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Hello everyone. So, till now we have considered forced convection. In forced convection
the fluid is forced to flow over a surface or inside a tube by external means like using
pump or blower. Today, we will start natural convection which is also known as free

convection.

In natural convection fluid motion starts in natural way due to the temperature difference
and hence, there will be density difference and in the presence of acceleration like

gravitational acceleration.
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Introduction

Natural or free convection flow arises when & heated / cold abject s placed in Voo
a quiescent fuld, the density of which varies with temperature

Typical applications:

# Heat transfer from ppe

# Dissipation of heat from a coil of a refrigeration unit to the surraunding air
# Heat transfer from a heater to room air s
# Atmospheric circulation

Two conditions are required for fluids to seat in motion in natural comvection: N,
g
# The presence of 2n acceleration field (gravity} A
» hdensity gradient in the fluld (due to temperature gradient) Wi v
v

So, you can see natural or free convection flow arises when a heated or cold object is
placed in a quiescent fluid. The density of which varies with temperature. So, these are
some typical applications; heat transfer from pipe, dissipation of heat from a coil of a
refrigeration unit to the surrounding air, heat transfer from a heater to room air, and

atmospheric circulation.
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So, as | told before the two conditions are required, for fluids to set in motion in natural
convection, the presence of an acceleration field like gravity and a density gradient in the
fluid which may occur due to temperature gradient. So, you can see here in the right
hand side figure. So, if you keep one hot egg in a plate then; obviously, surrounding

fluids temperature is lower than the hot egg.

So, the fluid which is coming into contact with hot egg will have higher temperature and
it will have lower density and it will go up. So, warm air will go up and cool air will
come to the hot egg. Again it will get heated and it will go up. So, in this way you can

see that fluid motion starts.

Another example of this cold soda; so, it is actually warmed up in presence of the
ambient air. So, you can see when you keep it in the ambient air, warm air will come into

contact, there will be heat transfer its density will increase and it will go down.

So; obviously, warm air will come into contact in the upper half and there will be heat
transfer due to that a density will increase and cool air will come down. So, these are
some examples of natural convection. We can have simplest natural convection solution

for flow over vertical plate.

(Refer Slide Time: 03:32)
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So, if you consider this vertical plate which is maintained at temperature T,, and the
quiescent fluid is having temperature T,, and its density is p oo there will be acceleration

field and that is your gravity.

So, we are taking x as normal to this vertical plate and velocity in that direction we will
consider as u and along the plate we are taking y coordinate and velocity in that direction
will be v. As Ty, > T.,; obviously, your fluid will go up and thermal boundary layer and
hydrodynamic boundary layer will form over this plate. So, here you can see in the first

figure.

So, there will be a hydrodynamic boundary layer formation, whose hydrodynamic
boundary layer thickness is 6 and you can see the velocity distribution; obviously, for no
slip condition, on the vertical wall velocity will be 0 and outside ambient is quiescent
fluid so; obviously, at the edge of the boundary layer velocity will be almost 0. So,

maximum velocity will occur inside this hydrodynamic boundary layer.

If you consider the thermal boundary layer; so, similarly it will also start from the bottom
and 6 T is the thermal boundary layer thickness. It will grow as you go up; that means,
with increase in 'y 6 T will also increase and T, < T.

So, this will be the temperature distribution. So, at the wall you have T, and at the edge
of the thermal boundary layer you have temperature T.. If you consider T,, < T, S0 in
that case your boundary layer will start forming from the top edge. So, that will be your &
and also you have thermal boundary layer 7. So, this is your 6t and this is your & and
this is your direction y and this is your x this is your T,, and quiescent medium is having

temperature T...

So, first we will write down the governing equations for flow over vertical plate. Let us
first make the assumptions. So, you can see the flow is steady laminar and two
dimensional viscous. Dissipation term is neglected and; obviously, we will have

boundary layer approximation is valid.

