. So, if you invoke these in this equation so 

what you will get? You will get   T T        . 
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So, you can rearrange and you can write  T T        and  

   g g T T        . So, now, you can see this term
 

 
g

g T T
 











  . 

So, this is your buoyancy term. 

So, now your boundary layer equations will become continuity 0
u v

x y

 
 

 
, your x 

momentum equation will become  
2

2

v v v
u v g T T

x y x
  

  
  

  
. Now, the buoyancy 

term  g T T  and your energy equation 
2

2

T T T
u v

x y x


  
 

  
. 

So, these are the boundary layer equations for flow over vertical plate, for the case of 

natural convection and we have assumed density to be constant in continuity equation 

and in the inertia terms of y momentum equation and we have taken the change of 

density only in the buoyancy term. So, these are the equations.  

Now, we will do the scale analysis and we will try to find what is the order of heat 

transfer coefficient and the Nusselt number and which are the forces is dominating for 

high panel number fluids and low panel number fluids for constant surface temperature. 

So, first we will consider uniform surface temperature case, then we will find the order 

of magnitude of this heat transfer coefficient and the Nusselt number. 
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So, inside the thermal boundary layer your x ~ δT, y ~ H, where H is the height of the 

plate and we are assuming that uniform surface temperature and the continuity equation 

if you see that will be 0
u v

x y

 
 

 
. So, if you see the order of magnitude of u. So, 

T

u v

H
. 

So, from here you can see Tu v
H


, from energy equation. Now; so, this is your 

continuity equation now from energy equation
2

2

T T T
u v

x y x


  
 

  
. So, the order of  

wT T T   and this Δ T ~δ T. So, you can see here you can write
T

u T




. 

So, this is the first inertia term the second inertia term. So, you can write 
v T

H


 and the 

diffusion term will be
2

T

T




. So, now, you can see if you put Tu v

H


. So, if you put it 

here you can see it will be equivalent to
v T

H


. So, you can see these inertia terms are 

comparable, because these are same 
v T

H


and this is your diffusion term. 
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So, now inertia should be comparable with the diffusion term. So, if you do that. So, you 

will get
2

T

v T T

H



 
. So, from here you can see the, what is the scale of v. So, 

2

T

H
v




. 

So, we have found the scale for v and similarly from this equation you can find the scale 

for u. 

So, 
2

T

T

H
u

H




. So, 

T

u



. So, now, from using continuity equation and the energy 

equation, we have found the scale for velocity u and v. Now, let us consider momentum 

equation. 

(Refer Slide Time: 25:59) 

 

So, momentum equation we have  
2

2

v v v
u v g T T

x y x
  

  
   

  
. So, these are inertia 

terms, this is your viscous term, and this is your buoyancy term and what is the order we 

have? x ~ δT, y ~H, 
T

u



, and

2

T

H
v




. So, using this scale now let us see each term. 

So, the first inertia term if you see so, if we put
2

1

T T T

H 

  
. So, this is your first inertia 

term. Second inertia term now v so, it will be

2

2

1

T

H

H





 
 
 

. So, first look at this two terms. 

So, this is equivalent to this. So, you can see this two inertia terms are of same order, 
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because both are having the same order

2

2

1

T

H

H





 
 
 

. now, let us see the viscous term. So, 

in the viscous term now we have ν. So, 
2

T

H
v




and x ~ δT and this buoyancy term, 

so g T . 

So, now what we will do we will just divide this terms with g T . So, that it will 

become 1 buoyancy. So, we are dividing by g T . So, you will get so, this term if you 

see. So, it will be 
3

T

H

g T



 
. So, this is your viscous term and now you divide this term. 

So, these two terms are same. So, I will write only one term. 

So, it will be 
2 2

4

T

H

Hg T



 
. Now, we will rearrange it. So, if you rearrange it so, you can 

see the viscous term . We will write it as so this will be 1 buoyancy term, it will be 

3g TH




. So, now, H cube we have just divided. So, we will multiply in the numerator 

H. 

So, it will be

4

3

T

H

g TH

 

  

 
 

 
. 

So, you can see, you can write it as now Prandtl number, you know right what is the 

Prandtl number? So, Pr



  and we will define another non dimensional number that is 

known as Rayleigh number. So, Rayleigh number we are defining as 
3

RaH

g TH




 .  

So, what you can do now, this you can write as

4

1 1Ra PrH

T

H



  
 
 

. This is your 

4

1RaH

T

H



 
 
 

and Rayleigh number we have defined based on the height of the plate. So, 

this is you can write H, here also you can write H and this is the buoyancy term this is 1. 
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Now, we will consider two different cases one is high Prandtl number fluids and low 

Prandtl number fluids. So, for high Prandtl number fluids, Prandtl number will be >>1 

and you can see in this particular case. So, it is 
1

Pr
. So, if it is 

1

Pr
 and Prandtl number is 

very high. So, this term will be dominant term . 

So, this term will be dominant term for the high Prandtl number fluids and when you 

have low Prandtl number fluids so; obviously, this will be your dominant term, but in 

each cases buoyancy term should be present.  

