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Module – 05 

Convection in Internal Flows - I 

Lecture – 17 

Velocity profile in fully-developed channel flows 

 

Hello everyone. So, in today’s lecture, we will find the fully developed velocity profile 

in channel flows. So, we will consider three different cases. One is flow between two 

parallel plates. Then we will consider flow between two parallel plates where one plate is 

moving with respect to the other. And finally, we will consider flow inside pipe. As you 

know that to solve the temperature or to solve the energy equation, you need to know the 

velocity profile.  

So, if you have a fully developed condition under which if you want to find the velocity 

profile, so in today’s lecture we will find this fully developed velocity profile for 

different situations. 

(Refer Slide Time: 01:26) 

 

First we will consider plane Poiseuille flow which is known as fully developed laminar 

flow between two infinite parallel plates you can consider two infinite parallel plates. So, 

in third direction, as it is infinite you can consider as a two-dimensional flow. And you 
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can have the assumptions of steady, laminar and incompressible flow. Then you can have 

the assumptions of constant properties, where density and viscosity remain constant, and 

we are anyway considering the fully developed flow.  

You have already seen that in fully developed flow the velocity v in y direction, it is 0 or 

first let us consider that you have axial direction as x. So, this is your x, and axial 

velocity as u. And in y direction you have v velocity, and this is your y direction 

velocity.  

So, from fully developed velocity profile, so for fully developed flow condition you can 

write v = 0 everywhere; and axial velocity is constant in the axial direction, so 0
u

x





. 

So, under this assumptions now let us write the x momentum equation.  

So, you can see your x momentum equation 

is
2 2

2 2
( ) ( )

u u u P u u
u v

t x y x x y
 
     

     
     

. So, this is your x momentum equation.  

So, as we have assumed that it is a steady state flow, then obviously, 0
u

t





. So, this is 

your 0 as it is steady state, 0
u

x





fully developed condition; v = 0 fully developed 

condition; and 
2

2

u

x




=0 as fully developed condition, so fully developed flow. So, we can 

see that as 0
u

x





, then u is function of y only.  

Similarly, if you write the y momentum equation, then you will find that only 0
P

y





. 

So, all terms will get cancelled – the temporal term, convection term, the diffusion term, 

so all these terms will get cancelled and you will have just all these terms will be 0, and 

you will have 0
P

y





. So, you will have from y momentum equation you will 

get 0
P

y





, so that means, p is a function of x only.  
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 So, under this situation this x momentum governing equation you can write as, so u is 

function of y only, so you can write
2

2

1d u dP

dy dx
 , so because p is function of x only. So, 

this is your now you got ordinary differential equation. So, we started with the partial 

differential equation, but invoking the assumptions and putting some terms 0, you got the 

ordinary differential equation. Now, with proper boundary condition, you will be able to 

integrate this ordinary differential equation.  

What are the boundary conditions? So, you can see that we have taken axis in the central 

line as x and y is measured from the central line from here so y. And these two parallel 

plates are separated by a distance 2 h. So, the boundary conditions you can write. So, at 

y=h, your u =0 as well as at y = - h ,u = 0, because you have no slip boundary condition 

on upper plate and the bottom plate.  

(Refer Slide Time: 06:46) 

 

So, now let us integrate this equation. So, you have
2

2

1d u dP

dy dx
 . So, if you integrate it, 

you will get 1

1du dP
y C

dy dx
  . And again if you integrate, then you will 

get
2

1 2

1
( )

2

dP
u y y C y C

dx
   . So, C1,C2 are integration constant. 
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Now, you invoke the boundary conditions, you have two boundary conditions because 

there is as you have two boundary conditions you will be able to find the two constant C1 

and C2. So, y =H , u = 0. So, you will get 2

1 2

1
0

2

dP
H C H C

dx
    and similarly at y = -

H, you have 2

1 2

1
0

2

dP
H C H C

dx
   .  