And if we consider the height of the vertical plate as H then we can consider that iI_TWi“

be << 1. Temperature difference between the plate and the fluid is small, in which case

the fluid maybe treated as having constant properties. So, we are considering the
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temperature difference as low and the thermal physical properties like viscosity, thermal

conductivity, specific heat, we will assume that these to be constant.

Also, with one exception the fluid is incompressible the exception invokes accounting
the effect for the effect of variable density in the buoyancy force since it is this variation
that induces fluid motion. So, you can see another important assumptions we are taking

that we are considering p to be constant.

So, that it will become incompressible, but as temperature difference will be there, there
will be density difference and that density difference effect will take into account in
buoyancy term only and rest other terms like continuity equation and the in inertia term

of the momentum equation, we will take p as constant.

(Refer Slide Time: 08:19)
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So, in natural convection whatever we discussed just now that is known as Boussinesq
approximation. The basic approach in this approximation is to treat the density as
constant in the continuity equation and the inertia terms of the momentum equation, but
allow it to change with temperature in the gravity term. So, this is important assumptions

we are taking which is known as Boussinesq approximation.

So, in this approximation what we are telling; that we will take density as constant in the

continuity equation as well as in inertia terms of momentum equation, but we will take
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the effect of its change in the buoyancy term. So, first let us write the governing
equations. So, what are the governing equations? First is continuity equation.

So, we consider two dimensional flow. So, it will be a—u+%u=0and X momentum

OX

OX H

. ou éau op (0°u o4 .
equation.  So, p U= V= —+—land 'y momentum equation

oy ox*  oy?

o o) ap (o o
1% Uu—=+VvV— :—Eﬂ y‘F? —pg

Now, first write down the boundary layer equations. So, as we discussed in the forced
convection in boundary layer approximation that 6t << H k. So, in this particular case
you can see that 6 is the hydrodynamic boundary layer thickness and &+ is your thermal
boundary layer thickness and that will be much-much smaller than the height of the

plate.

So, in this case now you can have the assumptions. So, if you have the similar way as we

. . o%v .
have done in the forced convection you can neglect a—zand here in x momentum
y

equation all these terms will become negligible only from here so, all this terms will

become negligible and you will haveZ—p =0. And as 2—2 is 0, p is function of y only, then

X

. . N oV dp o .

y momentum equation you can write as p| U—+V— |=——+ u——pg. So, this is

OoXx oy dy OX
your boundary layer equation for flow over vertical plate and this is your y momentum
equation. In x momentum equation you will get Z—E=O. Now, let us write the energy
equation.

2 2

So, in general your energy equation is pC, ua—T+va—-r =K 8_'£+8_T2 . So, if you
OX oy ox® oy

write the boundary layer equation then it will be 0. So, this is your energy equation.
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So, you can writeu a +va—T = aa—-l;. Now, you see the y momentum equation. In the y
OX oy OX

momentum equation in the left hand side we have density p. So, invoking the Boussinesq

approximation will take p as constant and it will be same as p.. .

So, in the first impression whatever you have p,, which is actually quiescent medium. So,
that will be p = p... So, invoking the Boussinesq approximation will take the p in the left
hand side of the y momentum equation as p.. which is your quiescent medium density pe.

So, you can see this p..

(Refer Slide Time: 14:07)
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So, you can write down all these boundary layer equations now. So, you can write these

boundary layer equations. So, whatever we invoked we have taken x ~ &t, y ~H and we

2
have assumed 61 << H and we have dropped % these terms.
y

So, your continuity equation is, your continuity equation will remain same

a—u+%u:0and invoking the Boussinesq approximation and rearranging you can write

OX

2
the y momentum equation asu%+v@ = —i%ﬂ/ﬂ—ﬁ
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Now, you have buoyancy term. So, what is your buoyancy term. So, buoyancy term will

become—ﬁg . S0, now here you can see how you will calculate theg—s. So, S—Syou
Py
. dp dp, ou _ . .
can write asd—: v because . 0. So, whatever pressure is there outside the
y y

boundary layer so that will be impressed inside the boundary layer. So, now, in the

quiescent medium so you can write the hydrostatic pressure right. So, what will be
thed&?

