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Module — 05
Convection in Internal Flows - |
Lecture — 17
Velocity profile in fully-developed channel flows

Hello everyone. So, in today’s lecture, we will find the fully developed velocity profile
in channel flows. So, we will consider three different cases. One is flow between two
parallel plates. Then we will consider flow between two parallel plates where one plate is
moving with respect to the other. And finally, we will consider flow inside pipe. As you
know that to solve the temperature or to solve the energy equation, you need to know the

velocity profile.

So, if you have a fully developed condition under which if you want to find the velocity
profile, so in today’s lecture we will find this fully developed velocity profile for

different situations.
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First we will consider plane Poiseuille flow which is known as fully developed laminar
flow between two infinite parallel plates you can consider two infinite parallel plates. So,

in third direction, as it is infinite you can consider as a two-dimensional flow. And you
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can have the assumptions of steady, laminar and incompressible flow. Then you can have
the assumptions of constant properties, where density and viscosity remain constant, and

we are anyway considering the fully developed flow.

You have already seen that in fully developed flow the velocity v in y direction, it is 0 or
first let us consider that you have axial direction as x. So, this is your x, and axial
velocity as u. And in y direction you have v velocity, and this is your y direction

velocity.
So, from fully developed velocity profile, so for fully developed flow condition you can
. . o i e ou
write v = 0 everywhere; and axial velocity is constant in the axial direction, soa—zo.
X

So, under this assumptions now let us write the x momentum equation.

So, you can see your X momentum equation
ou  ou o’u o
IS p(—+ Uu—+vVv —) =—— ( > +—) . S0, this is your x momentum equation.
oXx oy OX oy?

So, as we have assumed that it is a steady state flow, then obviously, gt =0. So, this is

your O as it is steady state, Z—i:Ofully developed condition; v = 0 fully developed

2
condition; and Z—E:O as fully developed condition, so fully developed flow. So, we can
X

see that asg—i =0, then u is function of y only.

Similarly, if you write the y momentum equation, then you will find that only% =0.

So, all terms will get cancelled — the temporal term, convection term, the diffusion term,

so all these terms will get cancelled and you will have just all these terms will be 0, and

you will have%:O. So, you will have from y momentum equation you will

get% =0, so that means, p is a function of x only.
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So, under this situation this X momentum governing equation you can write as, so U is

2

function of y only, so you can WriteF = ——P, so because p is function of x only. So,
y

L dx

this is your now you got ordinary differential equation. So, we started with the partial
differential equation, but invoking the assumptions and putting some terms 0, you got the
ordinary differential equation. Now, with proper boundary condition, you will be able to
integrate this ordinary differential equation.

What are the boundary conditions? So, you can see that we have taken axis in the central
line as x and y is measured from the central line from here so y. And these two parallel
plates are separated by a distance 2 h. So, the boundary conditions you can write. So, at
y=h, your u =0 as well as at y = - h ,u = 0, because you have no slip boundary condition

on upper plate and the bottom plate.
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2
So, now let us integrate this equation. So, you haved—l;J :ld—P So, if you integrate it,

i dx
you will getg—u:li—Py+C And again if you integrate, then you will
y 4

getu(y) = Zi((jj_z y?+C,y+C,. So, C;,C; are integration constant.
)7
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Now, you invoke the boundary conditions, you have two boundary conditions because
there is as you have two boundary conditions you will be able to find the two constant C;
and C,. So, y=H, u=0. So, you will get 0= Ziccii_P H?+C,H +C, and similarly at y = -
4 dx
H, you have0 = - 9P 2 ~C,H +C,.
2 dx
So, if you say that this is equation number 1 and this is equation number 2, then if you
subtract equation 2 from 1. So, subtracting equation 2 from equation 1 ; so what you will

get? So, if you subtract, you will get 2C;H =0. That means, C; = 0 and if you add these

two equation adding equations 1 and 2, what you will get?

So, this term will get cancelled, this C,H-C/H . So, this will be 0. So, you will

2
getZ[Ld—PH2+CZ]:O, so that means, you will getC, =—H—d—P.
2 dx 2u dx

So, if you put these values C;, C», so you will get the final velocity profile. So, velocity

2
profile you will get, u(y)=id—Py2—H—d—P. So, this you can write,
2 dx 2 dx

2 dP y2

uly)=—_F-—)1-=—].