So, if you say that this is equation number 1 and this is equation number 2, then if you 

subtract equation 2 from 1.  So, subtracting equation 2 from equation 1 ; so what you will 

get? So, if you subtract, you will get 12 0C H  . That means, C1 = 0 and if you add these 

two equation adding equations 1 and 2, what you will get?  

So, this term will get cancelled, this 1C H - 1C H . So, this will be 0. So, you will 

get 2

2

1
2[ ] 0

2

dP
H C

dx
  , so that means, you will get

2

2
2

H dP
C

dx
  . 

So, if you put these values C1, C2, so you will get the final velocity profile. So, velocity 

profile you will get, 
2

21
( )

2 2

dP H dP
u y y

dx dx 
  . So, this you can write, 

2 2

2
( ) ( )[1 ]

2

H dP y
u y

dx H
   . 

So, you can see that it is a parabolic profile. So, this is parabolic profile for velocity 

which is symmetric about y = 0. So, you can see the velocity profile here. So, this is your 

x direction. So, it is actually symmetric about y = 0. So, you will get at y = 0 if you put, 

then velocity will be maximum, because there you will get maximum velocity which is 

your central line velocity and the profile will be parabolic. So, u y is parabolic.  

You can see here that we have written this
dP

dx
 as -

dP

dx
. So, you can see that flow will 

takes place from high pressure region to low pressure region. So, in the positive x-

direction or along the axial direction, your pressure will decrease. Hence -
dP

dx
will be a 

positive quantity that is why we have written as-
dP

dx
. So, now, we are interested to find 

what is the mean velocity or average velocity at any cross section. 
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So, you can see that mean or average velocity is physically an equivalent uniform 

velocity field that could have given rise to the same volume flow rate as that induced by 

the variable velocity field under consideration. So, if you calculate the volume flow rate 

Q, so you can write mQ u A , where um is the mean velocity. 

And that if you see now if you take a small elemental flow area of distance d at a 

distance y from the central line of distance dy. If you consider an elemental flow area at 

a distance y from the central line of distance dy, then your this flow area will be just dy 

into the width of the channel, width means perpendicular to this board whatever distance 

you have.  

So, that if you consider as width, then you can write dA= Wdy. And total flow area will 

be, so this is your twice h is the distance between two parallel plates. So, it will be 

2A HW .  

So, now, if you consider this elemental area, so what is flow is happening so that you can 

integrate from ( )

H

H

u y dyW


 , so that is the elemental area dA= Wdy, so that we have 

written. So, now, your mean velocity will be
2 2

2

1
( )(1 )

2 2

H

m

H

H dP y
u Wdy

HW dx H


   s. 
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So, now, you will get, 
2 2

2

0

2
( ) (1 )

2 2

H

m

H dP y
u dy

H dx H
   .  

So, you can see that we have written this, 
3

02
( )[ ]

2 3

H

m

H dP y
u y

dx H
   .  

So, if you put H, then we are going to get
3

2
( )[ ]

2 3
m

H dP H
u H

dx H
   . So, this you can see 

that it will be 2 by 3. So, 
2

( )
2 3

m

H dP H
u

dx
  . So, hence you can write

2

( )
3

m

H dP
u

dx
  . 

So, now, you can see that you can represent the constant pressure gradient minus dp by 

dx in terms of the mean velocity. 

So, you can write minus
2

3
( ) mudP

dx H


  . So, we can see here that your right hand side, 

you have μ which is your fluid property, dynamic viscosity that is positive quantity, um 

which is your velocity mean velocity that is also constant and positive, and H which is 

your the distance from the central line so that is also constant. So, obviously, right hand 

side is constant, that means, 
dP

dx
 is constant.  

So, now if you find the velocity profile, so you can write in terms of mean velocity, 

2 2

2
( ) ( )(1 )

2

H dP y
u y

dx H
   .  

