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Hello everyone. So, till now we considered Hydrodynamically and thermally fully 

developed flow. So, in analysis it was easier because the non-dimensional temperature 

phi whatever we defined it was function of r only, so it does not change in the axial 

direction.  

Today, we will consider hydrodynamically developed, but thermally developing laminar 

fluid flow through circular pipe with uniform wall heat flux. So, you can see that it is 

thermally developing flow that means, your temperature will change in axial direction 

and it will vary only inside the thermal boundary layer. However, in the core region it 

will remain at the inlet temperature.  

(Refer Slide Time: 01:26) 

 

So, let us see. So, this is your circular pipe of radius r 0. We have kept the axis at the 

center line and at x = 0 we have put in such a way that from there uniform heat flux 

boundary condition is applied. If x < 0, then both the fluid and wall have uniform 
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temperature Ti. So, after x ≥ 0, you have uniform wall heat flux, boundary condition and 

your thermal boundary layer starts growing from x = 0. So, this is your thermal boundary 

layer thickness.  

So, we have considered hydrodynamically fully developed flow. So, you have velocity u 

which is function of r only and it is fully developed profile parabolic. However, your 

temperature profile you can see that it will vary inside the thermal boundary layer only. 

But in the core region it will remain at temperature Ti. 

The assumptions for this study are axisymmetric steady incompressible laminar flow 

with constant properties. You can see that it is geometrically and thermally symmetric 

and we can have the assumptions of axisymmetric flow. So, there is no variation in of 

any quantity in circumferential direction. It is hydrodynamically developed flow that 

means, 0
u

x





 and radial velocity v = 0. It is thermally developing flow.  

We used uniform wall heat flux condition. In this particular case also, we will neglect the 

axial heat conduction that means, axial heat conduction is we will assume that axial heat 

conduction is very very small compared to the radial heat conduction. And we will also 

assume negligible viscous heat dissipation and no internal heat generation. 

So, the problem hydrodynamically developed and thermally developing flow inside a 

circular pipe is known as Graetz problem. So, we will define the Graetz number 

as
Re PrDGz

x
D

 . So, you can see that this is some inverse of non-dimensional form of the 

axial distance, x is the axial distance and if you put the variables in Reynolds number and 

Prandtl number you can write it as

2
2

m

m

D
u D

Gz
xx
u




  . So, you can see that in the 

numerator and denominator both are having the time scale, where D = 2 r0. 

So, Graetz number represents the ratio of the time taken by heat to diffuse radially into 

the fluid by conduction to the time taken to the fluid to reach distance x. For small values 

of Graetz number radial temperature profiles are fully developed. So, you can see that if 

x is very high then your Graetz number will be small.  
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So, if x is very high it will be thermally fully developed flow, so Graetz number will be 

small. So, for small values of Graetz number radial temperature profiles are fully 

developed, but for larger values of thermal boundary layer development has to be taken 

into account. So, you can see if x is very small then it will be thermally developing 

region. 

(Refer Slide Time: 05:20) 

 

So, before going to the analysis first let us consider this second order ordinary 

differential equation. So, this is your second order ordinary differential 

equation 2(x) ( ) ( ) 0n
n n

dd
p q x w x

dx dx


 

 
     

 
. So, this is known as Sturm-Liouville 

equation or Sturm-Liouville boundary value problem. 

Here 2

n  is known as eigen values and n is the solution of this ordinary differential 

equation, and it is the eigen functions associated with each λn. So, if p, q, and w are real 

and boundary condition at x = a and x = b are homogenous then you will get harmonic 

solution in homogenous direction. The function w(x) plays a special role and is known as 

the weighting function. 

In today’s analysis we will use separation of variables method. So, when can we use 

separation of variables method? If your governing equation is linear and homogenous 

and in one direction if you have two homogenous boundary conditions and these then 

you can use the separation of variables method.  
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And when you will separate the variables then it will be equal to some constant and the 

sign of constant you need to choose such a way that in homogenous direction you will 

get harmonic solution. So, we have to choose the 2

n  or the constant such a way that in 

homogenous direction that means, in that direction where you have two homogenous 

boundary condition, it should give harmonic solution. 