W=, C b
So, you can see that it is a parabolic profile. So, this is parabolic profile for velocity
which is symmetric about y = 0. So, you can see the velocity profile here. So, this is your
x direction. So, it is actually symmetric about y = 0. So, you will get at y = 0 if you put,
then velocity will be maximum, because there you will get maximum velocity which is
your central line velocity and the profile will be parabolic. So, u y is parabolic.

dpP

. . dP .
You can see here that we have written thlsd— as e So, you can see that flow will
X X

takes place from high pressure region to low pressure region. So, in the positive Xx-

o e : dP .
direction or along the axial direction, your pressure will decrease. Hence -d—WI|| be a
X

. i . . dP . .
positive guantity that is why we have written as-d—. So, now, we are interested to find
X

what is the mean velocity or average velocity at any cross section.
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So, you can see that mean or average velocity is physically an equivalent uniform
velocity field that could have given rise to the same volume flow rate as that induced by
the variable velocity field under consideration. So, if you calculate the volume flow rate

Q, so you can writeQ =u_, A, where uy is the mean velocity.

And that if you see now if you take a small elemental flow area of distance d at a
distance y from the central line of distance dy. If you consider an elemental flow area at
a distance y from the central line of distance dy, then your this flow area will be just dy
into the width of the channel, width means perpendicular to this board whatever distance

you have.

So, that if you consider as width, then you can write dA= Wdy. And total flow area will
be, so this is your twice h is the distance between two parallel plates. So, it will be

A=2HW.
So, now, if you consider this elemental area, so what is flow is happening so that you can

H
integrate from _[ u(y)dyW , so that is the elemental area dA= Wdy, so that we have
H

H 2
written. So, now, your mean velocity will beu, = J. g— —d—)(l—#)Wdy S.
X
H
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. 2H?  dP. 't y?
So, now, you will get, u, = ——)| @-—==)dy.
you will g T dx)!( 27)dy
3
So, you can see that we have written this, u,, :i(—d—P)[y—y—z]'; :
2u - dx 3H
. : H dP H* .
So, if you put H, then we are going to getu,, = —(——)[H ———]. So, this you can see
2u dx 3H
2
that it will be 2 by 3. So, u,, :i(—d—P)Z—H. So, hence you can writeu,, :H—(—d—P).
2u dx” 3 3u - dx

So, now, you can see that you can represent the constant pressure gradient minus dp by

dx in terms of the mean velocity.

3uu,

So, you can write minus (—3—5) el So, we can see here that your right hand side,

you have p which is your fluid property, dynamic viscosity that is positive quantity, uy
which is your velocity mean velocity that is also constant and positive, and H which is
your the distance from the central line so that is also constant. So, obviously, right hand

L. P .
side is constant, that means, —3— is constant.
X

So, now if you find the velocity profile, so you can write in terms of mean velocity,

2

_H AP Y
u(y) =5 g ).

2
So, now, this —(;—z if you put it here, you are going to get, u(y) = gum(l—%). So, your

2

velocity profile you can write in terms of mean velocity as, u(y) = gum(l—#). And if

you find the maximum velocity, then you have to find the velocity at central line which

isy =0.
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So, you will get maximum velocity. So, maximum velocity will occur at central line,

2
where u at y =0. So, if you put it, you are going to getu, ., =U, =Uu |y:0 = 2—(—Z—P) . And
U X

3uu,

HZ

2
, then you are going to get, u, = g— ?ﬁuzm .

that if you write —Z—P in terms of
X

So, it will be justgum. So, you can see that in case of flow fully developed flow inside

two infinite parallel plates, your maximum velocity is 1.5 times the average velocity,
because here you can see that uc, which is your maximum velocity is 1.5 times the mean

velocity for fully developed flow. Now, if you find what is the shear stress acting on the

. . du
wall, then you can write shear stress, so that you can write z,, = yd— .
y

So, at any wall you can calculate. So, y = H let us calculate. So, you can

WI’itEZ’WI,ug—uly_H. So, what isg—u? So, we can see this easily you will
y

y
getrwzyid—PH=Hd—P, and(—d—P)=%. So, if you put it, then,
L odx dx dx H
3
uly =HEZ0) =3,
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So, similarly if you calculate, rw|y:_H =3uu, . And you can see that your shear stress

inside the fluid, it will vary linearly, now we will define the friction factor. So, this is the
non-dimensional representation of the pressure gradient. So, if you calculate non-

dimensional pressure population, then that is known as the friction factor.

