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 Hello, everyone. Today, we will consider Hydrodynamically developed and thermally 

developing fluid flow through circular pipe with uniform wall temperature. So, this is 

also known as Graetz problem. 

(Refer Slide Time: 00:45) 

 

So, you can see that we are considering hydrodynamically developed and thermally 

developing; that means, you can see that your thermal boundary layer is growing. This is 

the thermal boundary layer thickness δT and in developing region we need to find what is 

the temperature distribution. 

You can see that your temperature at inlet is Ti and up to x = 0 from the inlet it is 

adiabatic. So, the wall temperature and free temperature will remain at temperature Ti, 

but from x = 0 uniform wall temperature is applied at the wall. So, you can see at the 

wall Tw is applied. So, there will be formation of thermal boundary layer. In this region 
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we are considering fully developed hydrodynamically developed flow; however, you 

have thermally developing temperature profile. 

So, here you can see the radius of the tube is r0 and r is measured from the central line. 

So, these are the assumptions already we have discussed only one important assumptions 

we are taking that it is uniform wall temperature condition and you are neglecting axial 

heat conduction.  

So, with that boundary conditions, you can see that your temperature the energy equation 

will be ( )
T T

u r
x r r r

  


  
because we have neglected the axial heat conduction and as it 

is hydrodynamically developed flow so, v is 0. 

So, your one convection term related to v 0
T

y





and fully developed velocity profile is 

this one which is parabolic and boundary conditions you can see that x = 0, you have 

temperature T = Ti at r = 0. So, it is axisymmetric flow. So, 
T

r




=0 and at r = 0 we have 

imposed uniform wall temperature, so, T will be Tw. 

In this figure you can see along the axial direction if you go, so there will be change in 

the temperature profile. The temperature variation will occur only inside the thermal 

boundary layer and in the core region temperature will remain at temperature Ti. 

However, when x →∞; that means, thermally developed flow, then your axial or central 

line temperature will vary with x. 

Now, today we will find the temperature distribution which is valid in both developing 

region, as well as developed region as well as we will find the Nusselt number. 
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Again let us discuss about the Sturm Liouville equation in last class we have already 

discussed in details. So, this is the second order ordinary differential equation 

2( ) ( ) ( ) 0n
n n

dd
p x q x w x

dx dx


 

 
     

 
, where 2

n is the eigen values and n is the 

solution of this ordinary differential equation and these are the eigen functions associated 

with each n and w(x) is the weighting function. 

So, it is very important in this particular case when will apply the orthogonality condition 

it is required. In this analysis also we will use method of separation of variables. So, 

when can we use the separation of variables method? When the governing equation is 

linear and homogenous, and in one direction you have two homogenous boundary 

conditions. And, in homogenous direction it should give the characteristic value problem 

or harmonic solution in homogenous direction. 

So, we can see what is homogenous direction? If the value of that variable is 0 or the 

gradient of that variable is 0 or combination of this two is 0. So, you can see 

homogenous boundary condition n =0 or nd

dx


=0 or combination of this two where β is 

the constant is 0. So, in this form if you get the boundary condition then these are the 

homogenous boundary conditions. 
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So, we can use separation of variables method if in the homogenous direction if you get 

characteristic value problem. Now, you see the boundary condition in today’s problem 

we have seen that in r direction it is we can make as homogenous using convenient non-

dimensional quantity. 

So, one important property of this Sturm Liouville problem is orthogonality. So, we can 

see the two function n and m  are orthogonal in the range a, b with respect to weighting 

function w(x) if ( ) ( ) ( ) 0

b

n m

a

x x w x dx   for n ≠m. And today, we will use another 

important property where n = m you will get 2 1
( ) ( )

2

b

n n
n

n na x b

d
x w x dx

dx

 


 


 
  

 
 . 

