Fundamentals of Convective Heat Transfer
Prof. Amaresh Dalal
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Module - 05
Convection in Internal Flows - |
Lecture - 16
Determination of heat transfer coefficient

Hello everyone. So, in last lecture we have calculated the mean temperature for two
different types of boundary conditions; uniform wall heat flux and uniform wall
temperature. Today, we will discuss about the mean temperature first; then we will
discuss about the dimensionless temperature in thermally fully developed region, then

we will determine the heat transfer coefficient and Nusselt number.
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In external flow, we have seen that you can calculate the wall heat flux as
g, = h[T,, —T,]which is your Newton’s law of cooling. Here, T, is the wall temperature

and T, is the free stream temperature. But, internal flows you can see that, there is no

such free stream temperature.

Hence, we need to find some constant temperature at different axial location. And, we

will define the mean temperature or bulk temperature. So, you can see that in channel

flow, the wall heat flux is calculated as q,, =h[T, —T,]. So, here you can see T is the
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wall temperature and Ty, is the mean and sometime it is known as bulk temperature. And,
depending on thermal boundary condition, T,, maybe constant or T,, may be function of

x and T, is always function of x.

Now, let us define the mean temperature. The mean temperature is defined as the energy

average fluid temperature across the channel. You can see that, we can also calculate the

wall heat flux as, g, = meﬂ'out -T,]. So, you can see that there will be variation of

temperature at different axial location. So, at outlet and inlet you can have radial
variation of temperature; so obviously, this will not be useful if you do not know a
constant temperature at the outlet and inlet. So, now, this T, will give you a proper area

weighted average or a mean temperature at any location.

So, you can write that, total energy flow through channel. So, that is you can

writemC,T,, = jpuCpTdA. So, if you see that, T_= %J.,OUCJdA-
m

p

Now, what is m? mis your mass flow rate , mass flow rate. So,m:jpudA; if you

define a mean velocity at that cross section, then m=pu_A. So, flow cross sectional

area, not the heat transfer area; it is a flow cross sectional area.

So, if you put it here and if you assume constant properties, assume constant properties,

then this pC you can take it outside and this m this p you can take it outside. So, you

1 J'quA
canwrite T, = —fquA; because, p C, you can cancel or you can write £ .
u,A J'udA
A

So, for any channel of different cross section maybe circular cross section or square cross
section or flow between two parallel plates; you can calculate the mean temperature

I uTdA
using this formula, where you can writeT =2 . And, this is your bulk mean

J'udA

A

temperature Tp,.
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So, now if you consider a circular pipe; so this is your circular pipe. So, if you consider a
fully developed region, then that will be your velocity distribution u r,. So, it is
hydrodynamically fully developed ; hydrodynamically fully developed flow; then, your

velocity will be only function of r, so u is functional of r.

And, if you see the flow cross sectional area, so that is circular, because it is a circular
pipe. And, if you consider a small elemental area at a radial distance r of distance dr. So,
this is the elemental flow area you are considering. So, this is your radial distance r and
this thickness is dr; then, you can write for circular pipe.

Iu(r)T 2zrdr
For a fully developed profile u(r) you can write Tr, as; so, T, =2

I

fuZ;zrdr
0

So, that is the elemental flow cross sectional area. So, this 2z you can cancel out in the

Ty
J. u(r)Trdr
denominator and numerator. So, you can write -

Iu(r)rdr |

Similarly, if you consider flow between two parallel plates. So, in this particular case let
us say two infinite parallel plates. So, you can have the central line as shown here. So,
this is your axial direction x and this is your y. And, the parallel plates are separated by a
distance 2 H. So, when you calculate the flow cross sectional area, so you can see that at

a distance y, you take a small elemental area that is of distance dy.