So, either your inertia term will be comparable with buoyancy term or your viscous term 

will be comparable buoyancy term, because to have the natural convection you should 

have the buoyancy term present. 

(Refer Slide Time: 33:48) 

 

So, in two different cases now we will consider high Prandtl number fluids and low 

Prandtl number fluids. So, first we will consider high Prandtl number fluids. So, Prandtl 

number >> 1. So, you can see your 

4

1Ra 1H

T

H



 
 
 

. 

So; that means, viscous term will be comparable with buoyancy term, because Prandtl 

number is very high. So, the inertia term you can see you have 
1

Pr
. So, and Prandtl 
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number is very high. So, that will be negligible compared to the viscous term and for 

high Prandtl number fluids you can compare the viscous force with the buoyancy force. 

So, that we are doing. 

So, with this now you can find what is δT. So, 
1

4RaT HH


 and we know that T

H


 we are 

assumed that it is >> 1. From here you can see 
1

4RaT
H

H

 

.  

If T

H


<<1 then this Rayleigh number should be very high, because it is of the order 

of
1

4RaH



. So, it is minus is there. So, you can write the boundary layer theory for natural 

convection is valid for high Rayleigh number fluids. So, now, you can find what is the 

scale of velocity v. So, we know
2

T

H
v




. So, 

1
4RaT

H
H

 

. 

So, from here you can write
1

2RaHv
H


. So, this is the scale for velocity v for high 

Prandtl number fluids. Now, let us find what is the heat transfer coefficient.  So, for heat 

transfer coefficient so, you know 
0x

w

T
K

xh
T T






 




. 

So, as you know Tx  . So, you can write 
T

K
h


. So, now, Nusselt number. So, it will 

be H

hH
Nu

K
 . So, based on height H so Nusselt number will be order of; so you can 

see, 
H

T

H
Nu


. So, 

1
4RaH HNu . 

So, you can see from the scale analysis we have found the scale for δT, thermal boundary 

layer thickness, your velocity v, and heat transfer coefficient and Nusselt number. You 

can see
1

4RaH HNu . So, later when we will do the analytical solution for the boundary 

layer equations for natural convection you will find that
1

4RaH HNu . 
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Now, let us see that for high Prandtl number fluids so; obviously, for high Prandtl 

number fluids δT << δ right, where δT is your thermal boundary layer thickness and δ is 

your hydrodynamic boundary layer thickness. So, in this case you can see that this is 

your thermal boundary layer thickness. 

So, temperature will vary. It will be high at the wall and gradually it will decrease and in 

the quiescent medium; obviously, there will be temperature is T∞ and δT will almost will 

become 0 . So, this is the variation of temperature inside the thermal boundary layer, but 

as δ >> δT.  

So, the effect of velocity will be still there outside this thermal boundary layer and you 

can see in the outside there will be effect of this velocity and you will get maximum 

velocity; obviously, it will be inside the thermal boundary layer. So, maximum velocity 

you will get inside the thermal boundary layer. So, inside the thermally boundary layer if 

you consider so; obviously, your viscous force will be order of buoyancy force; that 

means, friction force. 

So, because you it is near to the solid wall. So, the viscous effect will be there and 

viscous effect will be comparable to the buoyancy force, but in the unheated layer. So, 

you can see; obviously, your buoyancy will be absent, because there is no temperature 

difference outside this thermal boundary layer. So, your buoyancy force will be absent 

and your viscous force will be comparable with the inertia force. 
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Now, you can see that outside the thermal boundary layer. So, you will have viscous 

force will be comparable with inertia force. So, you can see viscous force, viscous force 

will be comparable with the so this is your viscous and this is your inertia. 

So, from here you can see. So, viscous term will be your 
2

2

v

x




 will be comparable with 

the inertia term. So, that will be any term you can say. So, it will be let us say 
v

v
y




. So, 

in this case now it will be 
2

2

v v

H




. So, from here you can see the velocity 

2

H
v




and 

2 H

v


 and v we have already found, it will be

2

H
v




. So, if you put the value of v. 

So, it will be
2

2 H
H


 


. So, you can see 

2

2

T




. 

So, this H H will get cancelled and Pr



 . So, you can see 

1
2Pr

T




which will be >> 1 

right, because Prandtl number > 1 and from here you can see that δ > δT.  
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Now, let us consider low Prandtl number fluids; that means, Prandtl numbers << 1, low 

Prandtl number fluids. So, in this particular case now as Prandtl number is low so inertia 

force will be dominant . So, you can neglect the viscous force. So, inertia force will be 
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comparable with the buoyancy force right. So, in this case inertia force will be 

comparable with buoyancy force so; obviously, it will be 

4

1 1Ra Pr 1H

T

H



  
 
 

. 

So, from here you can see
1 1

4 4Ra PrT
H

H

  

. So, this is your T

H


 and what will be the scale 

for velocity v; 
2

T

H
v




. So,

1 1
2 2Ra PrHv

H


. 