dy
So, this you can write as—p_g . So, this is your from hydrostatic pressure distribution
you can write it. So; obviously, you can see now these two terms together you can write

this term and this term you can write as—id—p—ﬁg g g —ﬁg :

e, dy p.° p. P,

So, it will become PP g . So, your momentum equation buoyancy term you can write
as, Mg and now you can expand the p in Taylor series, expanding p in Taylor
P

series. So, what you can write? p = p, +(T —Tw)g—ﬁlw +HOT .

So, neglect this high order term and you also you can have volumetric expansion

coefficient as volumetric expansion coefficient, you can write § = ——|

So, here this is the V volume at constant pressure. So, in terms of density if you write.

So, it will bep;(lj| So, |tW|IIbe———| . S0, what you can wrlte—|
o,

So, similarly you can write?—?lw =—Lp, . So, if you invoke these in this equation so

what you will get? You will get p= p, +(T T, )(-fp..).
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So, you can rearrange and you can write pw—pzpwﬂ(T —Tw)and

(p.—p)

(p.—p)9=p.B9(T-T,). So, now, you can see this term p g =p49(T-T,).

So, this is your buoyancy term.

: . . .ou
So, now your boundary layer equations will become contlnwtyg—+@:0, your X
X

. . N oV o
momentum equation will becomeua—+v—:v?,6’g (T-T,). Now, the buoyancy
X X

. 9T oT o
term T —T_)and your energy equation U—+V—=o —-.

pY(T-T,)andy gy eq o Vo Y
So, these are the boundary layer equations for flow over vertical plate, for the case of
natural convection and we have assumed density to be constant in continuity equation
and in the inertia terms of y momentum equation and we have taken the change of

density only in the buoyancy term. So, these are the equations.

Now, we will do the scale analysis and we will try to find what is the order of heat
transfer coefficient and the Nusselt number and which are the forces is dominating for
high panel number fluids and low panel number fluids for constant surface temperature.
So, first we will consider uniform surface temperature case, then we will find the order

of magnitude of this heat transfer coefficient and the Nusselt number.
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Scale analysis
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So, inside the thermal boundary layer your x ~ &1, y ~ H, where H is the height of the

plate and we are assuming that uniform surface temperature and the continuity equation

if you see that will beg—u+%=0. So, if you see the order of magnitude of u. So,
X

u_v

o H

0, . .
So, from here you can seeu~vﬁT, from energy equation. Now; so, this is your

2
continuity equation now from energy equationuz—TJrvﬂ:aZ—z. So, the order of
X X

AT =T, —-T_and this A T ~6 1. So, you can see here you can Writel?—T.
T

. N o .. VAT
So, this is the first inertia term the second inertia term. So, you can write "R and the

diffusion term will beag—z. So, now, you can see if you put u ~vi|—T. So, if you put it
T

. . VAT .
here you can see it will be equivalent tOT' So, you can see these inertia terms are

VAT .. e -
comparable, because these are same Tand this is your diffusion term.
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So, now inertia should be comparable with the diffusion term. So, if you do that. So, you

will get% ~ aAé—I . So, from here you can see the, what is the scale of v. So, v ~ g .
T T

So, we have found the scale for v and similarly from this equation you can find the scale
for u.

So, u ~0;—|;|5H—T. So, u ~5ﬁ. So, now, from using continuity equation and the energy
T T

equation, we have found the scale for velocity u and v. Now, let us consider momentum

equation.