(—d—P)ZH
So, friction factor you can calculate, so this is f S S So, this if you find, so
J— uz
2,0 m
dP o1
what you are going to get? So, v is this one. So, you can write f S « B So, if
X > pup
2
ou rearrange you will get this as _ 24
Y gey! g U (2H)
y7]

So, you can see this is your Reynolds number based on the mean velocity and the

channel height, then you can write

. So, friction factor we have represented in the
eZH

terms of the non-dimensional number Reynolds number based on the channel height. So,

friction factor f =

€on

If you calculate the skin friction coefficient, so this is dimensionless representation of the

wall shear stress, so skin friction coefficient. So, it is represented as C: . So, this

isC, = lrwl _ 3 .
oz o
2 2
So, you can rearrange it, and you will get————, and you can write 12 . So, for
PU,(2H) Re,,,
MU

the fully developed flow inside two parallel plates, we have calculated the shear stress on
the wall.
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And, hence we have calculated the skin friction factor which is your dimensionless

representation of the wall shear stress as where Re,,, is the Reynolds number

€m

based on the channel height.

So, this is your Reynolds number. So, this is your based on 2H. So, Reynolds number we

have defined based on mean velocity un, and the channel height 2H.

(Refer Slide Time: 23:53)
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Next we will consider plane Couette flow. This is the flow between two infinite parallel
plates where one plate is moving with respect to the other. So, you can see that these are
the two fixed plates, and this upper plate is moving with velocity u in the axial direction

ok. So, some constant velocity u it is moving with respect to the bottom wall.

So, this is your x-direction, and y is measured from the bottom wall, and bottom wall is
stationary. So, bottom wall is stationary and upper wall is moving with constant velocity
u, and y is measured from the bottom wall and the distance between two parallel plates is
H.

So, in this scenario now you can see that the flow is taking place. So, here you can see
that the flow is taking place due to the shear. So, the upper plate is moving. So, due to
the shear there will be velocity inside the channel. So, this is known shear driven flow
where your pressure gradient is absent in this particular case, so that is why we have told
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at as plane Couette flow. So, where you have the external pressure gradient as well along

with the shear driven flow, then it will be Couette flow.

But here we are considering plane Couette flow where we are assuming that pressure

gradient is 0. So, in this particular case, now we are considering —2—P:Oand fully
X

developed condition. So, obviously, your governing equation whatever we have derived

2
in earlier case, you can Writeflj—lzJ =0, because we have considered fully developed flow.
y

So, your y direction velocity v =0 as well as yourg—uzo, because there will be no
X

change in the axial velocity in the axial direction. So, your governing equation

2
isa—uzo.

ayZ
And what are the boundary conditions? Boundary conditions are at y = 0 bottom wall,

u=0 and upper wall at y =H, it is moving with velocity U. So, you integrate this equation.

So, you will get :_u =C,, andu(y)=C,y+C,. So, C; and C; are constants. So, you can
y
see that you will get a linear velocity profile.

So, now, invoke the boundary conditions aty =0, u =0, so u =0, so we will get C, = 0;

and aty = H, u =0, so you will U = u. So, you will getU =CH ; C, = 0, so obviously

C = % . So, hence you will get the velocity profileu(y) =U % . And you can see that y

=0, it is 0 velocity at y = H it is U, and it is linearly varying, it is linearly varying
because from the velocity profile you can see that it is a velocity varies linearly across
the gap.

. du .
And if you calculate the shear stress on wall, so you can see that d—WI|| be a constant,
y

because here you can see Tw=g—; and E—Sis constant Cs, so that is%. So, in both the

. U ..
plates, you can find that your wall shear stressz,, = q So, along inside the flow also the
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shear stress will be constant. So, now, if you calculate the skin friction coefficient on
what will be your mean velocity?

H
So, if you calculate the mean velocity, mean velocity, so it isu, :%IU %dy. And
0
2

what is u?u(y)=U % dy, so it will bey7, hence u,, :UE'

If you calculate the skin friction coefficient, so you will find for this particular

] M

caseC, = 1TW -~ So,lLuz. So, if you rearrange, you will gEtpULH’ so you will
_ um I r~ -
27 274 u

getRi. So, we are writing this Reynolds number based on your; based on your upper
eH

velocity, upper plate velocity u, so that will beRe,, = pUH :
y7]
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So, now, we will consider fully developed flow inside pipe. So, this flow is known as

Hagen-Poiseuille flow. So, you can see this is your axial direction x, and radial direction
isr.
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And we are considering axisymmetric flow that means that in circumferential direction
in phi direction there will be no variation of any variable, so that is your axisymmetric.
So, in case of axisymmetric your u will be function of r only; and as it is fully developed
condition then the axial velocity u will be constant or u is function of r only; it is not

function of x. So, au =0.