So, you can see. So, if you can resemble your governing equation with the Sturm-

Liouville equation and p, q, w are real and boundary condition at x = a and x = b are 

homogenous, then you will get a harmonic solution in the homogenous direction.  

One important property of this Sturm-Liouville equation is orthogonality. So, you can 

see two functions n and m are orthogonal to each other in the range a, b with respect to 

weighting function w(x) if ( ) ( ) 0
b

n m
a

x x dx    for n ≠ m. So, now, for n ≠m these 

integral will be 0. So, it will be used to find the constant when will use the separation of 

variables method. 

(Refer Slide Time: 08:18) 

 

Now, first let us consider hydrodynamically and thermally fully developed flow through 

the circular pipe with uniform wall heat flux boundary condition. Already we have 

studied it. You know the solutions. Just we will represent this solution again here. 
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So, you can see that fully developed velocity profile is this one, where um is the mean 

velocity or average velocity the temperature T(x,r) which is your fully developed 

temperature profile
'' 2 4

0

2 4

0 0

3 4 1
( , ) ( ) 1

4 3 3

w
w

q r r r
T x r T x

k r r

 
    

 
. So, this already we have 

derived the fully developed temperature profile in terms of Tw.  

Again, we have derived the mean temperature in terms of wall temperature. So, you can 

see 
''

011
( ) ( )

24

w
m w

q r
T x T x

k
  . So, if you substitute Tw in this equation then you will get 

this equation. So, the temperature profile we have written in terms of mean temperature.  

Again, from energy valence we have derived this equation you see
''

.
( ) w

m mi

p

q Px
T x T

mC

  . 

So, you know that P is the perimeter where in this particular case it is 02 r and 
.

m  is the 

mass flow rate 2

0mu r  , so ρu A. Area is 2

0r . 

So, these already we have derived from the energy balance, and where Tmi is the at inlet 

you have the mean temperature. So, these P and 
.

m these value if you put then you can 

write in this form. Now, these Tm value you put in this equation, see if you put you will 

get this equation, 
'' '' 2 4

0

2 4

0 0 0

2 1 7
( , )

4 24

w w
mi

p m

q x q r r r
T x r T

C u r k r r

 
     

 
. So, these Tmi if you 

take in the left hand side and divide by 
''

0wq r

k
then you can write in terms of a non-

dimensional quantity as, 
2 4

0

'' 2 4

00 0 0

4
( , ) 1 7

2 4 24

mi

pmw

x
T x r T r r r

Cu rq r r r

kk





 
    

 
.  

So, you can see that in this particular case it will become 
0

4x
r

and this after 

rearrangement you will get Reynolds number into Prandtl number and this is also non-

dimensional quantity. So, you can see that we have written this T, what is what is this T? 

T is your fully developed temperature profile. 
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So, in a fully developed condition fully developed means hydrodynamically and 

thermally fully developed. So, 
2 4

0

'' 2 4

0 0 0

4
( , ) 1 7

Re Pr 4 24

fd i

w D

x
T x r T r r r

q r r r

k

  
    

 
. So, this is the 

temperature profile, in a fully developed flow, and where Tfd we have represented as a 

fully developed temperature and Ti is the inlet temperature. So, this already we have 

carried out this analysis earlier. Just we have revisited it. 

Now, let us consider thermally developing flow. So, in thermally developing flow we 

will consider a temperature Td such a way that your temperature profile at any location 

whether it is in thermally developing region or fully developed region T will be Tfd 

which is your fully developed temperature profile plus Td.  

(Refer Slide Time: 12:09) 

 

So, you can see here this is our problem. Now, in developing region thermally 

developing region you can see your thermal boundary layer thickness is growing. So, it 

is your developing region, thermally developing region. So, the temperature profile it has 

a T(x), T which is function of x and r. This temperature profile we need to find for 

thermally developing region. But this T is valid for both in thermally developing region 

as well as thermally developed region. 

