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Module - 06
Convection in Internal Flows - 11
Lecture - 20
Hydrodynamically and thermally fully developed flow through parallel plate
channel with uniform wall temperature

Hello everyone, today we will consider fully developed laminar flow through parallel
plate channel with uniform wall temperature. So, you have seen that in earlier classes we

considered different cases with uniform wall heat flux boundary condition. In that case,
. . . oT .
if you remember we have seen that temperature gradient with respect to x; a—IS

X
constant, as you have constant heat flux boundary condition.

. . 0T .
Hence, the second derivate of temperature with respect to X, = 0; that means, axial
X
heat conduction was 0, for the case with uniform wall heat flux boundary condition. But
today, we are considering uniform wall temperature boundary condition, hence your

axial heat conduction will not be 0.

However, in this particular case we will make a special assumption that your axial heat

conduction is very very small compared to your radial heat transfer. So, we can neglect

o°T T 07T
, as << .
ox? ox* oy’

So, when we will consider uniform wall temperature boundary condition, we will neglect
the axial heat conduction. So, it is the major assumption we are considering in today’s

class.
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Hydrodynamically and thermally fully developed flow through
parallel plate channel with uniform wall temperature condition
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So, you can see in this figure; so, we have parallel plate channel and we have uniform
wall temperature boundary condition, x is the axial direction, y is measured from the

centre of the channel and these two parallel plates are separated by a distance 2H.

So, we are considering thermally fully developed and hydrodynamically fully developed
condition. So, the assumptions are two-dimensional steady incompressible laminar flow;
with constant properties, hydrodynamically fully developed flow; so that means, b will
be 0 and thermally fully developed flow, uniform wall temperature condition we are

considering.

And this is the important assumptions we are making that negligible axial heat

. 0’ T . .
conduction; that means, youra—2 <<a—2; S0, you can neglect the axial heat conduction.
X y

And also we are assuming that negligible discuss it dissipation and no internal heat

generation.

So, now with these assumptions we will start with the energy equation and we will

invoke these assumptions and make it simplified. So, energy equation

. 0T 0T o°T o1
iSU—+V—=0a| —+—
ox- oy

OX oy

J; so this is your energy equation.
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Now, we will invoke the assumptions like fully developed condition. So, v = 0 and your

axial heat conduction is very very small; so this is also 0. So, you can write the

o : or T
simplified energy equation as, u o =a—.
X

5'}’2

So, now we will consider one non dimensional temperature and we will define with

respect to the difference between the temperature of centre line and the wall temperature.

So, we will consider one non dimensional temperature H(y):_-lr TW ; So, T is your

c w

center line temperature here, so T obviously, is function of x.

But, if you see the -Tr_1T-W is no longer function of x, it is only function of y. Like, we

c w

defined the non dimensional temperature © with respect to the mean temperature; so
similarly here we are defining another non dimensional temperature 6 with respect to

T.-T,.

So, here 6 will be function of y only, it will not vary along the axial direction. We are
taking this non dimensional temperature so that our calculation will be easier and it will
be easy to calculate the Nusselt number. So, now from here you can see

thatT =T, +9(TC —TW). So, a—T =0 aT, )
OX dx

So, here T, is constant right and hence you can also take the derivative of T with respect

2
to y; Z—E SO you can write as; so now T is function of x only and 0 is function of y
y

2 2
only. So, you can write Zy—-lz- = (TC —TW)(;—? because 0 is function of y and we are taking
y

2 2
the second derivative of T with respect to y; so it is Zy—-g =(Tc —TW)(;—?. So, now you
y

put these values in the energy equation.
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Hydrodynamically and thermally fully developed flow through
parallel plate channel with uniform wall temperature condition
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So, what you will get? Our energy equation isuaa—T=aZy—-|2—. Now, if you put these
X

values; you will get and what is your fully developed velocity profile? Fully developed

2
velocity profile for flow through parallel plate channel, it is u(y) = gum (1—y—].

H2
For this configuration this is the mean velocity, fully developed velocity profile. So, for
this configuration; this is the fully developed velocity profile and un, is the mean
velocity. So, if you put all these things in this energy equation, you will get

CHN FU i PLUSIPNE S S0
2 H dx dy?

