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Hydrodynamically and thermally fully developed flow through parallel plate 

channel with uniform wall temperature  

 

Hello everyone, today we will consider fully developed laminar flow through parallel 

plate channel with uniform wall temperature. So, you have seen that in earlier classes we 

considered different cases with uniform wall heat flux boundary condition. In that case, 

if you remember we have seen that temperature gradient with respect to x; 
T

x




is 

constant, as you have constant heat flux boundary condition.  

Hence, the second derivate of temperature with respect to x, 
2

2
0

T

x





; that means, axial 

heat conduction was 0, for the case with uniform wall heat flux boundary condition. But 

today, we are considering uniform wall temperature boundary condition, hence your 

axial heat conduction will not be 0.  

However, in this particular case we will make a special assumption that your axial heat 

conduction is very very small compared to your radial heat transfer. So, we can neglect 

2

2

T

x




, as 

2

2

T

x




<<

2

2

T

y




. 

So, when we will consider uniform wall temperature boundary condition, we will neglect 

the axial heat conduction. So, it is the major assumption we are considering in today’s 

class. 
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So, you can see in this figure; so, we have parallel plate channel and we have uniform 

wall temperature boundary condition, x is the axial direction, y is measured from the 

centre of the channel and these two parallel plates are separated by a distance 2H. 

So, we are considering thermally fully developed and hydrodynamically fully developed 

condition. So, the assumptions are two-dimensional steady incompressible laminar flow; 

with constant properties, hydrodynamically fully developed flow; so that means, b will 

be 0 and thermally fully developed flow, uniform wall temperature condition we are 

considering.  

And this is the important assumptions we are making that negligible axial heat 

conduction; that means, your
2

2

T

x




<<

2

2

T

y




; so, you can neglect the axial heat conduction. 

And also we are assuming that negligible discuss it dissipation and no internal heat 

generation. 

So, now with these assumptions we will start with the energy equation and we will 

invoke these assumptions and make it simplified. So, energy equation 

is
2 2

2 2

T T T T
u v

x y x y

    

   
    

; so this is your energy equation. 
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Now, we will invoke the assumptions like fully developed condition. So, v = 0 and your 

axial heat conduction is very very small; so this is also 0. So, you can write the 

simplified energy equation as, 
2

2

T T
u

x y


 


 
.  

So, now we will consider one non dimensional temperature and we will define with 

respect to the difference between the temperature of centre line and the wall temperature. 

So, we will consider one non dimensional temperature ( ) w

c w

T T
y

T T






; So, T is your 

center line temperature here, so Tc obviously, is function of x.  

But, if you see the w

c w

T T

T T




 is no longer function of x, it is only function of y. Like, we 

defined the non dimensional temperature π with respect to the mean temperature; so 

similarly here we are defining another non dimensional temperature θ with respect to 

c wT T .  

So, here θ will be function of y only, it will not vary along the axial direction. We are 

taking this non dimensional temperature so that our calculation will be easier and it will 

be easy to calculate the Nusselt number. So, now from here you can see 

that  w c wT T T T   . So, cdTT

x dx






.  

So, here Tw is constant right and hence you can also take the derivative of T with respect 

to y; 
2

2

T

y




, so you can write as; so now Tc is function of x only and θ  is function of y 

only. So, you can write  
2 2

2 2c w

T d
T T

y dy


 


 because θ  is function of y and we are taking 

the second derivative of T with respect to y; so it is  
2 2

2 2c w

T d
T T

y dy


 


. So, now you 

put these values in the energy equation.  
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So, what you will get? Our energy equation is
2

2

T T
u

x y


 


 
. Now, if you put these 

values; you will get and what is your fully developed velocity profile? Fully developed 

velocity profile for flow through parallel plate channel, it is 
2

2

3
( ) 1

2
m

y
u y u

H

 
  

 
. 

For this configuration this is the mean velocity, fully developed velocity profile. So, for 

this configuration; this is the fully developed velocity profile and um is the mean 

velocity. So, if you put all these things in this energy equation, you will get 

 
2 2

2 2

3
1

2

c
m c w

dTy d
u T T

H dx dy


 

 
   

 
. 

So, now we will also non dimensionalize the x coordinate and y coordinates. So, let us 

write *
x

x
H

  and *
y

y
H

 . So, if you put it in this equation, so what you are going to 

get?    
2

2

2

3
1 *

2 * *

c
m c w

dT d
u y T T

Hdx Hdy


    .  

