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Module - 06
Convection in Internal Flows - 11
Lecture - 21
Hydrodynamically and thermally fully developed flow through circular pipe with
uniform wall temperature

Hello everyone, today we will consider fully developed laminar flow through circular
pipe with uniform wall temperature. For this flow through circular pipe, already we have
found the temperature distribution and the Nusselt number with uniform wall heat flux
boundary condition. When we will consider uniform wall temperature boundary
condition, one important assumptions we have to take that axial heat conduction is
negligible compared to the radial heat conduction.

. . . . oT
Earlier case when we considered uniform wall heat plus boundary condition, your M
X

was constant as your heat flux g, was constant. So, hence the second derivative of T
. o°T . .
with respect to x, pv becomes automatically O for the uniform wall heat flux boundary
X
condition. However, in this particular case when we consider uniform wall temperature
boundary condition, we need to assume that your axial heat conduction is negligible

compared to the radial heat conduction.

Another assumptions we will take; that it is axisymmetric. What does it mean? It means
. e . 0
that in circumferential direction there is no change of any property, that means, gof

any quantity is 0. If geometry is symmetric and thermal boundary condition is
symmetric, in this particular case we are considering uniform wall temperature boundary
condition, hence you have a symmetric thermal boundary condition as well as it is wall
circumferential direction there is no change of any quantity. Hence axisymmetric

assumption is valid for this particular case.
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So, let us consider fully developed flow inside circular pipe. So, you can see X is the
axial direction, r is the radial direction. The circular pipe is having radius ro, wall is
maintained at temperature T,. S0, you can see this is the circular pipe we have
considered. So, these are the assumptions axisymmetric steady incompressible laminar

flow with constant properties, hydrodynamically fully developed flow.

So, the we have considered u is function of r only because it is a fully developed flow,

and we can write in terms of mean velocity. Thermally fully developed flow, that means,

d
d¢ Oand we have considered uniform wall temperature condition. And we are
r

neglecting the axial heat conduction. As well as we have assumed that negligible viscous

dissipation, and no internal heat generation.
So, first let us write the governing equation. So, after invoking all these condition, you

or ar T 1o( oT
will be able to write the governing equation as; U—+V—=a| —+-—|— | |.
OX or oX® ror{ or

So, this is your energy equation in general.

So, as it is a fully developed flow hydrodynamically fully developed flow, so v = 0 so.
this is 0. And we are neglecting the axial heat conduction, so this is also 0. So, you will
oT 10 [ oT

o j And you know the fully developed you know that fully
OX ror\_ or
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r . . .
r_zj' So, this is your the axial velocity for
0

developed velocity profile is, u(r)=2u, [1—

fully developed flow.

~Tw where T¢ is your

: . . : T
Now, we will define on non-dimensional temperature 9:T

c w

centerline temperature. In this case also, 6 will not vary in the axial direction. So, 0 is

, Where

function of r only. So, let us define 6 which is function of r only as 8(r) = _: W
T is your centerline temperature, and T, is function of x only.
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So, if you now take the derivatives of temperature with respect to x and r, then we can

write, soT =T, +6(T, —T,) . So, you can see T, is constant. So, 6 is function of r only, so

oT
or

you can write 2—1 = = (T, —TW)(;—?. And if you write

o( oT d( do
—|r—=|=T-T)—| r—|.
6r( arj (T, W)dr( drj

So, now all these you put in the energy equation. So, you have the energy equation

oa _«a 8( oT
asU—=——|r—

. S0, u is the axial velocity for fully developed flows. So, now,
OX ror\_ or
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you put all the values in this energy equation. So, u is the axial velocity for fully

2
developed flow and it can be written as, 2u,, 1—r—2 0 dr, = g(TC —Tw)i(r d—ej
5 dx r dr\ dr