OX
So, if you consider that. So, you can see that it is a pipe, and these are your pipe wall,
and the pipe radius is ro. And this is your central line, and r is measured from the center.
So, if you write the fully developed condition, so in this particular case x is your axial
direction ok, r is your radial direction, u is your axial velocity, and v is your radial

velocity ok.

. ou . e .
So, as it is a fully developed flow, so Foi 0, because your in axial direction there will
X

be no change in the velocity profile. So, Z—l:( =0. So, u is function of r only. And radial

velocity everywhere v = 0. And one most important assumptions that we have taken it is

axisymmetric flow.

So, if you considered that your circumferential direction if you miss that, so let us say

this is your @ or 9 let us say @, then a—ij(any variable) =0, and the velocity in ®direction

also 0. So, if you say that velocity w which is in ® direction, so it will be this it will be 0

in axisymmetric flow.

So, if you consider the momentum equation, then you can see that you are invoking all
these assumptions, you will get this ordinary differential equation which is your

: . . P 1
governing equation. You will get0 = —a—+y—£

ou
r—).
OX r@r( ar)

A . . .. OP P .
Here also you will find that p is function of x only, and you can wrltez— = 3— and u is
X dx

d_u) :ld—Pr. So, now, if you integrate it, so

function of r only. So, you can writei(r
dr = dr’  pudx
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1 dp r’+C,. If you divide by r, thend—u = id—Pr & And again
2 dx dr 24 dx r

if you integrate, then you will get the velocity profile as u(r) = %3—5 r’+C,Inr+C,.
U

. du
you will getr — =
dr

So, now you invoke the boundary condition, what are the boundary conditions? At r = 0,
you have u finite; and at r = ro which is your wall you have velocity 0, u = 0. So, if you
write boundary conditions, boundary conditions, so at r = 0, u is finite;. So, you can see
that if u is finite, then C; must be 0. So, C; is 0. And r = rp ,u = 0 because that is your

wall, so it will be rg.

2 2
So, you will getO:rLd—P+C2. So,C, :—rld—P.
44 dx 4y dx

(Refer Slide Time: 36:14)
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Hence you can write the velocity profile as so velocity profile you can write now, u is

. . r?
function of r only. And if you put the constant, so you can see thatC, :—4L(3—P. So,
4 dx

. 1dP , 1 dP,
you can write asu(r) = ——r"———1; .
4u dx 4u dx
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2 2
So, hence you will getu(r):%(—j—P)[l—r—z]. So, you can see that this is also your
H X o

parabolic profile.

So, you can see you will get a parabolic velocity profile, where r = 0 you will get the
maximum velocity; and at walls obviously it is 0. So, r =0, r =ro, it is 0. So, you will get

a velocity profile which is u is function of r, so and you will get a parabolic profile.

. dP . . . dP
And we are writing u as v in term, we are writing u(r) in terms of ™ because
X X
dpP . . : : e dP . .
v is positive quantity because in axial direction you have v is positive, because
X X
o _— e .. dP .
your pressure gradient is decreasing in the axial direction. So, generally if d—< 0, so this
X

is known as favourable pressure gradient; and if Z—P>O, then it is known as adverse
X

pressure gradient, because you have pressure gradient as positive and your flow reversal
may take place.

So, generally 3_|>::<0’ then it is known as favourable pressure gradient. And if (;—z>0,

then it is a adverse pressure gradient. Now, you want to calculate the mean velocity in

Hagen-Poiseuille  flow. So, you can calculate the mean velocity as,

soQ=u, Az_[u(r)dA. So, in this particular case, you can see that you have a circular
A
Cross section.

So, at a distance r you take one elemental flow area. So, this is your elemental flow area

of distance dr. So, what will be your dA in this particular case? So, this is the elemental

flow area. So, dA=2zrdr . So, this is the area. And total area is A= zr; .