So, if you rearrange it; so you can write as 

 
  2

2

2 2

(4 )3 1 1
1 *

2 4 * *

c wm c
T Tu H dT d

y
H H dx H dy

 


 


  . 

342



  

So, now you see; so you can write    
2

2

4 2

3
Re Pr 1 *

8 * *

c
H c w

dT d
y T T

dx dy


   . 

So, now we will separate the variables; so we will put the, which are function of x in the 

left hand side and which terms are function of y, we will take in the right hand side. So, 

if you do that then we can write as 
 

24

22

Re Pr
8*

*3 1 *

c
H

c w

dT

ddx

T T dyy






 
. 

Now, you see the left hand side; so left hand side your Tc is function of x only, Tw is 

constant, Reynolds number is constant, Prandtl number is constant and also 
*

cdT

dx
is 

function of x only.  

So, in the left hand side is function of x only; now if you consider the right hand side, so 

if you see θ ; θ  is function of y only and also 
2

2*

d

dy


 is function of y only, so right hand 

side is function of y only. So, we have separated the variables; left hand side is function 

of x only, right hand side function of y only; so this should be equal to some constant. 

So, now what constant we will take,
2 . Now, whether it will take plus or minus? So, 

that we can see that we will use the rules of separation of variables method, before that 

let us write the boundary conditions. 

(Refer Slide Time: 13:12) 
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So, what are the boundary conditions? Boundary conditions are; you see, at y* = 0; that 

means, y is measured from the centreline; so y* = 0 means at the centerline. So, θ we 

have defined as ( ) w

c w

T T
y

T T






. So, at y* = 0; obviously, θ = 1 because T = Tc . So, let us 

write y* = 0, T = Tc; hence your θ = 1. 

Again, you see that this problem is geometrically symmetric; as well as thermally 

symmetric because both the walls are maintained at constant wall temperature Tw and 

from the centerline both the plates are separated at a distance H; so, it is geometrically 

symmetric and thermally symmetric. So, maximum or minimum temperature will occur 

at the centerline; that means you can write 0
*

d

dy


 . 

So, in this case; you can write 0
T

y





at y* = 0 or you can write in terms of θ ; 0

*

d

dy


 . 

And at wall which is y* = 1; so obviously, T = Tw; so θ = 0. Now, you see the boundary 

conditions in y direction.  

So, at y* = 0, at the centreline; your 0
*

d

dy


 and at y* = 1, on the wall your θ = 0; that 

means, you have homogeneous boundary conditions. So, both are homogeneous 

boundary conditions; so; that means, y is your homogeneous direction.  

(Refer Slide Time: 15:33) 
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So, now let us consider this Sturm Liouville boundary value problem. So, what it is; 

Sturm Liouville boundary value problem? So, this is your second order differential 

equation.  

So, in this case if p(x), q(x) and w(x) are real and boundary conditions at x =a and x = b 

are homogeneous, then you will get harmonic solutions in homogeneous directions. And 

in that direction, so you have to choose the value of λ square such a way that in the 

homogeneous direction, you get a harmonic solutions.  

So, now let us look back the equations; so our equation, if you see we have 

written
 

24

22

Re Pr
8*

*3 1 *

c
H

c w

dT

ddx

T T dyy






 
; now, whether we will choose 

2 ? 

So, you have seen that the boundary conditions in the y direction are homogeneous; so 

that is the homogeneous direction and we have to get the λ square such a way that in y 

direction, we get a Sturm Liouville problem. 

So that means, if you choose this equal to - λ
2
; then what equation you will get? You will 

get,  
2

2 2

2

3
1 * 0

* 8

d
y

dy


    . And another equation, you will get, 

 2

4Re Pr
*

c
H c w

dT
T T

dx
   .  

Now, you see the; this equation, so now you can see. So, if we compare with this Sturm 

Liouville boundary value problem, you can see you have the waiting function, 

 2 3
( ) 1 *

8
w x y  .  

And p(x)=1 and q(x) = 0 and y star is homogeneous direction. So, as y* is homogeneous 

direction and p, q, w are real; so you can have a periodic solution or harmonic solutions 

in y star direction. So, we have chosen minus λ
2
 to get the Sturm Liouville boundary 

value problem in y* direction . 

