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Module - 06
Convection in Internal Flows -11
Lecture — 19
Hydrodynamically and thermally fully developed flow with uniform wall heat flux
condition

Hello everyone. So, in last lecture we considered slug flow where axial velocity
remained constant. Today, we will consider Hydrodynamically and thermally fully

developed flow with constant or uniform wall heat flux boundary condition.

So, it is the velocity profile we have already derived for a fully developed condition
earlier for two different channels; one is parallel plate channel and circular pipe. In
today’s lecture, we will consider these two types of channel; first we will consider flow

through parallel plate channel, then we will consider circular pipe.
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Hydrodynamically and thermally fully developed flow through
parallel plate channel with uniform wall heat flux condition
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So, first let us consider the assumptions, we will consider two dimensional steady
incompressible laminar flow with constant properties. Two dimensional we are
considering; that means in the third direction it is in finite. So, there will be no change or
no gradient in that direction; so obviously, we will consider for flow through parallel

plates channel x as the axial direction and y we will measure from the center line.
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You can see this is the two infinite parallel plates channel. We have the velocity profile
which is fully developed and u is function of y only; x is the axial direction and y is
measured from the central line and uniform wall heat flux is imposed on both walls. For
this particular case you can see that, your wall temperature will vary in axial direction.

So, Ty is function of x, and these two plates are separated by a distance two H. So, hydro

dynamically fully developed flow. So, in this particular case, you know that Z—i:o and

v=0.

Thermally fully developed flow, so we have this non dimensional temperature which we

defined as ¢ = _I-_I-W 'IT , Where Ty, is the wall temperature and Ty, is the mean temperature.

w m

o

So, if it is a thermally fully developed flow, then we can writea—zo; because actual
X

variation of this phi will be 0. Uniform wall heat flux condition, so q,, is constant, and
we will have negligible viscous heat dissipation; that means phi will be 0 and no internal

heat generation. So,q" =0.

Considering these assumptions, let us write the energy equation. So, what is your energy

equation in for steady laminar flow in two dimensions? So, you can write energy

2 2
equation. So, uﬁ+vﬂ:a 2+g), neglecting the viscous heat dissipation and
ox oy ox* oy

internal heat generation.

So, this is your energy equation, we will simplify invoking those assumptions now. First
of all let us write the fully developed velocity profile. So, what is the fully developed
velocity profile for this particular case? Fully developed velocity profile.

2

y

So, in this particular case, you know thatu(y):2um(1—?). Now, we know for

.. oT dT .
constant heat flux boundary condition, > T and that is also constant.
X X
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So, for uniform wall heat flux condition, you know thatg—lz d;:‘ ; we have already
o . ar. q,P . : .
derived it in earlier classes. So, dm =—"__ So, where P is the perimeter, m is the

‘-
mC,

mass flow rate.

And you can see, for this particular case g, constant; for a constant cross sectional

channel P is constant, m is constant and C, is specific heat that is also constant. So, this

will be constant.

. - . . 0° -
Now, if you take derivative with respect to x, then you can write pval So, as it is
X

constant it will be 0. So, we can see that in the diffusion term, you can actually

2
. T . . . .
ertea—2 =0. So, now, you invoke all the assumptions and write the energy equation.

So, this is your axial heat conduction is 0. So, axial heat conduction, for this particular

case it will be 0 and fully developed flow. So, v = 0. So, you can see that v = 0 and this is
_ : . o°T
0; so your equation now you can write as U— = —-.

OX oy?
(Refer Slide Time: 07:09)

Hydrodynamically and thermally fully developed flow through
parallel plate channel with uniform wall heat flux condition

Tampensture distributicn, T(x,y) O T
et bt b a2 0
3 e dta (30 s 3 Nl Tell B
TN W =W W
e el o e
e T A \
S S g
I L3N (-2
oFY  2wen (g

. ”‘
%_ 3&0(1';7;)’:\\‘) e
P
1 .
oy 4 QY 4
ST 0 e A
TL".‘I)v._J.lg.("i' n“‘)
Boram dang Condidinmh, 2w A
@y-0, %’-o C1>D. (gt E_M_ )+ey
€ yeH. TRl ’“"1*“%~ g
W Co sTu— .u"— W

TV [E3

e

324



2 2
Now, putting these values as Eu—’“di( ) = 8_T
2 a dx

So, now let us find the term left hand side u—m%;‘ So, what is the value of this? So, un,
a

K .dT, q,P

is the mean velocity, a = ;— = , In this particular case P is your 2 X1 per
pC,  dx mCP
unit width.
. o L L u q,2
So, if you consider in third direction unit width, then it will be —2= = . S0, now
K pu 2HC,

PCp
if you simplify it, then p, p, Cp, C, will get cancelled; um, un will get cancel; this 2, 2 will

2 2

3qvv
"oyt 2KH( H)

q,

get cancel.