So, in this particular case if you consider flow between two parallel plates; two parallel
plates , then what will be your dA? So, dA in this particular case you can see that it will
be dy , dy into third direction whatever width you have; so, into w we can write or per
unit width also you can calculate. So, dA = dyW, where W is the width, so perpendicular
to this board.
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So, if you calculate the mean temperature in this particular case, then it will be you can

see that your y is varying -H to H. So, u which is function of y, then your cross sectional

T u(y)Twdy

area is dA = dyW; so, T, = =+———— So, w is constant.
[ u(y)wy
H
H
[ u(y)Tdy
So, you can write now T, ==2———. So, depending on the flow cross sectional area,
[ uty)dy

-H
you can consider the elemental flow area dA. And, accordingly you can calculate the

mean temperature or it is also known as bulk temperature.

So, now let us discuss about the dimensionless temperature in thermally fully developed

region. So, already we have introduced this dimensionless temperature @ which

isg(r) =

. So, in this particular case you can see that T,-T varies in similar way as

W m
Tw-Tm; SO that, in axial direction there is no variation of this dimensionless temperature

phi in fully developed region. So, @ is function of r only.

(Refer Slide Time: 13:49)
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So, thermally fully developed region, we can introduce this dimensionless

TW(X) -T (r, X)
TW(X) _Tm (X)

the mean temperature and T(r,x) is the fluid temperature distribution. So, this is your

temperature ¢(r) = . So, you know that T, is the wall temperature, T, is

fluid temperature distribution. So, this dimensionless temperature expression is valid for

both thermal condition constant wall temperature and constant wall heat flux.

So, now, for thermally fully developed condition %:0; because, @ is function of r
only, so% 0. So, if it is so, so you can see that— [M] 0. So, if you take
OX T,(X) =T, (X)
the derivative; so, you can write,
_dT,
dx -0
> =0.
I.—rw(x)_Tm(X)]
dT, aT, (0-T(r, ﬂ—%}:o
dx

dT T WX)=T(r, x) dT
dx T,0)-T.(%) Y dx

So, if you rearrange it, you can write — i m}. So, you
dx

can see that, this quantity is nothing but, @®. So, you can write it

oT dT dT
ox dx

Doy,

So, this result will be used in analyzing thermally developed flow in channels. So, later
we will use this relation, but now let us consider two different boundary conditions. So,

now, let us consider two different boundary condition and see the simplification in

. . oT
finding—.
g OX
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Dimensionless temperature, ¢(r)
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So, for uniform wall temperature case. So, if you consider this, then what you can write?

So, our expression is ﬁ: dTW—¢(r){dTW—dTm}. So, in this particular boundary
ox  dx dx  dx

. dT, s .
condition T,, = constant. So, 5 * =0. So, you put it in this expression. So, T,, = constant
X

; hence, a, =0. So, you can writeﬁ =¢(r) aT, :
dx OX dx

. . . . oT .
So, the axial variation of this temperature profile T, 8—you can express in terms
X

dT . : . .
5 ™. Now, if you consider for uniform wall heat flux case, then these expression
X

you can write as; so, for uniform wall heat flux case. So, for uniform wall heat flux case

of g(r)

we know that, T, (x)—T, (X) = constant. So, that we have shown.

dT,, = dT,, : because this
d dx

So, this is your constant. So, if it is constant, then you can write
X

dr, = di . So, thermally fully developed region, you can

is constant, so it will be 0. So,
dx dx

. oT dT,
write — =
ox  dx

—¢(r)X0, because you can see d(;l;:v = ddT; . So, it will be 0.
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So that means, you have E:ﬂ:%. And, already we know that you
ox dx  dx

q,, Px dT.  q,P

haveT (x) =T, + . S0,—™ = —*— S0, now, you can see this quantity is constant,

' dx
mC, mC,

q,P dT, . : :
because ——all are constant. So, is constant. So, this you can write

mC, dx
q,P T . oT
—*—=constant. So, these are the simplification to find the M for a thermally fully
mC X

p
developed region for both the thermal conditions. So, now, to calculate the heat transfer

coefficient, first we will use the scale analysis.

