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Hello everyone. Today, we will consider Heat transfer in plane Couette flow. Already we 

have derived the velocity distribution in plane Couette flow, where upper plate is moving 

and bottom plate is stationary and you have seen that velocity varies linearly from 

bottom wall to top wall. So, today, we will assume fully developed laminar flow. There 

is no internal energy generation. However, we will consider the viscous heat dissipation 

effect. 

(Refer Slide Time: 01:11) 

 

So, let us consider the flow between two parallel plates; the bottom plate here velocity is 

0, so it is stationary plate and upper plate, you can see it is moving in the x direction with 

a constant velocity u. The bottom plate is maintained at temperature T0 and upper plate is 

maintained at temperature TH, where TH we are considering is greater than T0 and y is 

measured from the bottom wall and the distance between two plates is H. 
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So, you can see that already we have derived the velocity profile u; u is linear 

and
y

u U
H

 . So, before going to that let us revisit the non-dimensional numbers, Prandtl 

number. What is Prandtl number? Prandtl number is the ratio of momentum diffusivity to 

thermal diffusivity right.  

So, you can see that Pr
pC

k

 


   and it is the ratio of momentum diffusivity to the 

thermal diffusivity. We also define Eckert number earlier.
2

0( )p H

U
Ec

C T T



. 

So, Eckert number is the ratio of kinetic energy of the flow to the boundary layer 

enthalpy difference. Now, we will define one new non-dimensional number which is 

Brinkman number. So, Brinkman number is the product of Prandtl number and Eckert 

number and it is given as 
2

0( )H

U
Br

k T T





.  

So, Brinkman number measures the importance of the viscous dissipation effects to the 

fluid conductive heat transfer. If Brinkman number ≥ 0, then temperature rise due to 

dissipation is significant. The Brinkman number is important in case when a large 

velocity change occurs over a short distance such as lubricant. 

So, here you know that we are considering plane Couette flow; that means, it is a shear 

defined flow, there is no imposed pressure difference right. So, velocity profile is 

generated due to the shear of the upper plate because upper plate is moving at a constant 

velocity u. So, let us write the energy equation and invoking the assumptions, let us 

simplify it. 

423



(Refer Slide Time: 04:07) 

 

So, our energy equation is
2 2

2 2p

T T T T
C u v K

x y x y
 

     
     

      
. Here, Φ is viscous 

dissipation coefficient and it is for this particular case, you can see it will give

2

du

dy


 
  
 

. 

So, you have a expression of Φ right. So, if you see all other terms become 0 because 

your velocity profile u which is function of y only and it is ( )
y

u y U
H

 .  

So, in this particular case, you can see the velocity profile is linear. So, it will be just 

2

2

U

H
because distance between two parallel plates is H and it is linearly valuing. So, 

du U

dy H
 . So, 

2 2

2

du U

dy H

 
 

 
.  

Now, let us simplify it. So, we are telling it is a fully developed flow. So, obviously, your 

v = 0. In this particular case, as there is no imposed pressure difference, so velocity is 

generated due to the shears shear force on the exerted on the upper plate. So, your fully 

developed temperature profile also is constant.  
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So, in axial direction, there will be no variation of temperature if 
T

x




=0. So, it is a fully 

developed condition. So, in this particular case, your 
T

x




=0 because it is fully 

developed. So, you can see that essentially you can neglect the axial heat conduction. So, 

2

2

T

x




=0 because 

T

x




=0 due to fully developed condition; so obviously, 

2

2

T

x




=0. So that 

means, axial heat conduction is also 0.  

So, in this particular case for Couette flow, your temperature is function of y only. So, 

your fully developed temperature profile, you get as 
T

x




=0. So, there is no variation of 

temperature profile in the axial direction. So, 
T

x




=0. Hence, your temperature is only 

function of y. So, you can write the governing equations as so T is function of y only.  

So, your simplified energy equation is
2 2

2 2

d T U

dy K H


 . So, this is our governing equation 

and we have two boundary conditions at y = 0; T =T0 and at y = H; T = TH. So, you 

integrate this equation twice and find the two constants applying the boundary 

conditions.  