And we are defining this temperature as Tfd which is your fully developed temperature 

profile plus some temperature Td. So, which is we will consider only in the developing 
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region and in fully developed region this Td will become 0, so in fully developed region 

thermally fully developed region.  

So, in thermally developed region this Td will be 0. So, we are defining Td in that way. 

So, you see we need to find T which is valid in thermally developing region, and 

thermally developed region these Tfd we have already derived which is your temperature 

profile in thermally developed region. 

Now, you can see that this red colored profile is your Tfd and this your green colored 

profile this is your T(x,r). So, obviously, you can see your in axial direction in the core 

region in a thermally developing region you can see that it will be always T i because that 

is the temperature inlet temperature. Only temperature is varying inside the thermally 

thermal boundary layer. 

So, in the core region temperature will remain at Ti. At another location if you consider 

here also it will be Ti, but once it becomes fully developed region then your core 

temperature will vary. So, obviously, the temperature profile in the thermally developing 

region will be lesser than the fully developed region.  

This is also true for the wall temperature because at the wall temperature you can see this 

is a constant wall temperature, this is the constant wall heat flux boundary condition. So, 

Tw will be function of x and along axial direction your Tw will increase. 

So, obviously, when it will come to fully developed region, obviously your Tw will be 

higher than the Tw at developing region. So, we have represented this green colored 

temperature profile in the developing region, red colored temperature profile in a fully 

developed region. So, the difference we are representing with Td. So, you can see this is 

actually negative.  

This is actually negative, but we are considering T which is your temperature profile at 

any region whether it is thermally developing region or thermally fully developed region 

is ( , ) ( , ) ( , )fd dT x r T x r T x r  . So, we can see that your Td will be maximum at x = 0; Td 

will be maximum at x = 0. Then, it will start decreasing, decreasing, decreasing; once it 

becomes thermally fully developed region then your Td will become 0. So, from the high 

negative value to 0 it will vary in the developing region. 
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So, you can see that when it is fully developed region Td will become 0 and T(x, r) will 

be just
fdT . And in developing region Td will have some negative value, so these negative 

value will be directed from 
fdT  and you will get the green color this temperature profile. 

So, I hope you have understood that how we have defined a temperature in the 

developing region Td which is actually negative quantity and these is having a high value 

at x = 0 at the entrance region and it will decrease along axial direction in the thermally 

developing zone. After that once it becomes thermally developed region this Td will 

become 0 and your temperature profile T will become
fdT . So, these T(x,y) we need to 

find which is valid in both thermally developing region as well as thermally developed 

region. 

So, now let us write the energy equation in booking all the assumptions. So, you can 

write this is the energy equation 
T T

u r
x r r r

   
  

   
where ∝ is your thermal diffusivity. 

So, in fully developed region our temperature profile is
fdT . So, obviously, this 

fdT will 

satisfy this governing equation, so you can write
fd fdT T

u r
x r r r

  
  

   
. 

So, now if you subtract this equation from this equations. So, what you will get? You 

will get d dT T
u r

x r r r

   
  

   
, so where ( , ) ( , ) ( , )d fdT x r T x r T x r  . From this definition 

you can see your ( , ) ( , ) ( , )d fdT x r T x r T x r  . So, you can see that the whatever 

temperature Td we have introduced in the thermally developing region it also satisfies the 

energy equation.  
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So, now we need to solve this equation first and we will find the Td. We know 

already
fdT , so the temperature profile ( , ) fd dT x y T T  . Now, m is to find the 

temperature profile Td. 

So, first let us write the boundary conditions for Td. So, boundary conditions are at x = 0. 

So, you have T = Ti. And we know Td = T - Tfd. We have defined this way. So, if at x = 

0, T = Ti we will get Td = T - Tfd at x = 0. 