(Refer Slide Time: 25:59)
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So, momentum equation we have U8—+V5 =y 5 > +gﬂ(T —TOO). So, these are inertia
X X

terms, this is your viscous term, and this is your buoyancy term and what is the order we

H . .
have? X ~ o1,y ~H, u~ 53 ,andv ~ 0;—2 . S0, using this scale now let us see each term.
T T

o . . H 1 . .
So, the first inertia term if you see so, if we putia >—— S0, this is your first inertia

T T T

2
N L H| 1 : :
term. Second inertia term now v so, it will be (0;—2} R So, first look at this two terms.
T

So, this is equivalent to this. So, you can see this two inertia terms are of same order,
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2
. 1 .
because both are having the same order( J q now, let us see the viscous term. So,

T

in the viscous term now we have v. So, v~$and X ~ ot and this buoyancy term,
T

SO g [BAT .

So, now what we will do we will just divide this terms with gSAT . So, that it will
become 1 buoyancy. So, we are dividing by gSAT . So, you will get so, this term if you

see. So, it will be ﬂ. So, this is your viscous term and now you divide this term.

5 9 BAT
So, these two terms are same. So, | will write only one term.
aZHZ
So, it will be ————. Now, we will rearrange it. So, if you rearrange it so, you can
oy Hg AT
see the viscous term . We will write it as so this will be 1 buoyancy term, it will be

av
gpATH® '

H.

So, now, H cube we have just divided. So, we will multiply in the numerator

4
So, it will be| & | %Y &
5 ) QBATH® v

So, you can see, you can write it as now Prandtl number, you know right what is the

Prandtl number? So, Pr= v and we will define another non dimensional number that is
a

gpATH?®
av .

known as Rayleigh number. So, Rayleigh number we are defining as Ra,, =
H 4
So, what you can do now, this you can write as[g—} Ra, Pr. This is your
T
H 4
(5—j Ra, and Rayleigh number we have defined based on the height of the plate. So,

T

this is you can write H, here also you can write H and this is the buoyancy term this is 1.
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Now, we will consider two different cases one is high Prandtl number fluids and low

Prandtl number fluids. So, for high Prandtl number fluids, Prandtl number will be >>1
and you can see in this particular case. So, it is % So, ifitis % and Prandtl number is

very high. So, this term will be dominant term .

So, this term will be dominant term for the high Prandtl number fluids and when you
have low Prandtl number fluids so; obviously, this will be your dominant term, but in

each cases buoyancy term should be present.

So, either your inertia term will be comparable with buoyancy term or your viscous term
will be comparable buoyancy term, because to have the natural convection you should

have the buoyancy term present.

(Refer Slide Time: 33:48)
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So, in two different cases now we will consider high Prandtl number fluids and low

Prandtl number fluids. So, first we will consider high Prandtl number fluids. So, Prandtl

4
number >> 1. So, you can see your (;] Ra, ~1.
T

So; that means, viscous term will be comparable with buoyancy term, because Prandtl

. . L 1
number is very high. So, the inertia term you can see you have or So, and Prandtl
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number is very high. So, that will be negligible compared to the viscous term and for
high Prandtl number fluids you can compare the viscous force with the buoyancy force.

So, that we are doing.

So, with this now you can find what is 51. So, &. ~ H Ra,}* and we know that 5H—T we are

. 0. :
assumed that it is >> 1. From here you can see WT ~Ra/t.

If i'—T<<1 then this Rayleigh number should be very high, because it is of the order

of Ra,;%. So, it is minus is there. So, you can write the boundary layer theory for natural

convection is valid for high Rayleigh number fluids. So, now, you can find what is the

scale of velocity v. So, we knowv ~ @ S0, - Ra/.
0. H

T

So, from here you can writev~%Ra§. So, this is the scale for velocity v for high

Prandtl number fluids. Now, let us find what is the heat transfer coefficient. So, for heat

oT
K|

ox
T,-T

w 00

transfer coefficient so, you know h =

. K L
So, as you know X ~ &; . So, you can write h~—. So, now, Nusselt number. So, it will
T

be Nu, :h?H. So, based on height H so Nusselt number will be order of; so you can

see, Nu,, ~5ﬂ. So, Nu,, ~ Ra/%.
T

So, you can see from the scale analysis we have found the scale for &1, thermal boundary

layer thickness, your velocity v, and heat transfer coefficient and Nusselt number. You

can see Nu,, ~ Ra’*. So, later when we will do the analytical solution for the boundary

layer equations for natural convection you will find that Nu,, ~ Raé :
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Now, let us see that for high Prandtl number fluids so; obviously, for high Prandtl
number fluids 6t << & right, where 6+ is your thermal boundary layer thickness and & is
your hydrodynamic boundary layer thickness. So, in this case you can see that this is

your thermal boundary layer thickness.