So, if you integrate twice, what you will get?
2

12

dT U
y C

dy K H


   . If you integrate 

again,
2

2

1 22
( )

2

U
T y y C y C

K H


    .  

So, now apply the boundary conditions. So, at y = 0, you have T =T0. So, if you put that, 

then T0 = C2. Because y = 0, so this right hand side, first two terms will become 0 and at 

y = H, you have T = TH.  

So, if you put this one, so you will get  
2

2

1 022
H

U
T H C H T

K H


    . So, you can now 

write this C2 = T0 and
2

1 0

1
( )

2
H

U
C T T

H KH


   . So, now, we have found the two 

constants. So, let us put it in the temperature profile and find the final temperature 

distribution. 
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So, temperature distribution . So, you can see  

2 2
2

0 02
( ) ( )

2 2
H

U y U
T y y T T y T

K H H KH

 
      .  

So, if you rearrange it, you can write as
2 2

0

2

0 0

( )

2 ( )H H

T y T y U y y

T T H K T T H H

  
   

   
.  

So, you can see that this term what is this term? So, if you see, so it is obviously, the 

product of Prandtl number and Eckert number which is your Brinkman number, already 

we have defined . So, you can write it
2

0

2

0

( ) PrEc

2H

T y T y y y

T T H H H

 
   

  
. So, this is the 

temperature profile, we will plot it later after finding the Nusselt number.  

So, in this particular case, we will calculate the Nusselt number based on the temperature 

difference TH -T0 . Here imposed temperature difference is TH -T0 because TH >T0 and 

we will define the Nusselt number based on TH -T0.  

You can also find the mean temperature Tm and also find the Nusselt number based on 

the temperature difference TH –TH or Tm -T0, but it is convenient for this particular case 

to calculate the Nusselt number based on the temperature difference TH -T0. So, for this 

particular case, now find the Nusselt number.  
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So, Nusselt number we will calculate. So, what is Nusselt number? So, Nusselt number 

based on temperature difference TH -T0, this you should remember because in earlier 

cases, all we have considered the temperature difference Tw -Tm, where Tm is the mean 

temperature ok.  

But in this particular case, we are calculating the Nusselt number based on TH -T0. 

Obviously, if you calculate the Nusselt number based on that temperature difference T 

TH –Tm, then expression will be different.  

So, now Nusselt number on bottom wall. So, we can calculate Nu0. So, it is ''

0q . So, this 

is your 0 means at y = 0 divided by or we can write this.  

So, under bottom wall, we have Nusselt number at bottom wall that is your we are 

denoting with 0. So, 
0

0

(2 )yh H
Nu

K


 .  

So, in this particular case, now if you see what is h at y = 0? So, this is
''

0

0

2

H

q H

T T K
. So, 

characteristic length, here we are considering as 2 H. So, now what is ''

0q ? So, this is your 

''

0 0y

T
q K

y



  


.  

So, you see, we are calculating the heat flux at bottom wall. So, y is perpendicular to the 

bottom wall. So, 
''

0 0y

T
q K

y



  


. So, you can calculate 0y

T
K

y



 


. So, you can see from 

previous expression; 
2

12

T U
y C

y K H


  


. 

So, from this temperature distribution, first let us calculate the temperature gradient. So, 

if you take the derivative of this equation with respect to y, you will get 

2

0

1 1 PrEc 1 2

2H

T y

T T y H H H

  
   

   
. So, this is the temperature gradient. So, 

 0 2

1 PrEc 1 2

2
H

T y
T T

y H H H

   
        

.  
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So, you can see 0y

T

y






, what will be the value? So, y = 0. So, you will 

get  ''

0 0

1 PrEc

2
Hq K T T

H H

 
    

 
.  

So, now, in this particular case characteristic length twice H, how you did you get? So, 

you see the characteristic length L, you can find as
4 fA

L
P

 . So, in this particular case, 

you can see flow area is 4 H1. So, that is the H is the distance between 2 parallel 

plates. So, it is your H and in perpendicular direction per unit width, if you consider then 

1.  