(Refer Slide Time: 06:33) 

 

So, first let us define some suitable non dimensional quantity, so that we get in r 

direction both boundary conditions as homogenous. So, if you see we have written our 

energy equation as 
p

T K T
C u r

x r r r


   
  

   
now we are introducing the non-

dimensional parameters non-dimensional parameters. 
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So, 
0

r

r
  . So, this is the radial coordinate non-dimensional radial coordinate and we 

will introduce 0

Re PrD

x
r

  . So, this is your axial coordinate. So, we can write the velocity 

 2( )
( ) 2 1

m

u r
U

u
    and we are defining the non-dimensional 

temperature  , w

i w

T T

T T
  





. 

Now, you can see using these non-dimensional parameters in r direction at r = r0 and 

T=Tw, so, θ will become 0 and at r = 0 , 
d

d




will become 0. So, you will get homogenous 

direction in r direction or η direction. So, if you put all these in these energy equation 

what you are going to 

get?   
 2 0

0 0 0 0

1
2 1

Re Pr

i w

p m i w

D

T T rK
C u T T

r r r r

 
 

   

    
    

   
. This we have 

carried out in last class as well . So, just after rearrangement you can write 

as  2 1
1

 
 

   

   
   

   
. So, you carry out this algebra. So, you put the values of 

ReD and Pr and you cancel out some parameters, then you will get finally, this equation. 

Now, you see this equation is homogenous as well as linear and in r direction, you have 

two homogenous boundary condition. So, we will be able to use method of separations 

of variable now we will use separation of variables method where we will find the 

solution of this equation as theta which is product of two solution x and r, where X is 

function of ξ only and R is function of η only. 

So, we can write θ method of separation of variable . So,      , X R     , so, now, 

you can see 
dX

R
d



 





you can write 

dR
X

d



 





 and

d dR
X

d d


 

   

    
   

    
. So, 

all these you put in these equation and write. 
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Finally, after rearrangement you can write 
 2

1 1

1

dX d dR

X d d dR


   

 
  

  
. So, you can 

see left hand side is function of ξ only and right hand side function of η only. So, this 

will be equal to some constant and the sign of that constant you have to chose such a way 

that in r direction which is your homogenous direction you will get characteristic value 

problem; that means, it is solution will give you harmonic solution. 

And, if you can constitute this equation such a way, that in r direction you will get the 

equation similar to Sturm Liouville equation. So, you will get solution as characteristic 

value problem. So, we will chose here is equal to 2

n  because what different values of 

lambda you will get different solution X and R here 2

n  is your eigen values. 

So, you can see you can write 2n
n

n

dX
d

X
   . So, the solution you can see this will be 

exponential right, some constant into
2
ne
 

. And, the other equation you will 

get  2 21 0n
n n

dRd
R

d d
   

 

 
   

 
. 

Now, you compare this equation with the Sturm Liouville equation. So, you can see p =η 

, q = 0 and weighting function is  21  . So, now, and also in η direction you have two 
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boundary conditions as homogenous. So, boundary conditions if you write so, at η=0 








=0. 

So, if 







=0, so, obviously, 

dR

d
=0 and at η=1, θ=0; that means, Rn should be 0 at η= 1 

and at ξ=0, θ=1 . So, now, you can write the solution right, but you can see that for 

different values of n you will get a different solution Xn and Rn and as the governing 

equation is linear, you can super impose all the solutions right. 

So, you can sum all the solution for different n  and it is possible as it is linear equation. 

So, we will write the final solution θ as the complete solution  
2

0

, n

n n

n

C R e
   






 . 

So, now, we need to find what is the value of this constant Cn. So, we will apply the 

boundary conditions and Rn. What is Rn? Rn is the solution of this second order 

differential equation and you need to use some numerical technique to find the 

eigenfunctions of this second order differential equation and you can find the solution Rn.  

So, this equation you need to use some numerical technique to find the eigen functions 

Rn and once Rn is known then you can write the complete solution as
2
n

n nC R e
 

. So, this 

is very important because these equation you need to solve and it is eigenfunction are Rn 

and in the complete solution this is coming as Rn. 