So, temperature will vary. It will be high at the wall and gradually it will decrease and in
the quiescent medium; obviously, there will be temperature is T., and 1 will almost will
become 0 . So, this is the variation of temperature inside the thermal boundary layer, but

as o >> dr.

So, the effect of velocity will be still there outside this thermal boundary layer and you
can see in the outside there will be effect of this velocity and you will get maximum
velocity; obviously, it will be inside the thermal boundary layer. So, maximum velocity
you will get inside the thermal boundary layer. So, inside the thermally boundary layer if
you consider so; obviously, your viscous force will be order of buoyancy force; that

means, friction force.

So, because you it is near to the solid wall. So, the viscous effect will be there and
viscous effect will be comparable to the buoyancy force, but in the unheated layer. So,
you can see; obviously, your buoyancy will be absent, because there is no temperature
difference outside this thermal boundary layer. So, your buoyancy force will be absent

and your viscous force will be comparable with the inertia force.
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Now, you can see that outside the thermal boundary layer. So, you will have viscous
force will be comparable with inertia force. So, you can see viscous force, viscous force
will be comparable with the so this is your viscous and this is your inertia.

: : ov . :
So, from here you can see. So, viscous term will be your v will be comparable with
X

o . L ov
the inertia term. So, that will be any term you can say. So, it will be let us say va—. So,
y

. _ VARRYE . H
in this case now it will be % e So, from here you can see the velocity v ~ ‘;—zand

5% ~ %and v we have already found, it will bev ~ 1/§_I;| So, if you put the value of v.

2 2
So, it will be 5* ~ vH o So, you can see a

2
aH -

So, this H H will get cancelled and Pr = v So, you can see ; ~ Pr’2which will be >> 1
a T

right, because Prandtl number > 1 and from here you can see that & > 6.
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Now, let us consider low Prandtl number fluids; that means, Prandtl numbers << 1, low
Prandtl number fluids. So, in this particular case now as Prandtl number is low so inertia

force will be dominant . So, you can neglect the viscous force. So, inertia force will be
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comparable with the buoyancy force right. So, in this case inertia force will be

4
comparable with buoyancy force so; obviously, it will be (;] Ra, Pr~1.
T

So, from here you can see%T ~ Ra’H% Pr 7. So, this is your 5H—T and what will be the scale

for velocity v; v ~ g .S0,v~ 2 Ra’Pr¥,
5 H

H
So, now you can see your Nusselt number. So, Nu,, ~ 5 we have already shown. So,
T

Nusselt number H from here you can see it will be Nu,, ~ Ra/? Pr’.

So, you can see, we can conclude Rayleigh number into Prandtl number plays the same
rule for low Prandtl number fluids as Rayleigh number plays for high Prandtl number

fluids, because for high Prandtl number fluids, we have shown that Nu,, ~ Ra/¢and this

is for low Prandtl number fluids and from here we will define another non dimensional

number that is known as Boussinesq number.

gBATH?®

2
o

So, this is Bo,, = Ray, Pr . So, you can write it as . S0, Nu, ~ Bo/%.
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So, now, in this case you see for low Prandtl number fluids so; obviously, your this is
your thermal boundary layer thickness &r. So, at the wall you will have high temperature

difference and at the edge of the boundary layer; obviously, the &t —0.

So, the &7 variation and the velocity so; obviously, as inside the thermal boundary layer,
buoyancy effect is there and there will be fluid motion and as fluid motion will be there.