So, now we will also non dimensionalize the x coordinate and y coordinates. So, let us
write X*:ﬁ and y*:%. So, if you put it in this equation, so what you are going to

3 o\, dT d?e
© 2y (1-y*)0-Sc = (T -T,) =2
get? 2 U (L-y )0 e = (T, )y

So, if you rearrange it; S0 you can write as

3u (4H)v 1 1 o, AT, (T,-T,) d%
Tmr - T (1-y*?)e—L = )
( y ) dx* H? dy*
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dT.

2
S0, now you see; so you can write gRe4H Pr(l— y*z)e—zc =(T,-T,) a0

dx dy*?

So, now we will separate the variables; so we will put the, which are function of x in the
left hand side and which terms are function of y, we will take in the right hand side. So,

dT,
"&%x 8  d%
Tc _Tw 3(1_y*2)0dy*2 l

Re,, P

if you do that then we can write as

Now, you see the left hand side; so left hand side your T is function of x only, T, is

. . dT. .
constant, Reynolds number is constant, Prandtl number is constant and also 5 =is
X

function of x only.

So, in the left hand side is function of x only; now if you consider the right hand side, so

2

is function of y only, so right hand

if you see 0 ; 6 is function of y only and also dd —

side is function of y only. So, we have separated the variables; left hand side is function

of x only, right hand side function of y only; so this should be equal to some constant.

So, now what constant we will take, +1°. Now, whether it will take plus or minus? So,
that we can see that we will use the rules of separation of variables method, before that
let us write the boundary conditions.

(Refer Slide Time: 13:12)

Hydrodynamically and thermally fully developed flow through
parallel plate channel with uniform wall temperature condition
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So, what are the boundary conditions? Boundary conditions are; you see, at y* = 0; that

means, Yy is measured from the centreline; so y* = 0 means at the centerline. So, 6 we

have defined as (y) ::l_r _I_W . So, at y* = 0; obviously, 6 = 1 because T =T, . So, let us

c w

write y* =0, T = T,; hence your 6 = 1.

Again, you see that this problem is geometrically symmetric; as well as thermally
symmetric because both the walls are maintained at constant wall temperature T,, and
from the centerline both the plates are separated at a distance H; so, it is geometrically

symmetric and thermally symmetric. So, maximum or minimum temperature will occur

. . do
at the centerline; that means you can write i 0.
y

do _
dy*
And at wall which is y* = 1; so obviously, T = Ty; so 6 = 0. Now, you see the boundary

So, in this case; you can write Z—T =0at y* = 0 or you can write in terms of 0 ; 0.
y

conditions in y direction.

So, at y* = 0, at the centreline; your %:Oand at y* = 1, on the wall your 6 = 0O; that

means, you have homogeneous boundary conditions. So, both are homogeneous
boundary conditions; so; that means, y is your homogeneous direction.

(Refer Slide Time: 15:33)

Hydrodynamically and thermally fully developed flow through
parallel plate channel with uniform wall temperature condition
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So, now let us consider this Sturm Liouville boundary value problem. So, what it is;
Sturm Liouville boundary value problem? So, this is your second order differential

equation.

So, in this case if p(x), q(x) and w(x) are real and boundary conditions at x =aand x = b
are homogeneous, then you will get harmonic solutions in homogeneous directions. And
in that direction, so you have to choose the value of A square such a way that in the

homogeneous direction, you get a harmonic solutions.

So, now let us look back the equations; so our equation, if you see we have

dT,
Re,,, Prw B 8 420

> 5 Now, whether we will choose +1°?
Tc _Tw 3(1_y*2)0dy*

written

So, you have seen that the boundary conditions in the y direction are homogeneous; so
that is the homogeneous direction and we have to get the A square such a way that in y
direction, we get a Sturm Liouville problem.

So that means, if you choose this equal to - A%; then what equation you will get? You will

d’0 3

2 2\ _ . .
get, ay 2 +§/1 (1—y* )9_0. And  another equation, you will  get,
dT,
Re,, Pr—=-2*(T_-T,).
4H dx * ( c W)

Now, you see the; this equation, so now you can see. So, if we compare with this Sturm
Liouville boundary value problem, you can see you have the waiting function,
3
w(x) =(1-y**)=.
(00 =(1-y*)2
And p(x)=1 and g(x) = 0 and y star is homogeneous direction. So, as y* is homogeneous
direction and p, g, w are real; so you can have a periodic solution or harmonic solutions
in y star direction. So, we have chosen minus A to get the Sturm Liouville boundary

value problem in y* direction .