Now, let us apply the boundary condition at ξ=0 , θ=1 . So, if you put it here you will 

get
0

1 n n

n

C R




 . So, what we will do now? So, we will use the orthogonality condition to 

find this constant Cn. 

So, we will multiply both side with Rn into the weighting function; in this case it 

is    
1 1

2 2

00 0

1 1m n m n

n

R d C R R d     




    . 

So, now, you use the orthogonality condition. In the right hand side you can see the 

summation n =0 to ∞. So, in this particular case you can see if you apply the 
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orthogonality condition for this Sturm Liouville equation, then all the terms will become 

0 except n = m . So, for n = to m the integral all will be 0. 

(Refer Slide Time: 19:13) 

 

So, if you keep only n = m, then using orthogonality condition so, you can 

write    
1 1

2 2 2

00 0

1 1n n n

n

R d C R d     




    . 

So, now, you can write from here what is the value of constant.

 

 

1

2

0

1

2 2

0

1

1

n

n

n

R d

C

R d

  

  











. 

So, now we will use the second order differential equation of Rn and we will integrate it 

then we will find. So, first let us integrate the second order ODE of Rn. So, you can see 

our equation is  2 21n
n n

dRd
R

d d
   

 

 
   

 
. 

So, now, if you integrate it, so, you will get  
1 1

2 2

0 0

1n
n n

dR
d R d

d
    



 
   

 
  . So, you 

can see this integral then you can write  
1

2 2

0 1 0

1 n n
n n

dR dR
R d

d d
 

     
 

 

   
      

   
 . 
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So, now, we apply the boundary condition at η=0, ndR

d
=0. So, the last term will become 

0. So, this is your 0 as 0
ndR

d



 . So, you will get only  

1

2 2

1

0

1 n
n n

dR
R d

d
   


    . So, 

you can see in this constant Cn, so, in the numerator you can replace. So, now, this 

2

n you can take it outside. So, you can write  
1

2

12

0

1
1 n

n

n

dR
R d

d
  

 
    . So, these 

value this integral value you can put it in the numerator because this is the integral. 

(Refer Slide Time: 23:15) 

 

So,

 

12

1

2 2

0

1

1

n

n
n

n

dR

d
C

R d


 

  

 





. Now, apply the other important properties of orthogonality at 

n =m . So, already we have written for the Sturm Liouville equation. So, if you write it 

for n =m . So, you can write  
1

2 2

0 1

1
1

2

n n
n

n n

R dR
R d

d


  
  



 
   

 
 . 
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So, if you put in the denominator . So, this you see this is the left hand side this integral. 

So, you can write the constant

12

1 1

1

1

2

n

n
n

n n

n n

dR

d
C

R dR

d



 

 

  



 

 




 


. So, this and this we will get 

cancel. So, you will get

1

2 1

nn

n

R













. 

So, your temperature distribution, so, you can write Cn you know. So, 

 
2

0
1

, 2
n

n

nn
n

n

R e

R

 



  









 





 . 

So, if you can find the eigen function of Rn and its derivative with respect to the 

eigenvalues if you can get at η=1, then you will be able to find this temperature profile θ. 

(Refer Slide Time: 26:05) 

 

So, you can see the first three eigen functions R0, R1 and R2 how it varies; first three 

eigen functions with η. So, the boundary condition you know . So, at η=1 R = 0 . So, you 

can see that here you are getting at η=1 and R = 0 and this is the R0 variation, this is the 

R1 variation and this is the R2 variation . So, these are the eigen functions; first three 

eigen functions R0, R1 and R2. 
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Now, we are interested to find the Nusselt number. So, to find the Nusselt number we 

have to find the difference we need to find the temperature difference between mean 

temperature and the wall temperature. So, for that first we need to find what is the mean 

temperature. So, you can see that bulk mean temperature mean 

temperature

1

0

1

0

m

U d

U d

 



 






. 