(Refer Slide Time: 22:41)

Heat transfer coefficient, h(x); Nusselt number, Nu(x)
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So, you can see that, if you have let us say a circular pipe of radius ro and this is your
radial direction. And, if you take the g, in inward direction. So, q,,; then, you can define

whatever heat is conducted that will be conducted. So, from is equating the Fourier’s and

Newton’s law, you can write equating Fourier’s law and Newton’s law of cooling. What

) ) oT
you can write? You can write; so, K El

r=r *
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So, at r =ro. So, it is plus, it is not minus, because you are taking in a negative r direction,
. oT . : : . . :
because this KE in general for Fourier’s law heat conduction we write minus; but in

this particular case you can see that radial direction is in this outward direction, but
a, we are considering in the inward direction. So, it will be plus, K Z—L_r =h[T,-T,].
r 0

kK,

or

So, you can see thath = _ . So, as earlier we will use the scale analysis. So, the

temperature difference we will take the scale of AT. So, we will take AT and the radius

K AT
we will take order of the thermal boundary layer thickness &t. So, h ~ o .

So, you can see thath~5£. So, now, if you see the Nusselt number based on the
T

diameter, then you can calculate Nusselt number. So, this is your heat transfer coefficient

hD h
and Nusselt number now you can calculate as; so, Nu, = o So, you can see Nu, ~ P&

So, it will be Nu, ~52.

T

So, now, if you consider entrance region and the fully developed region, then what will
be your Nusselt number? So, you can see for fully developed region , we are talking
about thermal fully developed region ; thermal fully developed region. So, in this case

your &7 will be order of diameter, because in a fully developed region yourd; ~ D. So,

your Nu, ~1. So, you can see in the fully developed region, Nusselt number is constant

right. And, heat transfer coefficient you can see it ish ~ ; :
T

So, in fully developed region, what will be your h?h~%; because your thermal

boundary layer thickness merges at the center line. So, your thermal boundary layer
thickness will be just 6t as D; actual case the thermal boundary layer thickness will be
order of r naught which is your radius of the pipe; but, as we are using the scale analysis,
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. K . . .
o; ~D. So, you can writeh ~ o So, you see k is the for a constant properties K is

constant, D is the diameter is constant. So, it will be also constant in a fully developed

region.

So, using scale analysis we are showing that heat transfer coefficient and Nusselt number

are constant in a thermally fully developed region. And, later when you will actually

calculate the value of Nusselt number, it will be constant. Now, if you consider entrance

region. So, in the entrance region your thermal boundary layer thickness will start

growing. So, you can take o _

1

x  Re, Pr '

(Refer Slide Time: 28:05)

Heat transfer coefficient, h(x); Nusselt number, Nu(x)

So, for developing region or entrance region; developing region or entrance region; so,

what you can write? 6t grows from 0 to ro, right. So, your o _

1
x JRe,Pr

shown in external flows right, L for all Prandtl number range.

1
x JRe Pr

that we have

So, now, Nuj, ~52. So, you can write Nu, ~Bi. So, Nusselt number D will be;

T

X O;

D
now, Nu, ~ —Pr’2 Re’ .
X
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So, now this convert this Reynolds number based on x to Reynolds number based on

diameter. So, Re, =%ReD right. So, Nu,, ~ Epr%(%)% Re’. So, Nu, ~ (9)% Pr’ Re’z.
X X

__Nup, ~1. So, you can see that your Nusselt number will be will depend on
(Pr ReD)}/2
X
D
Prandtl number and Reynolds number and it is in developing region, the Nusselt number

So, in

will be Pr’? Re/? into some constant.

So, later we will consider one case, where we will consider a fully developed,
hydrodynamically fully developed flow and thermally developing flow where we will
calculate the Nusselt number. But, in the other two cases, we will consider both
hydrodynamically and thermally fully developed region. So, it is easy to calculate the
Nusselt number and you have we have shown now that Nusselt number will be constant

value for both the thermal boundary conditions.