Now, in radial direction the boundary conditions are at r = 0, we can see that your due to 

the axisymmetric condition as it is thermally and geometrically symmetric you will get 

maximum or minimum temperature at the central line, where r = 0. So, that means, the 

temperature gradient with respect to radius will be 0.  

So, you will get 0
T

r





 and in fully developed case also you can write 0

fdT

r





because 

already we have imposed this boundary condition. So, you can see from here you can 

write
fdd

TT T

r r r

 
 

  
. So, if 0

T

r





and 0

fdT

r





then obviously, 0dT

r





, so you can 

write 0dT

r





at r = 0. 
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And at the wall at r = r0, we have the heat flux boundary condition. So, you can see 

''

wq we have taken in the negative radial direction. So, what will be your ''

wq ? So, it will 

be
T

K
r




, we are not writing minus sign because ''

wq sign is in the negative to radial 

direction that is why it is positive
0

''

r r w

T
K q

r



 


. So, this is your for

T

r




. 

So, now what is T? T = Td + Tfd. And for a fully developed boundary conditions also we 

have applied this wall heat plus boundary condition. So, you will get
0

''

r r w

T
K q

r



 


. So, 

now, if you subtract, this two, so what you will get?  

If you subtract then you will get in the fully developed case where thermally and 

hydrodynamically fully developed region your temperature boundary condition at r = r0 

will be 
0

''fd

r r w

T
K q

r



 


because already we have solved for these boundary condition, 

right. 

So, now, if you subtract these equation from this equation what you will 

get?
0

( )
0

fd

r r

T T
K

r


 
 


, right. And what is T -Tfd? It is nothing, but Td. So, that means, 

you will get
0

0d
r r

T

r



 


.  

So, you see in the radial direction at r = and r = r0 your temperature gradient of Td =0, so 

that means, both the boundary conditions are homogenous, that means, it is the 

homogenous directions. So, when you will use separation of variables method, we have 

to choose the sign of the constants such a way that you will get the harmonic solution in r 

direction. 
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So, now our governing equation is d dT T
u r

x r r r

   
  

   
, because we need to find this 

value of Td, right. Because Tfd is known if Td you can find then the temperature profile in 

general you can write Tfd + Td. 

In this case, we are using hydrodynamically developed flow, that means, u you know. 

So, u you can write
2

2

0

2 1m

r
u u

r

 
  

 
. So, you can write fully developed velocity profile, 

you know
2

2

0

2 1m

r
u u

r

 
  

 
. So, you put it here, so you will get, 

2

2

0

2 1 d d
m

T Tr
u r

r x r r r

     
    

    
. 

So, now let us define some non-dimensional parameters. So, we will use the radial 

direction
0

r

r
  . So, this is your non-dimensional radial direction and the non-

dimensional axial direction 0

Re PrD

x
r

  . 
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So, let us introduce non-dimensional parameters as follows. So, 
0

r

r
  , so you can see 

this is your non-dimensional radial coordinate. Then, 0

Re PrD

x
r

  . So, this is your non-

dimensional axial coordinate. And the non-dimensional temperature
''

0

d
d

w

T

q r
K

   which is 

''

0

fd

w

T T

q r
K


. 

So, now if you put all this values, so you can see you can write
''

0w
d d

q r
T

K
 . So, you can 

write
''

0d w dT q r

x K x

 


 
. So, you see ( , )d f   . 

Then, you can write this x coordinate, in terms of ζ. So, you can 

write
''

0

0

1

Re Pr

d w d

D

T q r

x K r





 


 
. So, 0

0 0

2
Re Pr

pm
D

Cu r
r r

K




 . 

So, you can see this μ will get cancel. So, you can write
''

0

2

02

d w d

m

T q r

x K u r





 


 
. 

Similarly, you can write
''

0d w dT q r

r K r

 


 
.  