) . ) ) X .
So, now let us define; non-dimensional x coordinate as x*=—, and radial non-
r‘0

dimensional radial coordinate r*=-. So, if you put it here, then you will get
r0

. 6 dT, 1 1 d de
twice2u  (1-r**)=-——=——(T -T, )= rr* _
o )a r,dx* ror*(TC 2 r, dr*( ° rodr*j

So, if you see this ro, this ro, you can cancel, then one rq here you can cancel; now, you

simplify it. So, you will write,

um(zro)ig(l_r*z)iﬂziac_Tw)ii(r*d_Hj_
vV a rhodx* r* rhpdr*{ dr*

Here you can cancel this ro, this ry and this ro. So, you see what is this? So, this is your

Reynolds number based on diameter 2 ry, and Y s your Prandtl number.
a
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ii r*di
Re, PrdT, r*dr*\ dr*
T -T, dx* (1_r*2)e

So, you can write, . So, after rearranging, you can write

in this form. Now, you see the left hand side Reynolds number and Prandtl number are
constant, T, is the centerline temperature which is function of x only, T, is constant, and

C;TC is also function of x, so left hand side is function of x only.
X

Now, right hand side if you see here all terms are function of r* only. So, now, we have
separated the variables. Left hand side is function of x only; right hand side is function of
r* only. So, you can see that left hand side is function of x or x*, and right hand side is
function of r or r* only. So, we have separated the variables now, these equal to some

constant.

So, how we will choose the constant? First let us see the boundary conditions which is
the homogeneous direction first let us see. Then accordingly we will choose the sign of
this constant such that in homogeneous direction we get the harmonic solution, so that is

the rule of using separation of variables method.

So, what are the boundary condition, first let us see. So, you can see that at r *= 0, that
means, centerline temperature. How we have defined the 6? 6 we have defined

asf= Ll . S0, at r *= 0 that means that the central line, obviously, T = T.. So, if we
put T, 6 = 1.

Now, at the same time you can see that the problem is axisymmetric, and it is it is

geometrically and thermally symmetric. So, at the center, you will have either maximum

of minimum temperature. So, we can write that %:0. So, although 6 = 1, but another

you can write at r *= 0, % =0. And at the wall, what is the boundary condition at r *=1,

so you see T = T, right, so 0 will be 0.

Now, you see at r *= 0, you have %=O, you have %:O, and r *= 1 you have 6 =0,

so that means, these are homogeneous boundary conditions. What is homogeneous
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boundary condition? If the value of that variable is O or its gradient is O or combination

of these two is 0, so that is known as homogeneous boundary condition.

So, you have in r direction both the boundary conditions are homogeneous; so. it is a

homogeneous direction. So, r* is the homogeneous direction. So, you should choose the

value of constant, you should choose the sign of the constant such a way that in

homogeneous direction you get the harmonic solution. So, this is your homogeneous

boundary condition. And r * or r is the homogeneous direction homogeneous direction.

So, now how we will determine that you will have the harmonic solution in the

homogeneous direction? So, for that we will use the Sturm Liouville boundary value

problem.
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So, you see Sturm Liouville boundary value problem; it is actually given by this second

see

order ordinary differential equation. So, you can
di[p(x) dd¢”}+[q(x)+ﬂfw(x)]¢n =0, where w(x) is the weighting function. If p(x),
X X

q(x), w(x) are real, and boundary conditions at x = a, and x = b are homogeneous, then

you will get harmonic solutions in homogeneous direction.
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So, now let us see that if we choose the sign of the constant as —A%, then what will

1 d( ,dé
- r R
Re, PrdT, r*dr*\  dr*

happen. So, let us say that this =
PP Y T -T, dx* (1-r*)o

= some constant, and the

sign of that constant we are taking —A%. A* we are taking for convenience, it is any
constant. So, we are taking the sign of this constant as minus, so that in r* direction we

get the harmonic solution.