So, this is your flow area divided by the perimeter. What is the perimeter in this 

particular case? It is 21 because in per unit width you are considering right in 

perpendicular direction. So, you have one on the top plate, one at the bottom plate. So, it 

will be 2. So, hence, in this particular case, characteristic length becomes 2 H. So, from 

here we are just calculating the Nusselt number based on the characteristic length 2 H. 

(Refer Slide Time: 19:17) 

 

So, now in bottom wall if you calculate the Nusselt number, then you will get, 

0

Pr
2 1

2

Ec
Nu

 
   

 
. So, if you put all these values and simplify it, you will get this 
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one. Now, you calculate on the top wall. So, Nusselt number at top wall. So, it will 

be
''

0

H
H

H

q
Nu

T T



. So, this is your heat transfer coefficient H. 

Now, you see in this expression
T

y




, if you want to find the heat flux at top wall. So, it 

will be ''

H y H

T
q K

y



 


and y = H, if you put it here. So, you are going to get here. So, if 

you write it, so you will get ''

Hq .  

So, it will be now y is in upward direction. Now, when you are calculating the heat flux 

on the top wall. So, we are calculating it is coming in the negative y direction, so 

obviously, ''

H y H

T
q K

y



 


. 

So, it will be ''

H y H

T
q K

y



 


. So, now, if you put the value, so it will be 

''

Hq =  0

1 Pr

2
H

Ec
K T T

H H

 
  

 
. So, if it is so, then you can write Nusselt number H 

as
Pr 2

1
2

H

K Ec H
Nu

H K

 
  

 
and it will be 

Pr
2 1

2
H

Ec
Nu

 
  

 
 

So, now, we have found the Nusselt number on top wall and bottom wall based on the 

characteristic length 2 H and the temperature difference TH - T0. Now, let us try to plot 

the temperature profile and see the effect of Brinkman number. That means, the product 

of Prandtl number and Eckert number.  
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So, the temperature distribution we got
2

0

2

0

( ) Pr

2H

T y T y Ec y y

T T H H H

 
   

  
.  

So, this is your temperature profile and you have Nusselt number on top 

wall.  2 PrHNu Ec   and Nusselt number on bottom wall, we got  0 2 PrNu Ec   . 

So, now, let us try to see what happens when your Brinkman number is 0 . So that 

means, there is no viscous heat dissipation. So, only the temperature at bottom wall is T0, 

upper wall is TH and there is no viscosity. So, you will get a linear profile of temperature 

distribution. 

So, you see this is your top wall, this is your bottom wall separated by distance H. Now, 

if you see the temperature profile, we have seen that TH >T0. So, if this is your T0 on 

bottom wall, so obviously, TH will be higher; so, this is let us say TH on the top wall.  

Now, we are seeing the if your Pr   Ec = 0, so if Pr   Ec = 0, so you see what is the 

temperature profile? So, in this case, you can see this Prandtl number Eckert number will 

be 0. So, you will get 0

0

( )

H

T y T y

T T H





.  
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So, you see it is a linear profile right; linear variation of temperature. So, if you plot it 

ok, so it will be just linear variation. So, this is your Pr   Ec = 0. Now, you see when 

PrEc = 2. So, if PrEc = 2, then you see Nusselt number H what you will get?  

if Prandtl number Eckert number is 0, then you are getting HNu 2 and 0Nu  -2 and 

what will be the velocity in this particular case, when Eckert number is 0? 

Can you tell me, if Pr   Ec = 0, what will be the velocity profile? Obviously, U = 0; that 

means, there is no relative motion between 2 plates that means, plates are stationary, 

U=0. Hence, you are getting only the heat conduction from bottom wall to top wall.  

So, that is why you are getting a linear profile of temperature variation. So, in this 

particular case U is 0; that means, no flow; no flow, U = 0 in this particular case because 

Pr   Ec = 0 and Eckert number velocity is there. So, u is 0 and only heat conduction 

takes place.  

But when you are considering Pr   Ec = 2, then on the top wall Nusselt number is 0. 

What does it mean? That there is no heat transfer from the top plate right because if 

Nusselt number is 0, then your ''

wq on top wall is 0 that means, your temperature gradient 

on the top wall will be 0 .  