So, now for this equation if you see; so integrate, so what you will get? So, you can see;

2
SO you can write a, =— 4 dx*.
T -T, Re,, Pr

c w
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2

So, if you see, so you will get In(Tc —TW):—RA—PX*HnC and you can write,
e,y Pr

2
A *

T(X)=T,+ Ce Rew™

So, now we have to see the first equation; so now, we have to find the solution of this
equation. Now, we want to find a series solution of this equation, now whether we can

use the series solution for this particular second order differential equation, let us see.

(Refer Slide Time: 20:39)

Hydrodynamically and thermally fully developed flow through
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So, when can we find series solution to differential equations? So, you let us consider
this differential equation, second order differential equation;
2
P 9y + 0 Y 4+ R(X)y =0.
dx dx

Now, we are just checking or when we can use the series solution, let us see. The X = X

Q) , 4 R
PO PX)

is an ordinary point, if provided both are analytic at x = 0. Analytic

means that the function is infinitely differentiable, it is equal to its Taylor series centred
at that point; at least in a region near that point. It means that these two quantities have

Taylor series around x =Xo.

We shall deal with coefficients that are polynomials; so this will be equivalent to saying

that P(xo) # 0. So, the basic idea to finding a series solution to a differential equation is to
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assume that we can write the solution as a power series in the form;

Y00 = 2, (c-x,)"

We will only be able to do this, if the point X = X Is an ordinary point. So, the above
equation is a series solution at X = Xo. So, now for our problem let us see; so if you

compare our differential equation is this one. So, if you compare with this equation, you

seeP=1,Q=0and Rzgiz(l—y*z).

Q) 4 RX)
PO PW)

So, now you can see that are analytic. So, at x = 0 is an ordinary point;

And we can have a series solution around y*=0 of the above equation, as

o(y*)=> C,y*".

n=0

Q)4 R®)

As y*=0 is an analytic point because you have seen that
P(x) P(x)

are analytic. So,

we can find the solution of this equation as a series solution and this series solution, we

will consider.
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2
a6 +§/129:§izy*29. So, now the solution of the

So, our differential equation is —
dy* 8

above equation in the form of an infinite series for the temperature is, 6 = ZCny*” .
n=0

So, now let us take the derivative of 6; so 0 if we expand,
O=Cy+Cy*+C,y* +C,y* +C, y* +oorrrrerrns +C y*".

Now, if you take the derivative; if you take the derivative with respect to y*,

thenéj—e =C,+2C, y*+3C, y** +4C, Y™+, +nC,y**+(n+1)C,, y*".
y*

The next term if you write, so it will be

a0

Now, you plug into the original differential equation. So, if you do that; plugging into the

2C,+3.2C, y*+43C, y** +.ovo +(+1)C y* +(n+2)(n+1)C, v

original equation ok, we get so, it is

2
So, this is your ;—9 And in the right hand side now,

*2 '

gﬂz(Coy*Z +Cly*3 —G—C2 y*4+C3y*5+C4 y*6+ ........... +Cn—2 y*n+Cn_1y*"+1+Cn y*n+2)

so, this is the right hand side. Now, what we will do? We will equate the equal power of

y*,
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Hydrodynamically and thermally fully developed flow through

parallel plate channel with uniform wall temperature condition
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So, equating the equal powers of y*; so if you see y*°, if you see its coefficient; so you

can see here, so this is your y*°: 2.1(32+§/12CO and then this one and right hand side,

there is no term; so, it is equal to 0. So, you can write 2.1Cz+§/12C0 =0.
. 3.,
so if you see y*:3.203+§/1 C, =0;

Then, y*? :4.SC4+§/12C2. Then, right hand side §/”LZCO.
8 8

So, if you write the y*2:4.3C4+§/1ZC2 :glzco. So, similarly you find the other

powers ok the coefficient of other powers and equate it.

So, just | am writing here; y*3:5.4C5+§/12C3:§/12C1. And if you see

3

y*":(n+2)(n+1)C +§/12Cn = gﬂzcn,z-

n+2

So, now let us apply the boundary conditions. So, applying boundary condition at y* = 0;

% =0. So, if% =0; you see from this equation, this equation you see; so, if at y* =
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0, % =0 that means, C; will be 0 because rest all other terms will become 0; so C;

y
will be 0.