Now, if you write the equation, so you will get the, if you write first one, so you will

2 _ 2
get dT, = AT, . And you can write dT. =— A dx*. Now, if you integrate
dx* Re, Pr T.-T, Re, Pr

A2x*

it, so you will getT, =T, + Ce ReoP So, this is the variation of centerline temperature.

So, now if you write for this one, so you will getii(r*d—e) :—220(1—r*2). So,
r*dr* dr*
. d déo ) )
if you rearrange, you well get ——| r*— |+ 2*(1-r*)r*9=0.
dr* dr*

If you compare this equation with the Sturm Liouville boundary value problem, then
p=r*, g = 0 and the weighting function w :(1—r*2)r*. So, now, you see p, q, r are real

and boundary condition in the r* direction both the boundary conditions are
homogeneous. So, r * is the homogeneous direction. Hence the solution of this second

order differential equation will give harmonic solution.
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So, now we want to seek the solution of this differential equation as a series solution and

So, now if you write it, so you will get after rearranging

in last class we have already discussed that whether we can have the series solution of
these ordinary differential equation or not for that let us revisit it again.
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quantiies have Taylor seres around x = 1,
nmmmmwmmnum.

ya@)= Za.(x W

mmmg:mmumawnmm
The above equation is a series sokution around x = 1,
In this problem, we have

“diq.ﬁwu rre=0 P=r@=LR=2F(1-r%r'.

dr‘
Icanbes?mmm 0 for this particular case. =
So we can have a seres slution around r* = 0 of the above eqaationas  0r7) = ) Cr™
nsq

So, before going to the solution, let us first see when can we find series solution to
differential equations. So, this is the second order ordinary differential equation. In this
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case, we will see that P at x =Xq, if it is 0, then x =Xo is a singular point. So,
if(X—%,)Q(x)/P(x), and (x—x0)2 R(x)/P(x) are both analytic at x = Xy, then this point

is called regular singular point.

Analytic means that; the function is infinitely differentiable, so that we already discussed

in last class. Now, if we have this, then we can have the solution in the from

Y00 =, (x=x)"".

So, here then we have to determine the coefficient a,. And this a,, an equation for m is
called the indicial equation, so that we also need to find. So, the above equation is just

series solution at around X =Xxo.

So, for our present problem, you can see that our governing equation whatever we have

derived this is the second order differential equation where P = r * Q = 1,
andR= 12 (1— r*z)r*. So, comparing with this equation just we have found it.

Q

. . . . R
So, if you see that this condition, so for this present case r*E, and r*ZEare both

analytic. And at r = 0 it is singular point. So, you can see that we can write the solution in
this form, but we have not written +m, because it can be shown that m = 0 for this

particular case.

So, this derivation will be easier because we have already assumed that m = 0, it can be
shown actually. So, for this particular case, this is m = 0. So, we can have a series

solution around r * = 0 of the above equation is this one. So, now you can see that for
Q

. . . R . .
this differential equation, your B and B are analytic. So, hence you can have the series

solution.
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So, if you write the series solution about x about r* = 0, then we can write the solution in

the form of an infinite series for the temperature is, so you can write, =) C,r*".
n=0
So, first we will find the derivative of 6 with respect to r*, then we will put back to the

ordinary differential equation, and we will try to find the coefficient equating the similar

power. So, we will write @ =C,+C,r *+C,r ** +C,r = +C,r* +......... +C r*".

So, now you write the derivative of 6 with respect to r*

asﬁ =C, +2C,r *+3C,r** +4C,r*> +........ +nC r*"*+(n+1)C
dr*

r*". Then let us find

n+l

the second derivative of 0. So, you can see that it

d?e
qr*2

r

is 2.1C, +3.2C,r *+4.3C,r ** +......... +(n+2)(n+1C_r*".

n+2

So, now you plug all these into the ordinary differential equation. So, what is our

ordinary differential equation? So, plugging into the original equation we get. So, we