So, now for this equation if you see; so integrate, so what you will get? So, you can see; 

so you can write 
2

4

*
Re Pr

c

c w H

dT
dx

T T


 


.  
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So, if you see, so you will get  
2

4

ln * lnC
Re Pr

c w

H

T T x


     and you can write, 

2

4

*
Re PrT ( ) H

x

c wx T Ce




  .  

So, now we have to see the first equation; so now, we have to find the solution of this 

equation. Now, we want to find a series solution of this equation, now whether we can 

use the series solution for this particular second order differential equation, let us see.  

(Refer Slide Time: 20:39) 

 

So, when can we find series solution to differential equations? So, you let us consider 

this differential equation, second order differential equation; 

2

2
( ) ( ) ( ) 0

d y dy
P x Q x R x y

dx dx
   .  

Now, we are just checking or when we can use the series solution, let us see. The x = x0 

is an ordinary point, if provided both 
( )

( )

Q x

P x
and 

( )

( )

R x

P x
are analytic at x = 0. Analytic 

means that the function is infinitely differentiable, it is equal to its Taylor series centred 

at that point; at least in a region near that point. It means that these two quantities have 

Taylor series around x =x0.  

We shall deal with coefficients that are polynomials; so this will be equivalent to saying 

that P(x0) ≠ 0. So, the basic idea to finding a series solution to a differential equation is to 
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assume that we can write the solution as a power series in the form; 

0

0

( ) ( )n

n

n

y x a x x




  . 

We will only be able to do this, if the point x = x0 is an ordinary point. So, the above 

equation is a series solution at x = x0. So, now for our problem let us see; so if you 

compare our differential equation is this one. So, if you compare with this equation, you 

see P = 1, Q = 0 and  2 23
1 *

8
R y  .  

So, now you can see that 
( )

( )

Q x

P x
 and 

( )

( )

R x

P x
 are analytic. So, at x = 0 is an ordinary point; 

And we can have a series solution around y*=0 of the above equation, as 

0

( *) *n

n

n

y C y




 .  

As y*=0 is an analytic point because you have seen that 
( )

( )

Q x

P x
and 

( )

( )

R x

P x
are analytic. So, 

we can find the solution of this equation as a series solution and this series solution, we 

will consider.  

(Refer Slide Time: 23:21) 
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So, our differential equation is
2

2 2 2

2

3 3
*

* 8 8

d
y

dy


     . So, now the solution of the 

above equation in the form of an infinite series for the temperature is, 
0

*n

n

n

C y




 .  

So, now let us take the derivative of θ; so θ if we expand, 

2 3 4

0 1 2 3 4* C * C * C * ..................... C *n

nC C y y y y y        .  

Now, if you take the derivative; if you take the derivative with respect to y*, 

then  2 3 1

1 2 3 4 12C * 3C * 4C * ..................... C * 1 C *
*

n n

n n

d
C y y y n y n y

dy

 

        .  

The next term if you write, so it will be 

  
2

2 1

2 3 4 1 22
2C 3.2C * 4.3C * .............. ( 1)C * 2 1 C *

*

n n

n n

d
y y n y n n y

dy

 

          . 

Now, you plug into the original differential equation. So, if you do that; plugging into the 

original equation ok, we get so, it is  

    2 2 2 3 4

2 3 4 2 0 1 2 3 4

3
2.1C 3.2C * 4.3C * ....... 2 1 C * * C * C * C * ..... C *

8

n n

n ny y n n y C C y y y y y            

So, this is your 
2

2*

d

dy


. And in the right hand side now, 

 2 2 3 4 5 6 1 2

0 1 2 3 4 2 1

3
* * C * C * C * ........... C * C * C *

8

n n n

n n nC y C y y y y y y y  

        

so, this is the right hand side. Now, what we will do? We will equate the equal power of 

y*.  
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So, equating the equal powers of y*; so if you see 0*y , if you see its coefficient; so you 

can see here, so this is your 
0 2

2 0

3
* : 2.1C

8
y C and then this one and right hand side, 

there is no term; so, it is equal to 0. So, you can write
2

2 0

3
2.1C 0

8
C  .  

so if you see 
2

3 1

3
*: 3.2C 0

8
y C  ;  

Then, 
2 2

4 2

3
* : 4.3C

8
y C . Then, right hand side 

2

0

3

8
C . 

So, if you write the
2 2 2

4 2 0

3 3
* : 4.3C

8 8
y C C   . So, similarly you find the other 

powers ok the coefficient of other powers and equate it.  