So, now this equation we will integrate twice and we will apply the boundary condition;
then we will find the temperature distribution inside these parallel plates. So, integrating

3

3qW (y

oy 2KH 3H2)+C (x). And again if you integrate, then you will

you will get,

4

34,
et T(X, W
getT(x,y) = 2KH(2 12H2

conditions and find these constant C; and C,. So, one boundary condition is that, aty =0

)+C,y+C,(x). Now, we will apply two boundary

L : . : oT
which is your central line. So, your temperature gradient with respect to v, 8_:0'
y
because the problem is thermally and geometrically symmetric.

So, the maximum or minimum temperature will occur at the central line. So, at y =0, we

will put z—T:O. And another boundary condition we will take that, at the wall
y

temperature as T,, which is function of x. So, at y = H, you have T,
. . oT .
So, boundary conditions. So, at y = 0, we will putE:O. So, you can see from this

equation; if you put y = 0, then this right hand side first term will become 0. So, Z—T:O.
y
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So, C; will be 0. And aty = H, we will put T as T,, which is function of x. So, if you put

that, so you will get Ty,; here I am not writing function of x, only Tw I am writing here.

2 4
So, T. = 3qW (H H

+C,.
YO2KH T 2 12H’-’) 2

So, you can see that your, C, =T, — 232;2 Hzé. So, if you rearrange it, so you will

59, H
etC, =T, ———¥
g 2 w 8 K

(Refer Slide Time: 13:05)
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So, now, let us put this constant in the temperature distribution and find the temperature

4

istributi 3q, y 5 q,H
distribution T(X, y). So, T(X,y) =— + T, =
0.y) y)= 2KH ( 2 12H2) 8 K

So, if you rearrange it in this form. So, you can write,

T(x,y)zTW(x)—gﬂa 6y

K 5H2 5H4)
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5q,H 6 y° 1 y*
S (=24 :
8 K 5H 5H

temperature distribution along the y and also it is function of x and y; because T, is

So, now | can also write this as T, (x) - T(X,y) = —=—). So, this is the

function of x.

Now at the center y = 0. So, what will be the temperature, centerline temperature T.? So,
it will be either maximum or minimum temperature depending on what is the inlet

temperature. So, let us write the centerline temperature as at y = 0, T = T which is your

centerline temperature. So, you can write T, (X) — T, (X) = g%

Now, we can just divide this equation with this equation, then what you will
4

e g

So, you can see that we have written this temperature distribution in non-dimensional

form; because we are dividing with T,, - T, where T is the centerline temperature and

right hand side you can see this is also non-dimensional. So, this is the temperature

distribution.

Now, to find the heat transfer coefficient; we need to find, what is the mean temperature?

Because we need to define the Nusselt number based on the difference between the wall

temperature and the mean temperature. So, first let us find, what is the mean

temperature?

(Refer Slide Time: 16:55)

Hydrodynamically and thermally fully developed flow through
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So, mean temperature you can findTm(x)zl.[ puTdA. So, if you consider from the
mA

centreline, one small elemental flow area of distance dy at a distance y from the

centreline.

And in other direction if you take a unit width, then it will be dA = dy X land the total

flow area will be 2 H X 1. So, this if you write, then you will getrh = pu,,2H . Now, you

integrate, Tm(x)— = m( __]{TW__W_(l___JF__ dy .
J,; 2 8 K 5H? 5H*

m

So, dA = dy. So, you can see here, you can this uy, Uy, p, p You can cancel and you can

write this,

32 H 5 H 6 2 1 4 2 6 4 1 6
m(x):zmj{ [__J__qw_(l__y_+_y__y_+_y___y_ﬂdy_
0

So, now it will be easy to integrate. So, if you cancel it 2, 2; so you can write

N H

3 y’ ) 5¢q,H 6y 1y ¥ .6 y> 1y’
T (x T ly-2_|[-2%py 2 Y 2V .
()= ZH[: [y 3H2j 8 K [y 53HZ 55H° 3H? 55H° 57H° i