- dzg 1 de 2 2 2 - - -
have the equation —— +———+ 170 = Ar> 0. So, this is your equation.
dr* r*dr*

Now, if you put it, so you will get,
r*"

2.1C, +3.2C,r*+4.3C,r* +.....+(n+2)(n+1)C

n+2
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r*"

+C,r** +2C, +3C,r *+4C,r** +5C,r** ...+ (n+HC, ,r*"* +(n+2)C

n+1 n+2

+A°C, + APCr*+A°Cr* + A°Cr** + A°C,r ** +......... +A°C r*

So, left hand side all we have written, now you write the right hand side. So, right hand
side iSA’Cr* +A°Cr*= +2°Cr* +......... +A’C L r*" +2°C r*" +2°C r*"?.  So,
now let us equate the power of r*. So, now, let us equate the equal power of r* and find

the coefficient.

(Refer Slide Time: 30:54)
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So, equating the equal power powers of r*; so first we will find r*"* that means, — . S0,
r

for that what are the if you see left hand side in first line there is no term, the second it is
there Cy, and third there is no term and right hand side there is no term; so only C; will

become 0, so here C;=0.

Now, equate the equal powers of r *° that means, in the left hand side you see; so there is

no r *, so it isr**:2.1C,+2C,+4°C,=0. Now, you equate the power of r *;

r*:3.2C, +3C, + A%C, =0.

Similarly, if you write for r*% so you can write r*: 4.3C, +4C, + 1°C, = A*C,. So, we

have written this one.
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Similarly, r*=*:5.4C, +5C, + A°C, = 2°C, .

Andr*":(n+2)(n+1)C,,, +(n+2)C,,, +4°C, = 2°C,,.

n+2 n+2

So, now you see the first term C,= 0 right; if C,= 0, then from here you can see if C;=0,
then C3 will become 0 right. And if C1,C3= 0, then from this equation you can see Cs= 0.
So, you can see all the odd coefficients are 0; C;, Cs, Cs, Cy, all odd coefficients will
become 0 as C;=0. So, you can see that as C;=0 from there you can see C,,C3=0, then as

C,=0, C3=0; then from this equation Cs= 0. So, you can see so all odd coefficients are 0.

So, we can replace n = 2 m , because there will be no odd coefficient only the even

coefficients will be there. So, you can write using n = 2 m, we can write

twice (2m+2)2m+1C, ., +(2m+2)C_,, +A°C, =A°C, .
So, so now if you rearrange it, so you seeC,,,,(2m+2)(2m+2) = 2*(C,,,_, —C,, )

AZ

So, you can writt C, . ,=——=(C,,,—-C,,
Y 2 (2m+2)2( 2m-2 2)

; Or you can write

/12
2m — W(sz—4 - sz—z ) .
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So, now as all odd coefficients are 0, now we can write the solution of 0

asf = zszf **" where we have already found; what isC
n=0

2m?

12

C,n = W(CZM —C,,._, )and this is valid for m > 2. And we have another expression

2~ _
this one , so this we can write 2.1C, +2C, + 4Gy = O.

So, now let us find the value of the coefficients C,, C4, Cs, in terms of Co. And if we
apply the boundary condition, then we will be able to find what is the value of C,. So,
first let us write the boundary condition at r * = 0; 6 = 1. So, you can write 6 = 1 in the

left hand side and right hand side; so you can write first let us expand it, then it will be

easier @ =C, +C,r* +C,r*" +C,r*.........

So, if you put & =1 and r * = 0, so first term will remain and other terms will become 0
that means, Co = 1 . So, now to find the other coefficient C,, C4, Cg, in terms of Cy. And
/12

you can see that this term this expressionC,,, :W
m

(Coma —Csn_p), it is a recursive
relation.