So, that means, C; is 0; now, you see here if C; is 0, then from this equation; you see
from this equation, if C; is 0, C3 will become 0. Then, if C;, Cs is 0; from here you can
see Cy, Cs are 0; so Cs will be 0. So, you can see all the odd coefficient C will be 0 so;
that means, you can write as C; = 0, C3 = 0. As C1=C;3 =0; Cs =0; so all odd coefficients

are 0.

So, what we can write, we can write using n = 2 m, from here you can see; from this
3 3

equation you can write (2m+2)(2m+1)C,, ., + 8 A’C, = gitzczm_z :

(Refer Slide Time: 34:02)
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If you divide it; so you can write C _§

ame2 = (2m+2)(2m+1)(C2m_2—CZm)or we can

22

—(C,,,,—C :
2m(2m_1)( 2m-4 2m—2)

writeC, = g

So, we can see this equation is the recursion relation; so it is for m >2. So, the above
equation is called as recursion relation, if Cy is known this equation allows us to

determine the remaining coefficient recursively by puttingn =0, 1, 2,.....in succession.
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So, now let us write the temperature distribution; so your temperature distribution 6 ,

now you can write because you know that odd coefficients are 0, so,

0= Cpy*" =Cy+Cy* +C,y ¥ +Coy * +....
m=0

/12

So that means, you can writeC,,, = 3_ A
8 2m(2m-1)

(Coms —Csm_p ), for m >2. And the first

equation if you see here, so this is also valid; 2.1C, +§/12C0 =0; so this also we have.

So, we also have 2.1C, +§/1200 =0.

So, if you see; if Cp is known, C, will be known and if C; is known then other terms will
be known because m; for m >, you can use this recursive relation. So, now invoke the
other boundary condition; at y*=0, you have 6 =1.

If y*= 0, 0 = 1; so, you can see from this equation; #=C,+C,y**. So, these are; all

will become 0, aty*=0and 6 =1;s0Cy=1.

So, if Cp = 1; then you can write the value of C,, from this equation.C, = —%/IZCO, Co=

1; soitwill beC, = —%/12. Now, Co, C, are known. Now, you put this recursive relation

and find C, and Cs.
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2
So, you can write Cy, so if you put m = 2;C, :g%(co —CZ); C, and Cy you know, so

2
you can write A% so these 3, 3; you can cancel. So, it is C,= %(M%ﬂz] .

2
So, it will be C =2 +—°
32 16x32

A*. Now, you put m = 3; so, you can

2

findC, :2%(02—04).

Now, C, already we have found here; so, it will be 2; so it will be AL

16x32
7 Fr 3
80x32 16x32x80
apply the another boundary condition at y* = 1, 6 =0. Apply boundary condition at y*=1,
0 =0.
So, if you see 6 expression; so, 6 expression is this and y*=1 if you put, this will

A%. So, now let us

So, if you rearrange it, you will getC, =

become all 1. So, itis just C,+C,+C, +Cs +......=0.
Now, we will consider only the first three coefficients, other terms we will neglect. So,

2
you can write, 1—312 L8 At — l At — 3 A°=0
16 32 16x32 80x 32 16x32x80

So, you can see the denominator value 16x32x80. So, it is a very high value; so if you
find, so this will become very small value; so, you neglect this term as you have high
value in denominator.
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So, if you neglect it; so rest you just rearrange. So, what you will

getr1-971 02 1977 s g0 124248 340, so it will be just,
32 " "Boxa2 32" T80x32
1-2 24 L 420,
32" T30

So, you will get a quadratic equation;1*-504*+320=0. So, that
—(~50) /2500 —1280
2

and another value will be 42.464.

means A = . So that means, we will have A* =7.536; one value

So, you will see that if you take 1* = 7.536, it will give physically correct temperature
profile, but if you consider A> =42.464, then it will not give a physically correct
temperature value. So, you can neglect that; so you just consider the value of 1> =7.536 .