So that means, here your ''

Hq on the top wall is 0 and hence 
dT

dy
will be 0 . So that means, 

your temperature profile will cut the top wall perpendicularly. So, this will cut 

perpendicularly ok. So, this is the profile for Pr   Ec = 0.  

Now, if Pr   Ec >2 , then your viscous heat dissipation effect will dominate and there 

will be more heat generation and your maximum temperature will occur in between top 

plate and bottom plate.  

So, in this case, you will get no heat transfer on top wall. Now, when Pr   Ec >2, the 

heat generation is so large that the heat has to be removed from both the top and bottom 

walls and what will be the temperature profile in this particular case? 

So, your temperature profile will be; so you can see in case of Brinkman number 0 and 

Brinkman number 2, your maximum temperature occurs on the top wall itself. But when 

Br > 2, your maximum temperature is occurring in between the domain.  
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So, this is the case for Pr   Ec >2, this is the plot for Pr   Ec = 2 and in this particular 

case, Pr   Ec = 0; that means, there is no flow. So, this is the linear profile. Here, your 

heat transfer is 0 on top wall and for Pr   Ec >2, you will get the maximum temperature 

inside the domain.  

So, if you see so initially heat is input to the fluid, for Pr   Ec < 2 and heat is input to the 

plate after Ec   Pr >2 because when Ec   Pr >2, then your maximum temperature is 

occurring inside the domain, so heat transfer will occur from the fluid to the top wall and 

when you have Pr   Ec < 2, then heat transfer will occur from the top wall to the fluid.  

So, when Pr   Ec < 2, heat generation within the fluid is small and therefore, heat stills 

comes in from water top plate. So, how do we find the location of the maximum 

temperature? So, simply you just put 
T

y




= 0. 

(Refer Slide Time: 33:31) 

 

So, your temperature distribution, so location of maximum temperature. So, how we will 

find? So, let us see the temperature distribution
2

0

2

0

( ) Pr

2H

T y T y Ec y y

T T H H H

 
   

  
. 
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So, you will get so from maximum temperature 0
dT

dy
 . If 0

dT

dy
 , so that means, 

2

0

1 1 Pr 1 2

2H

dT Ec y

T T dy H H H

 
   

  
.  

So, now if you put 0
dT

dy
 , so you will get if you simplify it. So, it will be, 

0
max

Pr 2
1 1 0

2

HT T Ec
y

H H

   
    

  
.  

So, if you simplify it, so it will be 
max

Pr 2
1 1

2

Ec
y

H

 
  

 
or you will get 

max

2 2
1

Pr
y

H Ec
  or you will get max 1 1

2 Pr

y

H Ec
  or you can write 

 0max

2

1

2

HK T Ty

H U


  .  

So, you see at this location, you will get the maximum temperature inside the domain. 

So, now let us consider another case, where top plate is having temperature TH and 

bottom plate is adiabatic. What does it mean adiabatic? Adiabatic means there will be no 

heat loss from the bottom wall. 

(Refer Slide Time: 36:49) 
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So, here we are considering TH on the top wall and adiabatic wall on the bottom. So that 

means, there will be no heat transfer. So, in this particular case, if you see already we 

have derived the energy equation and your energy equation is energy equation already 

we have derived. So, 
2 2

2 2

d T U

dy K H


  , we have consider the viscous dissipation effect.  

So, if you see, 
2

2

1 22
( )

2

U
T y y C y C

K H


    . So, now, apply the boundary condition, in 

this particular case at y = H, you have temperature TH; but bottom wall is adiabatic. So, 

heat flux is 0, hence  
dT

dy
 will be 0 on the bottom wall.  

So, boundary conditions at y = 0 , 0
dT

dy
 . So, if 0

dT

dy
 on the bottom wall, so you can 

see that you will get your C1=0; C1=0 and at y = H, you will get T as TH. So, you will get 

TH, C1=0  and you will get, 
2

2

222
H

U
T H C

KH


   .  

So, 
2

2
2

H

U
C T

K


  . Now, if you put, then you will get the temperature profile 

2

2 2

( ) 1
1

2

HT y T y

U H

K



 
  

 
. So, this is a parabolic profile, temperature distribution. Let us 

find the Nusselt number based on the characteristic length 2H and the temperature 

difference TH -T0. So, you have to find what is the temperature at the bottom wall.  