So, now, this 
dP

dx
 if you put it here, you are going to get, 

2

2

3
( ) (1 )

2
m

y
u y u

H
  . So, your 

velocity profile you can write in terms of mean velocity as, 
2

2

3
( ) (1 )

2
m

y
u y u

H
  . And if 

you find the maximum velocity, then you have to find the velocity at central line which 

is y =0. 
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So, you will get maximum velocity. So, maximum velocity will occur at central line, 

where u at y =0. So, if you put it, you are going to get
2

max 0 ( )
2

c y

H dP
u u u

dx
     . And 

that if you write 
dP

dx
 in terms of

2

3 mu

H


, then you are going to get , 

2

2

3

2

m
c

uH
u

H




 .  

So, it will be just
3

2
mu . So, you can see that in case of flow fully developed flow inside 

two infinite parallel plates, your maximum velocity is 1.5 times the average velocity, 

because here you can see that uc, which is your maximum velocity is 1.5 times the mean 

velocity for fully developed flow. Now, if you find what is the shear stress acting on the 

wall, then you can write shear stress, so that you can write w

du

dy
  .  

So, at any wall you can calculate. So, y = H let us calculate. So, you can 

write w y H

du

dy
    . So, what is

du

dy
? So, we can see this easily you will 

get w =
1 dP dP

H H
dx dx




 , and
3

( ) mudP

dx H


  . So, if you put it, then, 

3
( ) 3m

w y H m

u
H u

H


      .  
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So, similarly if you calculate, 3w y H mu   . And you can see that your shear stress 

inside the fluid, it will vary linearly, now we will define the friction factor. So, this is the 

non-dimensional representation of the pressure gradient. So, if you calculate non-

dimensional pressure population, then that is known as the friction factor.  

So, friction factor you can calculate, so this is
2

( )2

1

2
m

dP
H

dxf

u



 . So, this if you find, so 

what you are going to get? So, 
dP

dx
 is this one. So, you can write

2

3
2

1

2

m

m

u
H

Hf

u





 . So, if 

you rearrange you will get this as, 
24

(2 )mu H



. 

So, you can see this is your Reynolds number based on the mean velocity and the 

channel height, then you can write
2

24

Re H

. So, friction factor we have represented in the 

terms of the non-dimensional number Reynolds number based on the channel height. So, 

friction factor
2

24

Re H

f  .  

If you calculate the skin friction coefficient, so this is dimensionless representation of the 

wall shear stress, so skin friction coefficient. So, it is represented as Cf . So, this 

is
2 2

3

1 1

2 2

w m
f

m m

u
C

u u

 

 

 
  . 

So, you can rearrange it, and you will get
12

(2 )mu H



, and you can write
2

12

Re H

. So, for 

the fully developed flow inside two parallel plates, we have calculated the shear stress on 

the wall.  
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And, hence we have calculated the skin friction factor which is your dimensionless 

representation of the wall shear stress as 
2

12

Re H

where 2Re H is the Reynolds number 

based on the channel height.  

So, this is your Reynolds number. So, this is your based on 2H. So, Reynolds number we 

have defined based on mean velocity um, and the channel height 2H.  

(Refer Slide Time: 23:53) 

 

Next we will consider plane Couette flow. This is the flow between two infinite parallel 

plates where one plate is moving with respect to the other. So, you can see that these are 

the two fixed plates, and this upper plate is moving with velocity u in the axial direction 

ok. So, some constant velocity u it is moving with respect to the bottom wall.  

So, this is your x-direction, and y is measured from the bottom wall, and bottom wall is 

stationary. So, bottom wall is stationary and upper wall is moving with constant velocity 

u, and y is measured from the bottom wall and the distance between two parallel plates is 

H. 

So, in this scenario now you can see that the flow is taking place. So, here you can see 

that the flow is taking place due to the shear. So, the upper plate is moving. So, due to 

the shear there will be velocity inside the channel. So, this is known shear driven flow 

where your pressure gradient is absent in this particular case, so that is why we have told 

297



 

 

at as plane Couette flow. So, where you have the external pressure gradient as well along 

with the shear driven flow, then it will be Couette flow.  