So, the value of 1> =7.536 will give the meaningful temperature profile.
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So, now we know the value of A% so if we put in the equation, in the series solution; then
you will get the temperature profile. So, in the series solution, if you see that you have
found the value of Cy; then C,, C4 and Cg; so if you put this, so you will get the

temperature profile.
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Now, next target is to find the Nusselt number; so we will start from the governing

2
equations. So, it is ua—T:aZy—-l;and if you remember, 6 we have defined as

OX
- AT, -T,
H:T T .Andwehaveseenthata—-r:é?d-rC and dT, __ (T, W).
T.-T, OX dx dx* Re,, Pr
_ 2
Hence, a_IT-if 4 (T.-T,), so this is your a So, if we put this
ox T.,-T,H{ Re,,Pr OX

value in the governing equation and o« =

PCp .

T : L
So, now, Z—; you put it here and «a= . S0, you can see; it will be,
X

PCp

. 2 2
JreRTi ) B :KaTZ.
H pCPum IUCP 8y

Y7 K

So, if you see; so p Cp, p Cp; you can cancel, then p, p will get cancel and now if you

2
write, it will be minus(—/ﬁt K }(

uT uT, | KoT
4H

u,2H) u,(2H)) 2 oy*°

So, now, integrating the above equation from -H to H. So, you see

minus —

H H

utdy T, | ud

A*K IH y_W_IH Y| k. tafer
4H | u . (2H) u_ (2H) 2 oy

Ej dy. So, this right hand side time you

see the integration. So, this %y at H; at H, so that will give you the wall heat flux

oT . . : .
anda—; aty =0, it is centerline temperature gradient and that is equal to 0 because from
y

boundary condition, you have seen.
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(Refer Slide Time: 49:53)

Hydrodynamically and thermally fully developed flow through

parallel plate channel with uniform wall temperature condition
Nusselt number, Nu 0 T

3 < = k2L =9, xS ot
- 2" (o) e : .ﬁrg‘lr'm W
e $“N 4_“_ - ')’— i
(T="Ta) ®
fAW) _ o
=
Ny = QL- 7834
H
, j uTdy
So, you can write — IR Now, you see this term = 2H)’ so that means, it is your mean
um

temperature right, mean temperature definition; so this is the mean temperature

H
I udy
definition. And if you see, this is—" S so obviously, this will get cancel; so you will

m

getT —T,.

So, you will getT —T,; so we have written the definition of mean; bulk mean
temperature and because we need to define a Nusselt number based onT,, —T,,. So, it will

be K%Iy_H and it is nothing, butK%R_H = Q-

_ G, 4H @ = A%. So that means,

S0, now you can see_l_ ?zﬂz. So, you can see it is

m w

so Nusselt number based on hydraulic diameter 4 H Nu,,, =A%and A? value, we have

found as 7.536.
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So, we have seen that the Nusselt number based on the hydraulic diameter, for this

problem the hydraulic diameter is Nu,, = A%and A%, we have already found; so that is

your 7.536.

So, let us summarise; so today we considered the fully developed laminar flow through
parallel plate channels with constant wall temperature. We considered the non

. . T-T . .
dimensional temperature as T TW where T, is the centerline temperature for easy

c w

calculation.

From there, we have found the separation of variables we have we; we use the separation
of variable method and we have written the Sturm Liouville problem because the

boundary conditions are homogeneous in y star direction.

And then, we have found the solution of that governing equation using series solution.
And from there we have found the values of A% and then we found the Nusselt number,
starting from the governing equation and Nusselt number; we have defined with respect

to T, —T, where T, is the mean temperature.

And you can see that for this particular case, the Nusselt number is also constant;

independence of Reynolds number and the Prandtl number.

(Refer Slide Time: 53:20)

Hydrodynamically and thermally fully developed flow through
parallel plate channel
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So, you can see that for uniform wall temperature case where you have that T, as
constant, Nusselt number is 7.54. In earlier lectures, we have found with uniform wall
heat flux; for this flow through parallel plate channel, we have found Nusselt number as
8.24. And if you see the temperature profile, for this uniform wall temperature, you can

see the slope at the wall is lower than the temperature slope of uniform wall heat flux.

So, if you see the temperature profile here; this slope is higher than this temperature
profile, hence your Nusselt number is higher in case of uniform wall heat flux; compared
to uniform wall temperature. And there is almost 8.5 % increase in heat transfer, in case

of uniform wall heat flux compared to uniform wall temperature.

Thank you.
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