So, just I am writing here; 
3 2 2

5 3 1

3 3
* : 5.4C

8 8
y C C   . And if you see 

   2 2

2 2

3 3
* : 2 1 C

8 8

n

n n ny n n C C      .  

So, now let us apply the boundary conditions. So, applying boundary condition at y* = 0; 

0
*

d

dy


 . So, if 0

*

d

dy


 ; you see from this equation, this equation you see; so, if at y* = 
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0, 0
*

d

dy


 ; that means, C1 will be 0 because rest all other terms will become 0; so C1 

will be 0. 

So, that means, C1 is 0; now, you see here if C1 is 0, then from this equation; you see 

from this equation, if C1 is 0, C3 will become 0. Then, if C1, C3 is 0; from here you can 

see C1, C3 are 0; so C5 will be 0. So, you can see all the odd coefficient C will be 0 so; 

that means, you can write as C1 = 0, C3 = 0. As C1=C3 =0; C5 =0; so all odd coefficients 

are 0.  

So, what we can write, we can write using n = 2 m, from here you can see; from this 

equation you can write    2 2

2 2 2 2 2

3 3
2 2 2 1 C

8 8
m m mm m C C      . 

(Refer Slide Time: 34:02) 

 

If you divide it; so you can write 
  

 
2

2 2 2 2 2

3
C

8 2 2 2 1
m m mC C

m m


  

 
or we can 

write
 

 
2

2 2 4 2 2

3
C

8 2 2 1
m m mC C

m m


  


. 

So, we can see this equation is the recursion relation; so it is for m ≥2. So, the above 

equation is called as recursion relation, if C0 is known this equation allows us to 

determine the remaining coefficient recursively by putting n = 0, 1, 2,…..in succession. 
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So, now let us write the temperature distribution; so your temperature distribution θ , 

now you can write because you know that odd coefficients are 0, so, 

2 2 4 6

2 0 2 4 6

0

* * * * .....m

m

m

C y C C y C y C y




      .  

So that means, you can write
 

 
2

2 2 4 2 2

3
C

8 2 2 1
m m mC C

m m


  


, for m ≥2. And the first 

equation if you see here, so this is also valid;
2

2 0

3
2.1 0

8
C C  ; so this also we have. 

So, we also have
2

2 0

3
2.1 0

8
C C  .  

So, if you see; if C0 is known, C2 will be known and if C2 is known then other terms will 

be known because m; for m ≥, you can use this recursive relation. So, now invoke the 

other boundary condition; at y*= 0, you have θ  = 1.  

If y*= 0, θ  = 1; so, you can see from this equation; 2

0 2 *C C y   . So, these are; all 

will become 0, at y*= 0 and θ  = 1; so C0 = 1.  

So, if C0 = 1; then you can write the value of C2, from this equation.
2

2 0

3

16
C C  , C0 = 

1; so it will be
2

2

3

16
C   . Now, C0, C2 are known. Now, you put this recursive relation 

and find C4 and C6. 

(Refer Slide Time: 38:49) 
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So, you can write C4, so if you put m = 2;  
2

2 0 2

3

8 4.3
C C C


  ; C2 and C0 you know, so 

you can write λ
2
; so these 3, 3; you can cancel. So, it is

2
2

4

3
1

32 16
C




 
  

 
.  

So, it will be 
2

4

4

3

32 16 32
C


 


. Now, you put m = 3; so, you can 

find  
2

6 2 4

3

8 6.5
C C C


  . 

Now, C4 already we have found here; so, it will be 2; so it will be
43

16 32



.  

So, if you rearrange it, you will get
4 6

6

7 3

80 32 16 32 80
C    

  
. So, now let us 

apply the another boundary condition at y* = 1, θ =0. Apply boundary condition at y*=1, 

θ  = 0.  

So, if you see θ  expression; so, θ  expression is this and y*=1 if you put, this will 

become all 1. So, it is just 0 2 4 6 ...... 0C C C C     .  

Now, we will consider only the first three coefficients, other terms we will neglect. So, 

you can write, 
2

2 4 4 63 3 7 3
1 0

16 32 16 32 80 32 16 32 80


        

   
.  