So, now you can see your Nusselt number. So, 
H

T

H
Nu


, we have already shown. So, 

Nusselt number H from here you can see it will be
1 1

4 4Ra PrH HNu .  

So, you can see, we can conclude Rayleigh number into Prandtl number plays the same 

rule for low Prandtl number fluids as Rayleigh number plays for high Prandtl number 

fluids, because for high Prandtl number fluids, we have shown that 
1

4RaH HNu and this 

is for low Prandtl number fluids and from here we will define another non dimensional 

number that is known as Boussinesq number.  

So, this is PrH HBo Ra . So, you can write it as 
3

2

g TH




. So, 

1
4

H HNu Bo . 
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So, now, in this case you see for low Prandtl number fluids so; obviously, your this is 

your thermal boundary layer thickness δT. So, at the wall you will have high temperature 

difference and at the edge of the boundary layer; obviously, the δT →0. 

So, the δT variation and the velocity so; obviously, as inside the thermal boundary layer, 

buoyancy effect is there and there will be fluid motion and as fluid motion will be there. 

So, you can see your velocity effect. So, this is the velocity.  

So, this is the velocities v. So, velocity effect will continue till the thermal boundary 

layer thickness. So, near to the thermal boundary layer thickness so; obviously, it effects 

will extend to the edge of thermal boundary layer.  

So, the effect of velocity or the fluid motion effect will extend to the edge of the thermal 

boundary layer so; obviously, it is due to the buoyancy effect inside the thermal 

boundary layer. So, you cannot say that your hydrodynamic boundary layer thickness 

will be much-much smaller than δT for this low Prandtl number fluids, but you can see 

you have the maximum velocity near to the wall. 

So, this is this will be your maximum velocity and if this thickness you can see, this is δv. 

So, viscous effect will be acting only near to the solid wall and your viscous force will be 

balancing to the buoyancy force inside this layer δv, but outside you can see viscous 

force will be less and here inertia will be comparable with the buoyancy force. 

So, whatever we are introducing 1 thickness δv you have maximum velocity. So, inside 

this your viscous force will balance with the buoyancy force, but outside it your viscous 

force will be less and you can compare inertia force with the buoyancy force.  

So, now, you can see that let δv is the thickness of a thin layer right near to the wall, 

where viscous force will be comparable with the buoyancy force, because already we 

have shown that for low Prandtl number fluids inertia force will be comparable with the 

buoyancy force and we have derived the thermal boundary layer thickness and the 

Nusselt number. 

But near to this wall now, viscous force will be balancing with the buoyancy force and 

from here you can see
2

2

v
g T

x
 





 . So, we know that vx  . 
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So, you can write
2

v

v
g T





 . So, you can write 2

v

v

g T





. So, what is the order of v? 

So, now, 
1 1

2 2PrHv Ra
H


. So, if you put this v here so you will get

1 1
2 2

2 PrH
v

Ra

Hg T





.  

So, now, we will rearrange it. So, if you rearrange. So, you will get 

1 1
2 22 2

3
Prv HH Ra

g TH





.  

So, here you can see this is you can write as Rayleigh number. So, 

1 1
2 2

1
2

1
2

2
Pr

Prv H

H H

Ra

H Ra Ra

 
 
 

. So, now, we will define another non dimensional number that 

is known as Grashof number. 

Pr

HRa
Gr  . So, now, we are defining another non dimensional number that is your 

Grashof number. So, 
Pr

HRa
Gr  . So, from here so, you can see, you can write

1
4v

HGr
H

 
. 
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And from here now we have 
1

4v
HGr

H

 
and also we have

1 1
4 4PrT

HRa
H

  
.  
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So, from here you can see 
1

2Prv

T




and; obviously, it will be less than 1. So,  δv << δT. 

So, you can see that it has to be noted that δv is not same as the hydrodynamic boundary 

layer thickness δ . So, δv is the thickness where your viscous force is comparable with 

the buoyancy force very near to the wall and for low Prandtl number fluids this δv << δT. 

So, in today’s class we have introduced the natural convection. 

So, natural convection will occur in presence of some acceleration like gravity and 

density change and density change may occur due to the temperature difference. So, in 

the beginning we have shown some applications of this natural convection, then we 

considered the simplest case flow over vertical wall and we considered uniform wall 

temperature case starting from the Navier-Stokes equation and using the boundary layer 

approximation we have written down the boundary layer equations and from there we 

invoked the Boussinesq approximation.  

So, what is Boussinesq approximation? In Boussinesq approximation we assume that 

density to be constant in continuity equation as well as in the inertia terms of the 

momentum equations, but the change of density effect we take into account in the 

buoyancy term. 

From there we have used the scale analysis and using scale analysis for two different 

cases low Prandtl number fluids and high Prandtl number fluids, we have shown the 

scale for thermal boundary layer thickness, velocity v, heat transfer coefficient and the 

Nusselt number. And for low Prandtl number fluids we have also defined 1 thickness δv 

which is very near to the wall where viscous force is comparable with the buoyancy 

force. 

Thank you.  
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