But here we are considering plane Couette flow where we are assuming that pressure 

gradient is 0. So, in this particular case, now we are considering 0
dP

dx
  and fully 

developed condition. So, obviously, your governing equation whatever we have derived 

in earlier case, you can write
2

2
0

d u

dy
 , because we have considered fully developed flow. 

So, your y direction velocity v =0 as well as your 0
u

x





, because there will be no 

change in the axial velocity in the axial direction. So, your governing equation 

is
2

2
0

u

y





. 

And what are the boundary conditions? Boundary conditions are at y = 0 bottom wall, 

u=0 and upper wall at y =H, it is moving with velocity U. So, you integrate this equation. 

So, you will get 1

du
C

dy
 , and 1 2( )u y C y C  . So, C1 and C2 are constants. So, you can 

see that you will get a linear velocity profile.  

So, now, invoke the boundary conditions at y = 0, u = 0, so u = 0, so we will get C2 = 0; 

and at y = H, u = 0, so you will U = u. So, you will get 1U C H ; C2 = 0, so obviously 

1

U
C

H
 . So, hence you will get the velocity profile ( )

y
u y U

H
 . And you can see that y 

= 0, it is 0 velocity at y = H it is U, and it is linearly varying, it is linearly varying 

because from the velocity profile you can see that it is a velocity varies linearly across 

the gap. 

And if you calculate the shear stress on wall, so you can see that 
du

dy
will be a constant, 

because here you can see w =
du

dy
 and 

du

dy
is constant C1, so that is

U

H
. So, in both the 

plates, you can find that your wall shear stress w

U

H
  . So, along inside the flow also the 
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shear stress will be constant. So, now, if you calculate the skin friction coefficient on 

what will be your mean velocity?  

So, if you calculate the mean velocity, mean velocity, so it is
0

1
H

m

y
u U dy

H H
  . And 

what is u? ( )
y

u y U
H

 dy, so it will be
2

2

y
, hence 

2
m

U
u  .  

If you calculate the skin friction coefficient, so you will find for this particular 

case
21

2

w
f

m

C

u





 
 . So,

21

2 4

U

H
u





. So, if you rearrange, you will get
8

UH



, so you will 

get
8

ReH

. So, we are writing this Reynolds number based on your; based on your upper 

velocity, upper plate velocity u, so that will be ReH

UH


 .  

(Refer Slide Time: 30:25) 

 

So, now, we will consider fully developed flow inside pipe. So, this flow is known as 

Hagen-Poiseuille flow. So, you can see this is your axial direction x, and radial direction 

is r.  

299



 

 

And we are considering axisymmetric flow that means that in circumferential direction 

in phi direction there will be no variation of any variable, so that is your axisymmetric. 

So, in case of axisymmetric your u will be function of r only; and as it is fully developed 

condition then the axial velocity u will be constant or u is function of r only; it is not 

function of x. So, 0
u

x





.  

So, if you consider that. So, you can see that it is a pipe, and these are your pipe wall, 

and the pipe radius is r0. And this is your central line, and r is measured from the center. 

So, if you write the fully developed condition, so in this particular case x is your axial 

direction ok, r is your radial direction, u is your axial velocity, and v is your radial 

velocity ok. 

So, as it is a fully developed flow, so 0
u

x





, because your in axial direction there will 

be no change in the velocity profile. So, 0
u

x





. So, u is function of r only. And radial 

velocity everywhere v = 0. And one most important assumptions that we have taken it is 

axisymmetric flow. 

So, if you considered that your circumferential direction if you miss that, so let us say 

this is your Φ or θ let us say Φ, then ( var ) 0any iable






, and the velocity in Φdirection 

also 0. So, if you say that velocity w which is in Φ direction, so it will be this it will be 0 

in axisymmetric flow.  

So, if you consider the momentum equation, then you can see that you are invoking all 

these assumptions, you will get this ordinary differential equation which is your 

governing equation. You will get
1

0 ( )
P u

r
x r r r


  

  
  

.  