. : . 1 %2 dP,. r?
So, if you put it here, so you will getasu,, = —2I—(——)[1——2]2ﬂrdr .
7y o 4u dx I
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So, this m, = you cancel. And you can write it as, so these other r’also you can cancel

because this is constant. So, you can write asu,,, = Zi(—d—P)[r —r—z]dr .
H 0

1, dP..r* r*

So, if you integrate it, so you will getu =2—(——)[?—F 0. So, if you put the
M
2
value, so it will beu =i(—d—P) 3 . So, hence you will getu,, :QL(—(;—P). So, now,
u - dx

dP . .
you can express ——-in terms of mean velocity.
X

(Refer Slide Time: 41:59)
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So, v you can express in terms of mean velocity, so that will be —— . So,
X

now, you can express this velocity profile in terms of the mean velocity. So, you can see

2
r
that, u(r)=2u,(1-—).
rO
Similarly, now if you find the maximum velocity which will occur at the central line
where r = 0, then you can write maximum velocity, u,, =uU, :u|r=0 =2u,. So, in this

particular case, you can see that when you consider the flow inside pipe, then your

maximum velocity will be twice of the average velocity or mean velocity.
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So, this your unax, YOU can see it is twice into the mean velocity. And when we consider
flow between two parallel plates umnax Was 1.5 times the mean velocity un. So, you should

remember here.

So, when you consider pipe flow, your maximum velocity is twice the mean velocity;
and when you consider flow between parallel plates, then your maximum velocity will

be 1.5 times the average velocity. So, now, we want to calculate the shear stress at the

du
wall, that means, at r = ro we want to calculate the shear stress. So, 7,, = ud—|
r

r=r *

So, shear stress you can calculate 7, = yd—uL:r . S0, you can seer,, = yi(—d—P)ro. So,
dr ° 2 dx
it will be justr—o(—d—P). And—d—P:8—'gum. So, you will you will see that if you put it,
2" dx dx 1
you will getz,, =%.
(2r)

So, now, if you want to calculate the skin friction coefficient, what is skin friction

coefficient? It is the dimensionless shear stress, or sometime it is known as fanning

friction coefficient. So, you can writeC, = lTW' . So, you can see thatC, = By
2 2
—pu 2r,— pu
zp m 0210 m
: . . 16 .16 :
So, if you rearrange it, you can write it as————. So, you can write——. D is the
pum(zro) ReD

MU
diameter of the pipe, so that is 2ro. So, a Reynolds number we have defined here,
Reynolds number we have defined here based on the diameter and mean velocity. So,

ReD — pum(zro) )
M

Similarly, if you to want to calculate the friction factor which is your non-dimensional

pressure gradient, so that you can write it as friction factor for this particular case it is
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dP
(=, (2r) |

known as Darcy friction factor also. So, you can see thatf = So,

— u2
2/0 m
8zuum(2r0)
f =2
rzlpu2
0 2 m
So, if you rearrange it, so you will geti So, you will getﬁ So, your friction
’ ’ PUn(26) ~ Re,
U
factor ist—4. So, if you see that your friction factor is 4 times your skin friction
eD
coefficient. Friction factor, so this is your 16 x4 andC, :ﬁ. So, f=4c:.
eD

So, in today’s lecture, we have found the fully developed velocity profile for three

different cases. First case, we considered as flow between two infinite parallel plates,
o ou L . . .
where your v velocity is 0, and i 0 which is your axial velocity does not change in
X

the x direction. So, with that condition, we found the velocity profile and we have found
that it is parabolic in nature. And then we can calculated the mean velocity, and then we
calculated the skin friction coefficient as well as the friction factor.

Next we considered the plane-Couette flow where we consider the shear driven flow
between two parallel plates where bottom plate is stationary and upper plate is moving
with velocity u in the positive x direction. And we have seen that velocity varies linearly
from bottom plate to top plate.

Next we considered the Hagen-Poiseuille flow; this is the fully developed flow inside
pipe. Here we found the velocity profile u as function of r, and that is also parabolic in
nature. In this particular case also, we found the mean velocity, then skin friction
coefficient and friction factor. And we have found that friction factor is 4 times the skin

friction coefficient.

In Hagen-Poiseuille flow, we have seen that your maximum velocity is 2 times the

average velocity; and in case of plane-Poiseuille flow your maximum velocity is 1.5
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times the average velocity. In fully developed case, we have found the velocity profile in
different channels, and we have found the mean velocity. These we will use in the next

module when we will find that temperature distribution inside this channel flow.

Thank you.
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