So, you can see the denominator value 16 32 80  . So, it is a very high value; so if you 

find, so this will become very small value; so, you neglect this term as you have high 

value in denominator.  

(Refer Slide Time: 42:55) 
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So, if you neglect it; so rest you just rearrange. So, what you will 

get?
2 46 1 15 7

1 0
32 80 32

 
 

  


. So, 
2 45 8

1 0
32 80 32

   


. So, it will be just, 

2 45 1
1 0

32 320
    . 

So, you will get a quadratic equation; 4 250 320 0    . So, that 

means 2 ( 50) 2500 1280

2


   
 . So that means, we will have

2 7.536  ; one value 

and another value will be 42.464.  

So, you will see that if you take
2 7.536  , it will give physically correct temperature 

profile, but if you consider
2 42.464  , then it will not give a physically correct 

temperature value. So, you can neglect that; so you just consider the value of
2 7.536  . 

So, the value of 
2 7.536  will give the meaningful temperature profile. 

(Refer Slide Time: 45:14) 

 

So, now we know the value of λ
2
; so if we put in the equation, in the series solution; then 

you will get the temperature profile. So, in the series solution, if you see that you have 

found the value of C0; then C2, C4 and C6; so if you put this, so you will get the 

temperature profile. 
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Now, next target is to find the Nusselt number; so we will start from the governing 

equations. So, it is 
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. So, if we put this 

value in the governing equation and 
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So, now, 
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
; you put it here and 
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 . So, you can see; it will be, 
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So, if you see; so ρ Cp, ρ Cp; you can cancel, then μ, μ will get cancel and now if you 

write, it will be minus
2 2
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So, now, integrating the above equation from -H to H. So, you see 
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 . So, this right hand side time you 

see the integration. So, this 
T

y




y at H; at H, so that will give you the wall heat flux 

and
T

y




; at y = 0, it is centerline temperature gradient and that is equal to 0 because from 

boundary condition, you have seen. 
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So, you can write
2
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 . Now, you see this term

(2 )

H

H

m

uTdy

u H




, so that means, it is your mean 

temperature right, mean temperature definition; so this is the mean temperature 

definition. And if you see, this is
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, so obviously, this will get cancel; so you will 

get m wT T .  

So, you will get m wT T ; so we have written the definition of mean; bulk mean 

temperature and because we need to define a Nusselt number based on m wT T . So, it will 

be y H
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So, now you can see
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. So, you can see it is

2(4 )h H

K
 . So that means, 

so Nusselt number based on hydraulic diameter 4 H 2

4HNu  and λ
2
 value, we have 

found as 7.536.  
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So, we have seen that the Nusselt number based on the hydraulic diameter, for this 

problem the hydraulic diameter is 2

4HNu  and λ
2
; we have already found; so that is 

your 7.536.  

So, let us summarise; so today we considered the fully developed laminar flow through 

parallel plate channels with constant wall temperature. We considered the non 

dimensional temperature as w

c w

T T

T T




where Tc is the centerline temperature for easy 

calculation.  

From there, we have found the separation of variables we have we; we use the separation 

of variable method and we have written the Sturm Liouville problem because the 

boundary conditions are homogeneous in y star direction. 

And then, we have found the solution of that governing equation using series solution. 

And from there we have found the values of λ
2
 and then we found the Nusselt number, 

starting from the governing equation and Nusselt number; we have defined with respect 

to m wT T  where Tm is the mean temperature.  

And you can see that for this particular case, the Nusselt number is also constant; 

independence of Reynolds number and the Prandtl number. 
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So, you can see that for uniform wall temperature case where you have that Tw as 

constant, Nusselt number is 7.54. In earlier lectures, we have found with uniform wall 

heat flux; for this flow through parallel plate channel, we have found Nusselt number as 

8.24. And if you see the temperature profile, for this uniform wall temperature, you can 

see the slope at the wall is lower than the temperature slope of uniform wall heat flux. 

So, if you see the temperature profile here; this slope is higher than this temperature 

profile, hence your Nusselt number is higher in case of uniform wall heat flux; compared 

to uniform wall temperature. And there is almost 8.5 % increase in heat transfer, in case 

of uniform wall heat flux compared to uniform wall temperature. 

Thank you.  
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