So, after integration we have written this, but we need to put the limit from 0 to H. So, if

you see y = 0 if you put all terms will become 0; only H you put, then what you will

getTm(x)zi T,H [1—%—?%(1 6 +i—1+£—i . S0, now, if you see;
2H 3 15 25 3 25 35

50 you can write, Tm(X):iTWHZ 3 5qW H(525—210+21—175+126—15 .
2H 3 2H8 K 525

So, you can see this H, H will get cancel; 2, 2; 3, 3 here also H, H will get cancel. So,

you can write itasT, (x) =T, (x) _35212q,H a,H
28525 K

17 g, H

So, you can see, if you rearrange. So, you will getT, (x) =T, (X) - x K
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So, we have now represented the mean temperature which is function of x in terms of the
wall temperature and the heat flux. So, from here now you can actually find the
temperature difference between the wall temperature and the mean temperature.

17 q, H

So, you can see, you can write T, (x) =T, (X) = B K So, now, we need to calculate the

heat transfer coefficient.

(Refer Slide Time: 26:25)

Hydrodynamically and thermally fully developed flow through
parallel plate channel with uniform wall heat flux condition
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So, heat transfer coefficient will be. So, heat transfer coefficient ish :q—w. So,
TW(X) _Tm (X)
, o : : 17 g, H
in earlier slide we have found what isT,(x)—T,(X). So, that isT, (x)—T, (X) “x K
So, you can see if you put it here. So, we will geth = qVY. .
17 q,H
35 K

. K .
So, you can write it ash = %ﬁ' So, now, Nusselt number; so Nusselt number we will

calculate, Nusselt number we will calculate based on the hydraulic diameter and the
difference between wall temperature and the mean temperature. So, what is the hydraulic
diameter? Already you have calculated for this particular geometry, so that is your 4 H

right, so 4 H. So, based on 4 H we will calculate the Nusselt number.
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So, Nusselt number will be based on 4 H and the difference between wall temperature
h(4H) 35 K

and the mean temperature. So, Nu,,=————=. So, h=-——and thus
K 17 H
K 4H
Uy = f? K . So, you can see H, H will get cancel. So, you will get Nusselt
4
number based on 4 H, Nu,,, =3i; :

. 14
So, that will be Nu,,, =1—70. So, Nu,,, =8.235. So, you can see the Nusselt number for

hydrodynamically and thermally fully developed flow it is constant and independent of

Reynolds number and Prandtl number.

(Refer Slide Time: 28:59)

Hydrodynamically and thermally fully developed flow through
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Now, let us consider hydrodynamically and thermally fully developed flow through

circular pipe with uniform wall heat flux boundary condition.

So, you can see this is your cross section of the circular pipe g, is constant and ro is the

radius of this pipe; x is the axial direction, r is measured from the centreline, and we have
uniform wall heat flux on the wall and velocity profile is parabolic u(r) and already we
have derived it. So, T, in this particular case also will be varying in axial direction. So,
Tw will be function of x. So, you can see the assumptions in this particular case will take

axisymmetric steady incompressible laminar flow with constant properties.
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So, what is axisymmetric flow? So, you can see that in if circumferential direction
velocity is zero and any gradient in that direction is zero; then it is axisymmetric flow.
So, you can see in this particular case we have a circular pipe. So, we have a solid wall,
and velocity obviously will be zero in circumferential direction and your thermal
boundary condition is also uniform over the wall. So, it is geometrically and thermally

axisymmetric.

So, we can have the assumption that your temperature will vary in r and x direction.

Hydrodynamically fully developed flow, so hydrodynamically fully developed flow

ou e T e .
means, youra—zo; and if v is the velocity in radial direction, then v will be also 0.
X

Thermally fully developed flow, sog—f =0, where @ is the non-dimensional temperature;
, T,-T
already we have defined as, ¢ = TW =

Uniform wall heat flux condition, so for uniform wall heat flux condition g will be
constant. Negligible viscosity heat dissipation, so ® will be 0; no internal heat

generation, g =0. So, in cylindrical coordinate now let us write the energy equation.