So, now, this r will put as r0 η, so you can write
''

0

0

1d w dT q r

r K r





 


 
. So, this r0 r0 if you 

cancel it, then you will get
''

d w dT q

r K





 


 
. Similarly, if you write 

''

d w dT q
r

r r K




 

     
   

      
. 
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So, all the derivatives we have found. Now, all these you put it in the governing 

equation. And write it as,  
'' ''

2 0

2

0 0

2 1
2

w d w d
m

m

q r q
u

K u r r K

  
 

   

   
   

   
. After 

substituting all the terms.  

So, now, you can see here, this α, this α you can cancel um, um, 2, 2, this r0 here you will 

get one and another these r0. So, you can cancel ''

wq , ''

wq ,K and K. So, you can write the 

final equation as  2 1
1 d d 

 
   

   
   

   
.  

So, now, we will use separation of variables method. So, what is separation of variables 

method? We will write the solution of θd as a product of two individual solution x and r, 

where each solution is function of one coordinate only. So, like we are defining θd as 

product of x and r, where x is function of ζ only and r is function of η only. 

So, before going to that let us write the boundary conditions. Boundary conditions at ζ=0 

that means, x = 0. So, 
0

''

0

( )i fd

d

w

T T

q r

K




 
 and at η=0 you have 0d







and at η=1 because 

r = r0. So, η=1 and 0d







.  
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Now, we will apply separation of variables method. So, we will write the solution θd 

which is function of ζ and η as product of two individual solution X which is function of 

ζ and R which is function of η only. So, you can see you are 

writing      ,d X R     .  

So, when can we use separation of variables method? If the governing equation is linear 

and homogenous, and in one direction you have two homogenous boundary conditions 

then you can use separation of variables method. So, you can see our governing equation, 

these equation is linear and homogenous, and in η direction you have homogenous 

boundary conditions. That means, η is your homogenous direction. So, η is your 

homogenous direction. 

So, we can use separation of variables (Refer Time: 33:52) and we are writing the 

solution theta d as product of two individual solution X and R, where X is function of ζ 

only and R is function of η only. So, now, let us write d dX
R

d



 





. So, now, this is your 

ordinary derivative were writing because X is function of ζ only. 

Similarly, you can write d dR
X

d



 





. So, similarly if you write , 

d d dR
X

d d


 

   

    
   

    
 and one X will be there. So, all these derivatives you put it 

in this equation. 
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So, what you will get? So, you will get,  21
dX X d dR

R
d d d

 
   

 
   

 
. So, you see this 

equation. 

Left hand side X is function of ζ only. That means, the whole term left hand side term is 

function of ζ only. Right hand side if you see, R is function of η only and, right hand side 

all the terms are function of η only. So, left hand side is function of ζ, right hand side 

function of η.  

So, this will be equal to some constant. Because left hand side is your function of ζ, right 

hand side function of η equal to some constant, and that constants sign you have to 

choose such a way that in η direction you should get the governing equation such a way 

that you will get the harmonic solution of that governing equation. And obviously, if you 

can write in R direction the governing equation has Sturm-Liouville equation type, then 

you will get the harmonic solution in η direction. 

So, we will choose the constant as 2

n , where 2

n  is your eigen values. So, you can 

write 21 n
n

n

dX

X d



  . So, you can see its solution will be exponential. 
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The other term you will get
 

2

2

1

1

n
n

n

dRd

d dR
 

  

 
  

  
. So, you can see this will be 

your  2 21 0n
n n

dRd
R

d d
   

 

 
   

 
. 

Now, you see this second order ordinary differential equation. You compare it with the 

Sturm-Liouville equation. So, you can see your if you compare with the Sturm-Liouville 

equation, p =η, q will be 0, and the weighting function,  21w    . And, ok, these are 

real and in eta direction you have two homogenous boundary conditions so obviously, 

you will get the harmonic solution in eta direction. 