So, now if you write the denominator you integrate first . So, it will be 

   
1 1

2 3

0 0

2 1 2d d         and it will be just

1
2 4

0

2
2 4

  
 

 
. So, if you put the limits 

you will get 
1

2
. 

And, the numerator if you find the integration; so,   
21

2

00
1

2 1 2
n

n

nn
n

n

R e
d

dR

d

 



  









 
  

  
 
  

 k. 
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So, if you see if you find this integral, so, these you can see it is not function of η. So, 

whatever is function of η that you put inside the integral. So, you can 

write  
2 1

2

0 0
1

4 1
n

n
nn

n

n

e
R d

dR

d

 



  









 


  . 

So, you can see that this integral already we have found right. So, this you can write as 

2

12
0

1

1
4

n

n

nn n n
n

n

dRe

dR d

d

 





 











 
   

 
 . 

So, now if you see, so, you can rearrange it as 

2 1

3
0

1

4
n

n

nn n

n

dR

e d

R

  









 











 . So, now, you can find 

the θm .  

So, what we will do? We will now define another constant, 

1

1

1

2

n

n n
n

n
n

n

dR

C dRd
G

R d






















   





. So, you can see the Cn. This is the, 

1

2
n

n
n

n

C
R






 





. 

 (Refer Slide Time: 32:09) 

 

414



So, you will get the final expression for mean temperature

2

2
0

8
n

m n

n n

e
G

 








  . So, now, to 

calculate the Nusselt number we need the temperature gradient at η= 1; that means, at the 

wall. So, we need the temperature gradient at η=1. 

So, we know theta which is

2

0
1

2
n

n

nn
n

n

R e

R

 













 





 .  

So, now

2

1

1

0
1

n n

nn
n

n

dR
e

d

R

 







 

















  






 . 

So, this if you write in terms of G, then you can write
2

0

2 n

n

n

G e
 






  . We are now in a 

position to find the Nusselt number. So, first you find what is the surface heat flux. So, 

surface heat flux
0

''

w r r

T
q K

r



 


. So, what we are telling that q we are taking in the 

negative direction of r. So, it will become positive. 

So, you can see that w

i w

T T

T T






and m w

m

i w

T T

T T






. So, this you can see that it will 

be  ''

1

0

w i w

K
q T T

r








  


. And, in terms of mean temperature now if you write, so, it 

will be
 ''

1

0

m w

w

m

T TK
q

r




 


 
 


. 
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So, now you find the local Nusselt number. So, Nusselt number will be 

just
''

02w
D

w m

q r
Nu

T T K



. So, you can see

1

2

m





 



 


. 

So, now, 1










already we have found. So, if you put it. So, you will get, 

2

2

0

2
0

2
2

8

n

n

n

n

n

n n

G e

e
G

 

 












 
 
 





. 

So, this you can see that 







already we have found. So, if you put the m expression and 








 then you will get this expression. Finally, you will get this as

2

2

0

2
0

2

n

n

n

n

n

n n

G e

G
e

 

 
















. 

So, now, let us find the average Nusselt number. So, we will use the energy balance 

whatever we have derived earlier. 
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So, average Nusselt number if you calculate . So, you can write
  02

D

h r
Nu

K


 . So, it 

will be and from the energy balance we know    
.

p

Ph
x

mC

m w mi wT x T T T e



   . 

So, from here you can find  

.

ln
p m w

mi w

mC T T
h x

Px T T

 
   

 
. So, it will be

.

ln
p

m

mC

Px
 . So, 

now, 
.

2

0mm u r   and 02P r and 0

Re PrD

x
r

  . 

So, if you rearrange it so, and put it here this Nusselt number you are going to get 

.

02 ln
p

D m

mC
Nu r

Px
  after rearrangement you will get as  

1
ln

2
m 


 . So, this is the 

average Nusselt number. 