So, energy equation you can write as assuming the axisymmetric flow,

or o7 o°T 1 a( aTj
U—+V—=ay—+-—|I— |;.
OX oy oX“ ror\ or

So, now let us invoke all these assumptions in this energy equation and let us simplify it.
First let us write the uniform velocity profile. So, first let us write the fully developed

velocity profile. So, fully developed velocity profile for circular pipe, what is that? So, u

2
is function of r only right in this particular case. So, u(r) =2u,, [1—:—2}
0

And similarly for uniform wall heat flux boundary condition, you can write aa—T:
X

2

0T , , , L
constant. And hence v 0; that means axial heat conduction will be zero in this
X

particular case, or in this thermal boundary condition where g, = constant.
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So, for constant or uniform for uniform wall heat flux boundary condition, you can write
T P . - :
ﬂ=d—”‘ = 9" which is constant; P is the constant, mis constant, C, is constant, so
ox  dx mC
P
. : . 0T
that means this is equal to constant. Hence your axial heat conduction ?: 0. So, and
X

for hydrodynamically fully developed flow v = 0. So, you can see here v = 0 and
2
oT 0.

S

So, you can write invoking this condition the energy equation asug = gi(r ﬁj So,
OX ror\_ or
oT . . . .
now, ™ you can put this value. So, if you put this value; so what you will get?
So, you can write u is the velocity profile, you put this one. So, it will

N
be2u, 1_r_2 9.P lrzg(rﬂj.
Iy mCP“ or\ or

So, now in the left hand side let us simplify it. So, you can see, you have

Un QP _ Uy 9,270
% mc, K pu zrC,
PCp

So, you can see if you simplify it. So, this p C, , p C, will get cancel, um, = and one ro.

So, you can write this as%. So, this equation now we can write. So, first let us write,

r-0
Q(rﬂj_ﬂ r
or_ or) K, )
So, this equation now if we integrate twice, then you will be able to find the temperature

distribution. So, now, this differential equation we will integrate twice and find the

temperature distribution inside the pipe.
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Hydrodynamically and thermally fully developed flow through
circular pipe with uniform wall heat flux condition
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So, what is your equation finally we got? So, that is yourg(r a—Tj = 49y r _r_2 .
or\ or Kr, r,

0

So, you integrate twice. So, first time if you integrate, then you will

4
get a_T_ﬂ(_ r
2 4r}

j+C And you divide by r both side, then you will get,
or K,

3
a—T 4qW __r_ &. So, now, another time if you integrate; so you will get,
or  Kr |2 4r r

" 2 4
T(x, r)—?(q ["4 1; ]+c Inr+C,(x).

So, this is the temperature distribution we got with the two integration constant C; and
C,. So, we need two boundary conditions; one boundary condition is that at centerline

r=0 you have finite temperature, and at r = ro you have wall temperature T,. So,

boundary conditions if you put, boundary conditions. So, atr = 0,T is finite, right.

So, if you see in this equation if you put r = 0. So, to have left hand side T finite, C; must
be 0. So, C; = 0, and at r = r,, T = T, (X). If you put it that, so,

4q, (12 1
T =—w2 X
Y Kr (4 16r] C.(0).
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So, you can find, C,(x) =T, (x) —gM.

4 K
So, final temperature distribution now we can write,
“ . .
Toor) =S| 0T 3 (- 3Gl
Kr,\ 4 16r, 4 K
" 2 4
So, if you rearrange it, you can write itas T, (Xx)-T(x,r) = 3 Gulo 1_ﬂr_+ﬂr_4 . Now,
4 K 3r; 31
we will find the centerline temperature putting the r = 0.
(Refer Slide Time: 41:27)
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So, at r = 0, T = T, which is function of x. So, if you write it. So, you will

getT,(X)-T(X, r):%qLKO. So, this is your centerline temperature distribution. Now,

_ 2 4
you can also write the final temperature distribution T.0-Tr) = 1_ﬁr_2 + fr_4 :
TW(X)_TC(X) 3 r0 3 r0

So, this is your temperature distribution. So, next we will find the mean temperature to

find the Nusselt number.
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Hydrodynamically and thermally fully developed flow through
circular pipe with uniform wall heat flux condition
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So, now let us calculate the mean temperature. So, that you can calculate

T.(X) =f1J‘pUTdA. So, if you consider this elemental flow area d A at a distance r of
mA

distance dr. So, dA will be your 2zrdr. And what will be the flow area? It will be ;.