So, if you find Cy, then from there you can find C,; and if you know Cy and C,, then you

can find C4, and Cg, Cg you can find accordingly. So, from this expression what is the

A2 A2
value of C,? So, you can seeC, = _TCO =

Then m = 2 if you put in the recursive relation, so this is your recursive relation; so if

2
you put m = 2, then you will getC, :f—B(C0 —-C,). Now, Cy C, you know; so if we put

2 2 2 2
the value, /1—(1+ /1—) = /1—+/1— .
16 4 16 64

.. ) A2 A% A Q% Q8
Similarly, if you putm = 3, thenC. =—(C,-C,) = —(———-——-"—").
y, if you p 6 36( »—C,) 36( 7 16 64)
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51* . A®
36x16 36x64

constant, then you will be able to find; if you find the other coefficients, then you will be

. So, if you can find the other

So, if you rearrange it, so you will get—

able to find the temperature profile 0, because 6 you can write using this expression. So,
Co, Cy, C4, Cg already we have found; another coefficients if you find, then you will be

able to find the temperature distribution.
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Now, let us find the value of A%. Now, apply another boundary condition at r * = 1 means

at the wall, 6 =0. So, now you know the expression @=C,+C,r**+C,r** +C,r*........

So,atr*=1,s06=0; sothat means0=C,+C,+C, +C, +........ .

Now, we know the value of Cy, C,, C4, Cs already we have found let us put it in this

expression. Then you can write Cy, Cp, C4, Cg in the left hand side, so we can

: Y CEY A°
writel——+—+—-— -
6 16 64 36x16 36x64

power of series.

=0. So, we have considered up to the fourth

6

You can see that after that if you see this term , S0 the denominator is very high

X

value. So, it will contribute very less here, so and this other term. So, neglecting all the
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other terms and considering up to the fourth power of series you can write as,
3/12 /14

— =0. so if you rearrange it, you will get A* — 271> +144=0.
16 144

—(=27)+/(=27)* -
(-27)£(-27)* ~4x144 So, it will be

And 2% if you find, so it will be A%=

2
+729— +./ +
27+ 759 576 and you will getw; so you will getw, so you will get

the value of 1> =7.315,19.685 .

So, the first value 4> = 7.315will give you the physically correct temperature profile, the

other one will not give; so you consider the value of > =7.315. So, A°=7.315gives

meaningful temperature profile, so we are considering only this value .

So, if you now you know the 22, you know the values of Co, C,, C4, Cs and so forth. If
you put it in the expression of 0, then you will be find you will be able to find the

temperature profile.

(Refer Slide Time: 46:24)

Hydrodynamically and thermally fully developed flow through
circular pipe with uniform wall temperature condition
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Now, let us find what is the Nusselt number? So, to calculate the Nusselt number we will

. . . o or K o, oT
start from the again governing equation, so it is pC.u—=——(r—). So, we
g g g €q PLp x T ar( ar)
know @ = -1, , and also x*=1, you knowﬁzedTC =£ dT, _
T.-T, I, OX dx r,dx*

dT, _ 12 (Tc _Tw)

If you see we have foundOI C = . So, if you put it here, so you will

X* Re, Pr
O TN TT,
X T,-T,1 pu, (2r,) uC,
Y7, K

So, you can see this you can cancel T, -T,, T. =T, . And you can write in the governing

equation if you put it, then you will get,
1 1 Ko, oT
Cu(T-T,)=(-A)— e =——(r—).
p P ( w) ro( )pum(zro) ,UCp r ar( ar)
Y7, K

So, you see what are the terms you can cancel, pC,, pC,; this u, you can cancel. So,

. . A’K(uT2zr uT,2zr o, o1
now, if you see you can rearrange it as— = — |=K—=(r—).
2.2 \ U,y U7l or  or
So, we have done some rearrangement; now we will integrate both

) J.uT27zrdr TW-[UZﬂ'I’dr
Kl 5 aTl el

side - - =Kr,—|_ -Kr=)| .
4 | u zr? u, 1y ®or o’

What is this term? So, this is nothing but the heat flux at the wall right, because
q, =K 2—T|r=r at the wall. So, if you now see this term, what does it mean u T X da you
r 0

see at a distance r; if you take a small step dr, so whatever the area that is 2zrdr and that

Tqua

is uTda. So, integral ~——what is that that is nothing but the definition of mean

u,zr

temperature, so we can write this term as the mean temperature.
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fo
Second termjuzﬁrdr, so that is the u,_ 17 right, so that means this will get cancel. So,
0

12K
4

essentially you will get — (T.-T,)=rq,.