So, you can see your velocity effect. So, this is the velocity.

So, this is the velocities v. So, velocity effect will continue till the thermal boundary
layer thickness. So, near to the thermal boundary layer thickness so; obviously, it effects

will extend to the edge of thermal boundary layer.

So, the effect of velocity or the fluid motion effect will extend to the edge of the thermal
boundary layer so; obviously, it is due to the buoyancy effect inside the thermal
boundary layer. So, you cannot say that your hydrodynamic boundary layer thickness
will be much-much smaller than &1 for this low Prandtl number fluids, but you can see

you have the maximum velocity near to the wall.

So, this is this will be your maximum velocity and if this thickness you can see, this is 6.
So, viscous effect will be acting only near to the solid wall and your viscous force will be
balancing to the buoyancy force inside this layer &, but outside you can see viscous

force will be less and here inertia will be comparable with the buoyancy force.

So, whatever we are introducing 1 thickness &, you have maximum velocity. So, inside
this your viscous force will balance with the buoyancy force, but outside it your viscous

force will be less and you can compare inertia force with the buoyancy force.

So, now, you can see that let o, is the thickness of a thin layer right near to the wall,
where viscous force will be comparable with the buoyancy force, because already we
have shown that for low Prandtl number fluids inertia force will be comparable with the
buoyancy force and we have derived the thermal boundary layer thickness and the

Nusselt number.

But near to this wall now, viscous force will be balancing with the buoyancy force and

2
from here you can seev% ~ gpAT . So, we know that X ~ &, .
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%Y : v
So, you can wrltev—2 ~ gBAT . So, you can write 57 ~ 4

. So, what is the order of v?
5 gpAT

vaRaé Pr

So, now, v ~ = Ra/% Pr’*. So, if you put this v here so you will get 52 ~
H Hg AT

So, now, we will rearrange it. So, if you rearrange. So, you will get

2 av

82 ~ ————~H’Ra/* Pr’.
gATH

So, here you can see this is you can write as Rayleigh number. So,

5.\ Ra’? Pr’ L o
2| pre—SH . So, now, we will define another non dimensional number that
H Ra, Ra?

is known as Grashof number.

Ra,,
Pr

Gr=

. S0, now, we are defining another non dimensional number that is your

R .
Grashof number. So, Gr = ;rH . So, from here so, you can see, you can wrlte% ~ Grg% .

(Refer Slide Time: 53:08)

Scale analysis

And from here now we have %~ Gr.,”*and also we havei—T ~Ra* Pr,
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So, from here you can see % ~ Pr’?and; obviously, it will be less than 1. So, &, << &r.
T

So, you can see that it has to be noted that d, is not same as the hydrodynamic boundary
layer thickness & . So, dy is the thickness where your viscous force is comparable with
the buoyancy force very near to the wall and for low Prandtl number fluids this 6, << .

So, in today’s class we have introduced the natural convection.

So, natural convection will occur in presence of some acceleration like gravity and
density change and density change may occur due to the temperature difference. So, in
the beginning we have shown some applications of this natural convection, then we
considered the simplest case flow over vertical wall and we considered uniform wall
temperature case starting from the Navier-Stokes equation and using the boundary layer
approximation we have written down the boundary layer equations and from there we

invoked the Boussinesq approximation.

So, what is Boussinesq approximation? In Boussinesq approximation we assume that
density to be constant in continuity equation as well as in the inertia terms of the
momentum equations, but the change of density effect we take into account in the

buoyancy term.

From there we have used the scale analysis and using scale analysis for two different
cases low Prandtl number fluids and high Prandtl number fluids, we have shown the
scale for thermal boundary layer thickness, velocity v, heat transfer coefficient and the
Nusselt number. And for low Prandtl number fluids we have also defined 1 thickness &
which is very near to the wall where viscous force is comparable with the buoyancy

force.

Thank you.
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