So, if you put it here. So, you will get, you see you will get

fo 2 " 2 4
T ()= —2 - | p2u,|1-5 T, 3Gl A0 AT o
pU Tl 3 Iy 4 K 3, 31

m

So, these um, Un IS constant p is constant, = = will get cancel. So, you can write it as,

3 " 3 5 3 5 7
T,(X)= —I _r ]340 r_ﬂr_2+1r_4_r_2+ﬂr_4_1r dr. So, now, you
) 4 K 3r7 3} 2 3 3r

SO B Ll ML Y S A AL LA 8 o
" "2 4rr) 4 K2 34r 36r 4r?  36r} 38r)

So, if we put r =0, all terms will become 0. So, you put just upper limit r = ry and

rearrange it. So, what you will get,

335



Tm(x):%Twroz(l—lj—§Mir2(1—1+1—1+2—iJ. So, you simplify it. So,

4 Kr2°\2 318 4 9 24

0

theser?, rZwill cancel. T, (x) =T, (x) -3 q&ro 36-24+ 47;18 +16-3

Oufo 11

So, we will get T (x)=T,(x)-3 K 72" So, you can see this will be
11 q.r

T (X)=T, (x)———22,

W00 =T, (0 -2
: : 11 q,r,

So, you can write the temperature difference T, (X)— T, (X) :ﬂT' So, now, you are

in a position to calculate the heat transfer coefficient right; because you can calculate q

double prime w minus the temperature difference between wall temperature and mean

temperature.

(Refer Slide Time: 50:29)

Hydrodynamically and thermally fully developed flow through
circular pipe with uniform wall heat flux condition
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So, we will calculate the heat transfer coefficient, h=

N
11q,5
24 K

writeh =
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So, h=?5. Hence, now, Nusselt number you can calculate based on the hydraulic

1lr,

diameter and in this case hydraulic diameter is D.

. So, if you put the value of h, it will beﬁﬁﬁ. So, it will

1r, K

So, it will be Nu, =

h(2r,)
K

be 24 x2. So, it will be %

So, Nusselt number based on the diameter it is 4.36. So, you can see in this also
particular case, your Nusselt number is independent of Reynolds number and Prandtl
number and it is constant. So, thermally and hydrodynamically fully developed flow in a
circular pipe, your Nusselt number is 4.36 and which is constant.

(Refer Slide Time: 52:05)

Hydrodynamically and thermally fully developed flow with
uniform wall heat flux condition
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Thermally fully developed shag flow with uniform wal heat flux condition
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So, let us summarize what we have done in today’s class. Today we considered two

different types of duct; one is parallel plate channel and second is circular pipe.

We considered hydrodynamically and thermally fully developed flow with uniform wall
heat flux boundary condition. In both the cases, first we have found the temperature
distribution; you can see that we know the fully developed velocity profile put it putting

it in the energy equation, we and integrating the equation we got the temperature profile.
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And you can see here, the temperature distribution for parallel plates this one and for the
circular pipe is this one. Now, we have represented this temperature which is function of

x and r in terms of the wall temperature which is function of x.

Then we found the mean temperature right in both the cases. So, you can see for the

. 'H .
parallel plate channel, your mean temperature is T, (x) =T, (x —% O ; and whereas in
. L 11 q.r
circular pipe, itisT_(x) =T, (x) —=—-"%2,
pip () =T, (0=,

So, now, we know the temperature difference between wall temperature and the mean

temperature. Hence you can calculate the heat transfer coefficient and you can see that
L 3BK . . .
for parallel plate channel, heat transfer coefficient ish = Eﬁ; in case of circular pipe

h =ﬁ5. Then from heat transfer coefficient we calculated the Nusselt number. And

lr,
we have seen in both the cases, Nusselt number is constant and independent of Reynolds

number and Prandtl number.

So, when you consider thermally and hydrodynamically fully developed flow for
uniform wall heat flux boundary condition, Nusselt number for parallel plate channel we

calculated as 8.24 and for circular pipe we calculated as 4.36.

In last lecture we calculated the Nusselt number for thermally fully developed slug flow
with uniform wall heat flux boundary condition and we found the Nusselt number for
parallel plate channel as 12 and for circular pipe as 8 8. So, you can see that when you
consider the fully developed velocity profile, then it is 8.24; but when you consider slug

flow, where you have the everywhere you have the same velocity u m.

So, in that case you get higher Nusselt number in both the cases; that means when you
have fully developed velocity profile, that means your velocity is decreasing towards the
wall, so obviously you are getting less heat transfer compared to the slug flow. Because
in slug flow, you have the velocity is same near to the wall as near to the centerline. So,
velocity is higher, so you are getting higher heat transfer rate. So, that can be found from

this expression Nusselt number 12 and Nusselt number 8 for circular pipe.
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