Here also you will find that p is function of x only, and you can write
P dP

x dx





, and u is 

function of r only. So, you can write
1

( )
d du dP

r r
dr dr dx

 . So, now, if you integrate it, so 
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you will get 2

1

1

2

du dP
r r C

dr dx
  . If you divide by r,  then 11

2

Cdu dP
r

dr dx r
  . And again 

if you integrate, then you will get the velocity profile as 2

1 2

1
( ) ln

4

dP
u r r C r C

dx
   .  

So, now you invoke the boundary condition, what are the boundary conditions? At r = 0, 

you have u finite; and at r = r0 which is your wall you have velocity 0, u = 0. So, if you 

write boundary conditions, boundary conditions, so at r = 0, u is finite;. So, you can see 

that if u is finite, then C1 must be 0. So, C1 is 0. And r = r0 ,u = 0 because that is your 

wall, so it will be r0.  

So, you will get
2

0
20

4

r dP
C

dx
  . So,

2

0
2

4

r dP
C

dx
  .  

(Refer Slide Time: 36:14) 

 

Hence you can write the velocity profile as so velocity profile you can write now, u is 

function of r only. And if you put the constant, so you can see that
2

0
2

4

r dP
C

dx
  . So, 

you can write as
2 2

0

1 1
( )

4 4

dP dP
u r r r

dx dx 
  . 
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So, hence you will get
2 2

0

2

0

( ) ( )[1 ]
4

r dP r
u r

dx r
   . So, you can see that this is also your 

parabolic profile.  

So, you can see you will get a parabolic velocity profile, where r = 0 you will get the 

maximum velocity; and at walls obviously it is 0. So, r = 0, r = r0, it is 0. So, you will get 

a velocity profile which is u is function of r, so and you will get a parabolic profile.  

And we are writing u as 
dP

dx
 in term, we are writing u(r) in terms of 

dP

dx
 because 

dP

dx
 is positive quantity because in axial direction you have 

dP

dx
  is positive, because 

your pressure gradient is decreasing in the axial direction. So, generally if 
dP

dx
< 0, so this 

is known as favourable pressure gradient; and if 
dP

dx
>0, then it is known as adverse 

pressure gradient, because you have pressure gradient as positive and your flow reversal 

may take place.  

So, generally 
dP

dx
<0, then it is known as favourable pressure gradient. And if 

dP

dx
>0, 

then it is a adverse pressure gradient. Now, you want to calculate the mean velocity in 

Hagen-Poiseuille flow. So, you can calculate the mean velocity as, 

so Q u ( )m

A

A u r dA   . So, in this particular case, you can see that you have a circular 

cross section.  

So, at a distance r you take one elemental flow area. So, this is your elemental flow area 

of distance dr. So, what will be your dA in this particular case? So, this is the elemental 

flow area. So, 2dA rdr . So, this is the area. And total area is 2

0A r . 

So, if you put it here, so you will get as
0 2 2

0

2 2

0 00

1
u ( )[1 ]2

4

r

m

r dP r
rdr

r dx r


 
   .  
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So, this π, π you cancel. And you can write it as, so these other 2

0r also you can cancel 

because this is constant. So, you can write as
3

2

0

1
u ( )[ ]dr

2
m

dP r
r

dx r
   . 

So, if you integrate it, so you will get 0

2 4

02

0

1
u ( )[ ]

2 2 4

r

m

dP r r

dx r
   . So, if you put the 

value, so it will be
2

01
u ( )

2 4
m

rdP

dx
  . So, hence you will get

2

0u ( )
8

m

r dP

dx
  . So, now, 

you can express 
dP

dx
 in terms of mean velocity. 

(Refer Slide Time: 41:59) 

 

So, 
dP

dx
  you can express in terms of mean velocity, so that will be

2

0

8
um

dP

dx r


  . So, 

now, you can express this velocity profile in terms of the mean velocity. So, you can see 

that, 
2

2

0

u(r) 2u (1 )m

r

r
  .  