So, if you see this second order differential equation, it is very difficult to solve. So, you 

can use some numerical technique to solve this second order ordinary differential 

equation. Once you get the solution which is at the eigen function of this equation Rn, 

then you can write the product of this two solution one you will get from the X another 

solution from R then this product of this two solution will be your the temperature profile 

θT. But for different values of eigen values 2

n you will get different solution Xn and 

different solution Rn. 

So, you need to find what is the value of n , eigen values. Numerically, if you solve 

these equation, with the proper boundary conditions then you will get the eigen functions 

of these ordinary differential equation Rn, then you can write the solution θd, as 

summation of all the product of solution X and R because for different values of n , you 

will get different solution X into R. And as it is a linear solution linear governing 

equation.  

So, you can super impose all the solutions for different values of n , and if you super 

impose, that means you are adding all the solutions. So, it is possible as you have the 

governing equation linear. Because you have a linear governing equation, so you can 

super impose all the solutions. 

So, now let us write the final solution θd as product of Xn Rn, where Xn is the solution 

where you will get in the exponential form, Rn you need to find solving this second order 
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ordinary differential equation. Then, you can sum it from n is equal to 1 to ∞ because 

you will get different values of n  and you will get the different solutions. 

(Refer Slide Time: 42:19) 

 

So, assuming that you would solution of this second order differential equation is Rn 

which are eigen function and 2

n is eigenvalues then you can write the final solution as. 

So, you can write the final solution  
2

1

, n

d n n

n

C R e
   






 these are the eigen function 

of this second order differential equation, and this is the solution, this is the solution from 

the η direction. So, there are first equation you can see. 

So, if you solve this equation. So, you will get Xn is equal to some constant 

into  
2

1

, n

d n n

n

C R e
   






 . So, this product if you write Rn if you find and Xn if you 

find then you will get the final solution d as product of two individual solutions and as it 

is linear equation you can super impose all the solution n = 1 to ∞ for different values 

of n . So, Rn you need to find. So, this is the eigen functions of this second order 

differential equation. 

So, now, we need to apply the boundary conditions, to find these constant C n as well as 

you need to find 2

n  because that is also unknown. So, you can see the temperature 

profile for hydrodynamically and thermally fully developed fluid flow we have written 
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like this, we have already derived today. So, in non-dimensional form if you write, so 

''

0

fd

w

T

q r

k

you can write θfd, and 
''

0

i

w

T

q r

k

you can write θ.  

So, 
2 41 7

( , ) 4
4 24

fd i           . 

So, now theta d we have defined 
''

0

( , )
( , ) d

fd

w

T x r

q r

k

    and ( , ) ( , ) ( , )d fdT x r T x r T x r  .  

''

0

( , ) ( , )
( , )

fd

fd

w

T x r T x r

q r

k

  


 .That means, ( , ) ( , ) ( , )d fd          . So, now, apply 

the boundary condition at η= 0. At η= 0 we know 
0

''

0

i fd

d

w

T T

q r

k




 
 . So, this we already 

we know. So, we can see that.  

So, this is your θd and you can see here. So, from these; if you put at η=0 that means, this 

is your at x = 0, right. So, you can write θd as; what is this? This is nothing, 

but 0d i fd       . So, you can write it as 0d i fd       . 

So, you can see from this equation, from this equation if ζ=0 if you put and if you reverse 

it, so you will get this as,
4

2

1

7

4 24
n n

n

C R







 
    
 

 because at ζ=0, x = 0. So,
2
ne
 

=1 . 

So, now we need to find the constant Cn. Now, we will invoke the orthogonality 

constant. So, now, we will invoke the orthogonality condition what we discussed in the 

Sturm-Liouville equation. So, what will do now multiply both side by, weighting 

function wRmdη and integrate between 0 and 1. So, this w is the weighting function.  

What is this? You can see here, 

   
1 14

2 2 2

10 0

7
1 1

4 24
m n n m

n

R d C R R d


      




 
      
 

  . 
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So, if you remember the orthogonality condition for n ≠m,  
1

2

0

1 0n mR R d    for 

n≠m, Cn is constant. So, Cn you take outside. So, obviously, for n = m this will become 0, 

so only for n = m only one term will remain. 