So, if you do. So, so you see at y = 0 , so what will be the temperature ? So, you see if 

you have a temperature at the bottom wall, if you find it as T0, then it will be, 

2

0 0
2

y H

U
T T T

K


    . So, you can see that

2

0
2

H

U
T T

K


  . So, now we will find the 

Nusselt number based on this temperature difference 0 HT T . 
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So, Nusselt number, so we will find Nusselt number based on this temperature 

difference. So, it will be, 
 2h H

Nu
K

 , where 

''

0

w y H

H

q
H

T T





.  

So, this is the temperature difference, and Nusselt number is Nu=

''

0

2w y H

H

q H

T T K




, and 

''

w y Hq  you can find it is
''

w y H y H

dT
q K

dy
    . So, what will be that? So, your temperature 

profile is this one right.  

So, you can see you can find 
dT

dy
. It will be

2U

KH


 . So, this is your

2dT U

dy KH


  .  

So, it will be just

2

2

2

2

U
K

HKHNu
U K

K







 . So, you can see this simplify it, this H, this H will 

get cancelled; this 
2U

K


, 

2U

K


will get cancelled; this K, this K will get cancelled. So, 

you will get 2. So, it will be -4.  

So, Nusselt number you are getting as - 4. So, you can see that bottom wall is adiabatic, 

so there will be no heat transfer through the bottom wall. However, top wall is 

435



maintained at constant wall temperature TH. Hence, the heat transfer will take place from 

the fluid to the top wall and temperature of bottom wall anyway it will increase.  

As it is adiabatic, so there will be no heat transfer through the bottom wall. However, its 

temperature will increase. So, the Nusselt number whatever we defined here, you can see 

the heat flux on the top wall right. So, Nusselt number whatever we have found here is 

for your top wall.  

So, we can write 4HNu   and negative sign represents that heat transfer is taking place 

from the fluid to the top wall because while calculating the heat flux
''

w y Hq  , we took it as 

negative y direction. So, we assumed that heat transfer is taking place from the top wall 

to the fluid. However, we have seen that due to the viscous heat dissipation, the 

temperature of the fluid will increase and the heat transfer will take place from the fluid 

to the top wall. 

So, let us summarize. Today, we considered fully developed laminar flow between 2 

parallel plates, where top plate is moving in the positive x direction with a constant 

velocity U; whereas, your bottom wall is stationary.  

We considered two different types of problem, where in first case we considered the 

temperature on the bottom wall as T0 and on the top wall as TH, where TH > T0 and in 

other case, we considered bottom wall as adiabatic and top wall is TH. In both the cases, 

we consider the viscous heat dissipation effect. First, we found the temperature profile 

for both the cases, then we found the Nusselt number.  

In first case, we considered the Nusselt number for the bottom wall and top wall 

separately. And this Nusselt number, we have calculated based on the characteristic 

length 2 H and the temperature difference TH - T0 and we have seen that if your Pr   Ec 

= 0, then there is no flow at all.  

Hence, your heat conduction will take place from top wall to bottom wall linearly. Next 

when Pr   Ec = 2, then Nusselt number on the top wall becomes 0; that means, there will 

be no heat flux on the top wall and 0
dT

dy
 .  
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In these two cases or in between cases, you can see that when your Pr   Ec ≤ 2, your 

maximum temperature occurs on the top wall and your heat transfer is taking place from 

the walls to the fluid.  

However, when your Pr   Ec >2, then your viscous heat dissipation effect comes into 

picture and your temperature becomes higher in the fluid domain than the top wall. 

Hence, your heat transfer takes place from the fluid region to the top wall.  

Next case, we considered the Nusselt number based on the temperature difference 

between bottom wall and top wall and the characteristic length 2 H. In this particular 

case, we got the Nusselt number as -4 because we considered that heat transfer is taking 

place from the top wall to the fluid.  

But as it is negative that means, your viscous heat dissipation effect is there and 

temperature in the fluid zone is higher than the top wall. Hence, your heat transfer is 

taking place from the fluid to the walls. 

Thank you.  
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