(Refer Slide Time: 53:18)

Hydrodynamically and thermally fully developed flow through
circular pipe with uniform wall temperature condition

Nusselt number, Nu T ) Te
i,. a 7.-4\ Ny I
» 2% A ("F) L =3 T
LT”-’”) = =~ = —u(r}
- s 2
5 A2 - o
2] = B 5 4!'
a »
N _;_. r
S Mo =
. TRL = 7-3% —

5 Nug = 376675,

! 2
So, now if you rearrange it, SO you can see O 2% = ithat means, so what is this;
(T,-T,) K 2
h(2r,) A° h(2r,)

this is a local heat transfer coefficient that iST > What is Tnothing but

2
local Nusselt number, so Nu, =%. And we know the value of A% as 7.315 , so it will

be, Nu, = 7'3;15 ; S0 your Nusselt number is 3.6575.

So, you can see for this particular case when we consider fully developed laminar flow
through circular pipe, the Nusselt number is independent of Reynolds number and

Prandtl number, because it is a constant value. When we consider uniform wall

temperature, the value of Nu, = 3.6575.
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(Refer Slide Time: 54:36)

Hydrodynamically and thermally fully developed flow through
circular pipe
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Nusselt number, Vit Nu, =386, Nu, =436

T, e
Tes=perature profile

The temparature sops for uniform wall temperature at the wall
is lower than the temparature siope for undform wall heat ﬂun.'

There is Aimost 16% increase in haat tramsfer in case of unform
wall hzat flox compared to unform wall tlemperature.

Now, let us summarise what we have done today. So, today we considered fully
developed laminar flows through circular pipe with uniform wall temperature boundary
condition. In this particular case, one important assumptions we have made that is axial
heat conduction is negligible compared to the radial heat conduction, and also we have

assumed that it is a axisymmetric flow.

Then we have started from the energy equation, then we have separated the variables in
terms of x and r and we have compared the homogeneous direction whatever governing
equation you are getting, ordinary differential equation with the second order differential
equation which is your Sturm-Liouville boundary value problem. And we have shown
that that is your in radial direction which is your homogeneous direction, you will get the

harmonic solution.

Then we have checked whether we can use the power series solution or not, and
considering that we have taken the solution as a power series and we have found the
coefficient Cy, C,, C4, Cq; and from there we have found the value of lambda square.
And then we have found the Nusselt number from the starting from the governing
equation, and we have found Nusselt number for this particular case is independent of

Reynolds number and Prandtl number and it is constant value.

Now, if you see earlier, we have already found the Nusselt number for this particular

case flow through a circular pipe with uniform wall heat flux as 4.36. And when you
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consider today, uniform wall temperature for this flow through circular pipe the Nusselt
number is 3.66. And if you see the temperature profile for uniform wall temperature, if
you see the gradient at the wall , the temperature gradient at the wall, and if you see the
uniform wall plus case, the temperature gradient at the wall obviously you can see it is

much higher than the uniform wall temperature gradient.

So, the temperature slope for uniform wall temperature at the wall is lower than the
temperature slope for uniform wall heat flux. And if you see the Nusselt number, there is
almost 16 % increase in heat transfer in case of uniform wall heat flux compared to the
uniform wall temperature, and it is due to the higher gradient at the wall of this
temperature, higher gradient of the temperature at the wall for the case of uniform wall

heat flux.

Thank you.
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