(Refer Slide Time: 49:08) 

 

So, if you write for n = m if you keep then you can 

write    
1 14

2 2 2 2

0 0

7
1 1

4 24
n n nR d C R d


      
 

      
 

  ; n = m we have put.  

So, now, we can find the constant

 

 

1 4
2 2

0

1

2 2

0

7
1

4 24

1

n

n

n

R d

C

R d


   

  

 
    
 









. So, you can see 

that, if Rn is known, which is the solution, you will get from the second order differential 

equation then you will be able to integrate this and you can find the constant Cn. 

Now, we need to find the value of n . So, first we will start from the governing equation. 

So, what is your governing equation? We have  2 21 0n
n n

dRd
R

d d
   

 

 
   

 
. So, this 

is the equation we have derived you can see. So, this is the equation. 
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So, now you integrate  
1 1

2 2

0 0

1n
n n

dR
d R d

d
    



 
   

 
  . 

So, this equation you just write in the left hand side, so it will 

be  
1

2 2

0 1 0

1 n n
n n

dR dR
R d

d d
 

     
 

 

    
       

     
 . 

Now, you recall the boundary conditions. At η=0 and η=1 you have 0d







. And θfd is a 

product of X and R, but R is only function of η. So, your boundary condition at η= 0 ,1, 

you will get ndR

d
=0. So, that means, boundary condition at η= 0 and at η= 1 you will get 

ndR

d
=0. So, you can see that these two terms will become 0. So, hence you will 

get  
1

2 2

0

1 0n nR d     . 

So, from here we can get the eigen values 2

n because for you can see this is the 

condition. So, this Rn if you find, so for different n you will get different Rn. So, Rn if 

you know then from here it should to satisfy these because, to right hand side will be 0, 

so to satisfy this you can find the value of 2

n from this equation. 
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So, now if you put the

2

0
2

Re Pr

''
1 10

n

n D

x
r

fd

d n n n n

n nw

T T
C R e C R e

q r

k



 
  



 


    . So, you see now we 

are interested to find theta which is the temperature distribution in general. 

So, that now you can write
2 4

0

'' 2 4

0 0 0

4
1 7

Re Pr 4 24

fd i

w D

x
T T r r r

q r r r

k


    . So, you combining these 

two you can see.  

So, this if you add it then

2

0'' 2 4
Re Pr0 0

2 4
10 0

4
1 7

( , )
Re Pr 4 24

n

D

x
r

w
i n n

nD

x
q r r r r

T x r T C R e
k r r


 



 
      
 
  

 . 

So, you can see this is the final temperature distribution T(x, r), which we are interested 

to find and this T(x, r) is value in both thermally developing region as well as fully 

developed region and you can write in terms of Ti. So, we can see this is the equation and 

this is the complete solution. 
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So, now if you see this eigen functions, you will get different eigenfunction, but at η = 1, 

Rn(1), this is found by this first 7 values of eigen values and functions these are eigen 

functions, where obtained by Siegel Sparrow and Hallman. So, you can see from this 

table. 
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So, for different values of n, n= 1 to 7 these are the 2

n value and Rn(1) that means, at 

η=1. So, that at means at the boundary, Rn(1), so we can see this is the first value is 

negative and if Rn is negative then θd will be negative then you can see that it is the 

negative quantity Td, whatever we defined. So, actually in the developing region you are 

calculating the temperature distribution which we actually subtracting this Td from the 

Tfd part, and this is negative coming. And the constant Cn, you can see these are the Cn. 
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Now, we need to find the Nusselt number. So, you can see that whatever 

''

0

( , )
( , ) d

d

w

T x r

q r

k

    . And similarly, fully developed region 
''

0

( , )
( , )

fd

fd

w

T x r

q r

k

    and mean 

temperature 
''

0

( )
( ) m

m

w

T x

q r

k

   . So, we already derived this θd, right. So, this is just 

2

1

n

n n

n

C R e
 






 . 