Similarly, now if you find the maximum velocity which will occur at the central line 

where r = 0, then you can write maximum velocity, max 0u 2c r mu u u    . So, in this 

particular case, you can see that when you consider the flow inside pipe, then your 

maximum velocity will be twice of the average velocity or mean velocity. 
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So, this your umax, you can see it is twice into the mean velocity. And when we consider 

flow between two parallel plates umax was 1.5 times the mean velocity um. So, you should 

remember here.  

So, when you consider pipe flow, your maximum velocity is twice the mean velocity; 

and when you consider flow between parallel plates, then your maximum velocity will 

be 1.5 times the average velocity. So, now, we want to calculate the shear stress at the 

wall, that means, at r = r0 we want to calculate the shear stress. So,
0w r r

du

dr
    . 

So, shear stress you can calculate
0w r r

du

dr
    . So, you can see 0

1
( )

2
w

dP
r

dx
 


  . So, 

it will be just 0 ( )
2

r dP

dx
 . And

2

0

8
um

dP

dx r


  . So, you will you will see that if you put it, 

you will get
0

8

(2 )

m
w

u

r


  . 

So, now, if you want to calculate the skin friction coefficient, what is skin friction 

coefficient? It is the dimensionless shear stress, or sometime it is known as fanning 

friction coefficient. So, you can write
21

2

w
f

m

C

u





 
 . So, you can see that

2

0

8

1
2

2

m
f

m

u
C

r u





 . 

So, if you rearrange it, you can write it as
0

16

(2 )mu r



. So, you can write
16

ReD

. D is the 

diameter of the pipe, so that is 2r0. So, a Reynolds number we have defined here, 

Reynolds number we have defined here based on the diameter and mean velocity. So, 

0(2 )
Re m

D

u r


 .  

Similarly, if you to want to calculate the friction factor which is your non-dimensional 

pressure gradient, so that you can write it as friction factor for this particular case it is 
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known as Darcy friction factor also. So, you can see that
0

2

( )(2 )

1

2
m

dP
r

dxf

u



 . So, 

0

2 2

0

8 (2 )

1

2

m

m

u r
f

r u





 . 

So, if you rearrange it, so you will get
0

64

(2 )mu r



. So, you will get
64

ReD

. So, your friction 

factor is
64

ReD

. So, if you see that your friction factor is 4 times your skin friction 

coefficient. Friction factor, so this is your 16 4 and
16

Re
f

D

C  . So, f=4cf. 

So, in today’s lecture, we have found the fully developed velocity profile for three 

different cases. First case, we considered as flow between two infinite parallel plates, 

where your v velocity is 0, and 0
u

x





 which is your axial velocity does not change in 

the x direction. So, with that condition, we found the velocity profile and we have found 

that it is parabolic in nature. And then we can calculated the mean velocity, and then we 

calculated the skin friction coefficient as well as the friction factor. 

Next we considered the plane-Couette flow where we consider the shear driven flow 

between two parallel plates where bottom plate is stationary and upper plate is moving 

with velocity u in the positive x direction. And we have seen that velocity varies linearly 

from bottom plate to top plate. 

Next we considered the Hagen-Poiseuille flow; this is the fully developed flow inside 

pipe. Here we found the velocity profile u as function of r, and that is also parabolic in 

nature. In this particular case also, we found the mean velocity, then skin friction 

coefficient and friction factor. And we have found that friction factor is 4 times the skin 

friction coefficient.  

In Hagen-Poiseuille flow, we have seen that your maximum velocity is 2 times the 

average velocity; and in case of plane-Poiseuille flow your maximum velocity is 1.5 
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times the average velocity. In fully developed case, we have found the velocity profile in 

different channels, and we have found the mean velocity. These we will use in the next 

module when we will find that temperature distribution inside this channel flow. 

Thank you. 
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