So, now, you can see so, to find this local Nusselt number average Nusselt number and 

the temperature distribution you need to find the eigenvalues, eigen function and those 

constants Cn and Gn. Once you find those numerically, then you will be able to find the 

temperature distribution and the Nusselt numbers. 

417



(Refer Slide Time: 39:33) 

 

So, you can see for first five eigenvalues and constants from n = 0 to 4 we have written. 

So, this is the value of λn this is the constant Cn and Gn; Gn already we have written in 

terms of Cn. So, if Cn is known then Gn you will be able to evaluate. And, if you see the 

local and average Nusselt number so, as x varies. So, for different ξ 0 to ∞, I have 

written few terms. 

Nusselt number, so, at ξ=0 it will be almost ∞ and average Nusselt number will be 

almost ∞ it will be very high value and as it x →∞, then it will be fully developed 

profile. And, if it is a hydrodynamically and thermally fully developed flow you should 

get the Nusselt number as 3.66 and that will be same as average Nusselt number 3.66. 

So, you can see so, whatever expression we have derived for the temperature profile and 

the Nusselt number it is valid for developing region as well as developed region. So, you 

can see that if we put at ξ→∞ then we are getting back the Nusselt number which is 

constant and we have found earlier so, that is 3.66. So, you can see from this table. 
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So, now, you see the limiting case. Limiting case at ξ→∞. So,

2
0

2
0

0

0

2

0

2

G e
Nu

G
e

 

 







 . So, now, 

ξ→∞ considering the first value only for n = 0 neglecting the other terms with n >0, 

because all those terms are very small because exponentially decaying. 

You can see that it will exponentially decaying, so, for n > 0 this will give very small 

value. So, you can see that 
2

0

2
Nu


 and 2

0 from this table if you see this is 2.7043. So, it 

will be
 

2
2.7043

2
; so, it will be 3.66 . 

And, another empirical relations given by Hausen empirical relation proposed by 

Hausen. So, this is, 
2

3

0.0668
3.66

1 0.04

Gz
Nu

Gz
 


, where 02

Re PrD

L
r

Gz  . 

So, you can see the Nusselt number approaches constant value of 3.66 when the tube is 

sufficiently long because this term will become 0. 
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So, we can see the temperature profile. So, Nusselt number is plotted with 
Re PrD

x
d which 

is
1

Gz
. So, for constant temperature, so, this is the average Nusselt number and this is the 

local Nusselt number. So, we can see local NuNT is very high value and it is 

exponentially decaying and it is becoming constant and it is you see it is almost 3.66 and 

it is for uniform wall heat flux boundary condition. So, local Nusselt number and the 

average Nusselt number. 
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Finally, we got this temperature profile where Cn is given by this expression and the 

local Nusselt number we have derived like this, where 
1

2

n n
n

C dR
G

d





 
   

 
 and also we 

have derived the average Nusselt number. So, this is the expression where 

 m w

m

i w

T x T

T T






 with this expression. 

So, today we considered hydrodynamically developed and thermally developing fluid 

flow through circular tube with uniform wall temperature. So, we used separation of 

variables method with suitable non-dimensional parameters; we defined the w

i w

T T

T T






. 

So, from there we found the eigen functions Rn from the second order differential 

equation and along x it varies exponentially. 

So, with these two solutions product of these two solutions we found the temperature 

profile θ. Once we know the θ then we can find the Nusselt number and Nusselt number 

we have defined based on the temperature difference at wall and the mean temperature. 

And, Nusselt number based on diameter first we have found local Nusselt number, then 

we have found the average Nusselt number. 

And, this is the general expression for Nusselt number when we put x →∞ then 

obviously, it becomes hydrodynamically and thermally fully developed flow. So, we 

should get back the constant Nusselt number and we derived earlier it as 3.66. And, 

today we have shown that if you put x →∞ you are getting back the Nusselt number as 

3.66. 

Thank you. 
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