Now, at η=1, at the boundary what is that? θwill be θw. 

So,
2

1

( ) ( ,1) (1) n

w fd n n

n

C R e
    






  .So, and also we have found the temperature 

profile for fully developed flow. So, this is the temperature profile. 

398



So, you can write ( , )fd i    in terms of non-dimensional coordinate, η and ζ. So, at 

η=1 if you put, so it will get
2 4

0

'' 2 4

0 0 0

4
1 7

Re Pr 4 24

fd i

w D

x
T T r r r

q r r r

k

  
    

 
. So, this you will 

get
11

( ,1) 4
24

fd i      . So, we can write now at η=1 this θw. So, you can see this if 

you add this two equations these equation and this equation. So, it will 

be
2

1

11
( ) 4 (1)

24
n

w i n n

n

C R e
    






    . 
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Once you get it, so now, you see the from the energy balance Tm we have found like this. 

So, 0

''

0

4
( )

4
Re Pr

m i

w D

x
T x T r

q r

k




  . So, from there you can find. So, in non-dimensional form 

( ) 4m i     . 

And we derive that η=1 already in last slide the
2

1

11
( ) 4 (1)

24
n

w i n n

n

C R e
    






    . 

So, now, we can write, so you can see if you if you subtract the these equation, from this 
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equation subtract this equation from this equation, then you will get, 

2

1

11
( ) ( ) (1)

24
n

w m n n

n

C R e
    






   . 

So, now by definition what is the Nusselt number? Thus, 0(2 )
D

h r
Nu

k
 . So, 

''

02

( ) ( )

w

w m

q r

T x T x k
. 

Now, we can write 

''

0

2

( ) ( )w m

w

T x T x

q r

k


and this is nothing, but ( ) ( )w m    and these 

already we have found. So, Nusselt number for this particular case you can see it 

is
2

1

2

11
(1)

24
n

n n

n

C R e
 







. So, you can see this is the Nusselt number in general. So, these 

expression is valid for both thermally developing region and fully developed region. 

So, let us check whether it is true for the fully developed region or not. So, when you 

will get the fully developed region when x →∞, that means, ζ→∞. So, at ζ→∞, so NuD 

will become fully developed Nusselt number and you can see that as ζ→∞ this term will 

become 0.  

So, this term will become 0, so you will get 
2 48

4.36
11 11

24

DfdNu    and these you have 

already direct, right for hydrodynamically and thermally fully developed region. So, this 

is true.  
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And the temperature profile for this Nusselt number, you can see local and average 

Nusselt number for thermal intense region. So, this is your ''

wq is constant, ok. So, for this 

case you can see
1

Re Pr

x
d

Gz
 . If you plot, so Nusselt number it will decrease in the 

developing region and once it becomes fully developed region it will become constant. 

So, you can see that for high Graetz number you can get the developing region. 
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So, let us conclude. So, today we considered hydrodynamically developed and thermally 

developing flow through circular pipe with uniform wall heat plus boundary condition. 

And we started with the fully developed boundary condition and we have derived already 

the temperature profile in that region, and we defined one temperature Td such a way that 

the temperature profile T = Td + Tfd, and Td is a quantity negative quantity which you 

subtract from the fully developed temperature profile. 

Then, we used the equation for Td, and with the boundary condition we got the governing 

equation and we applied the separation of variables method because the governing 

equation is linear and homogenous. So, we use the separation of variables method and 

using separation of variables method we use the orthogonality constant to find the value 

of Cn. 

So, finally, we derived the temperature profile as these which is valid for both in thermal 

region, thermal developing region and fully developed region and the Nusselt number is 

these which is also valid for thermally developing region and fully developed region. 

And you have seen that at ζ→∞, that means, in a fully developed region it gives the 

Nusselt number as 
48

11
DfdNu  which you already derived. And it is true for the fully 

developed region. 

Thank you.  
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