Now, if you write this heat transfer coefficient in terms of dimensionless temperature;

TW(X) -T (r! X)

then, ¢= T (0)-T.() )

where T, is the mean temperature. So, if you take the

derivative with respect to r. So, what we will get?% =—;g. So, now, let
dr T,(X)—T_(x) or

us calculate the heat transfer coefficient h.

So, you can see that h equating the Fourier’s law and the Newton’s law, you can write h
equal to; so, equating the Fourier’s law and the Newton’s law of cooling, you can
oT
“ar

w m

writeh = . So, we are considering this as r, tube radius is ro and g, we are

considering this. So, now, you can see. So, aa—: if you put it here; so, what you will get?

dg

So, h is equal to; so, h=-K er:ro .
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So, and you can see here k is thermal conductivity, right. So, for constant properties r is
d : o
constant andd—flrro, at r = ro; so obviously, this will be also constant. So, for a fully

developed region, so you can write that, this is equal to constant.

So, from the scale analysis we have already shown that, your h and Nusselt number will

be constant for a thermally fully developed region. And, in this case also you can see k is

- . d i : .
the thermal conductivity that is constant andd—f, because @ is function of r only, right.

d .
So, d—fyou are calculating at r = ro; that means, at the tube surface.

dg

So, obviously ar will also constant, so h will be constant. And, similarly Nusselt
r

. hD N d
number you can write Nu, = So, from here you can see it will be —Dd—(/ﬁL_r . So,
r- 0
you can see here also this is constant. So, for thermally fully developed region you can
d : . : : .
calculate the Nu, =-D d—flrro , Where @ is the dimensionless temperature defined as this

and it is true for both the thermal boundary conditions.

(Refer Slide Time: 34:45)
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So, now let us solve one example problem; Water flows through a tube with a mean

velocity of 0.2 m/s. The mean inlet and outlet temperature are 20°C and 80°C
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respectively. The inside diameter of the tube is 0.5 cm. The wall is heated with uniform
heat flux of 0.6 W/cm?. If the flow is fully developed at the outlet, the corresponding
Nusselt number for laminar flow is given by Nup = 4.364. Determine the maximum wall

temperature.

So, you can see that, first we have to consider whether this is laminar flow or turbulent
flow. And, whether it is developing region or fully developed region. If it is fully
developed region, then the Nusselt number is given for this particular constant wall heat
flux condition. So, you can see schematically. So, this is your g, right, constant wall heat
flux is given and at x =0 you have T, and at x = L you have Tmo. And, in this case T, is
function of x and Ty, is also function of x. And, you can see that your mean velocity is

given as 0.2 m/s.

Your inlet mean temperature is given as 20°C and outlet mean temperature is given as
80°C, q,,=0.6 W/cm®. So, if you convert it to W/m? So, it will be 6000 W/m?. And,
diameter of the pipe is 0.5 cm, so it will be 0.005 m. And, the properties are also

provided; so, at mean temperature. So, the properties are given as C, = 4.82 J/kgK or
JIkg®C, thermal conductivity 0.6405 W/m°C, Prandtl number is given as 3.57.

Kinematic viscosity of the fluid is given as 0.5537 X10™ ® m%s, and density is given as

988 kg/m>. So, the fluid is a water, because it is already given water. So, now, you

u D
calculate the Reynolds number. So, Reynolds number you can calculate asRe, = —"—.
14

So, if you put all these values, you will get 1806. So, you can see that the Reynolds
number < 2300, obviously this is the laminar flow. Now, you see, whether it is

developing or fully developed region. So, we know that% =C, Re,.
h

And, from here you can see that Cy, for the circular pipe is given as 0.056 from the table

we have already shown. So, Ly will be 0.506 m. And,%zcT PrRe,. And, for this
h

circular pipe your Ct =0.043, for the constant wall heat flux boundary condition; so, Lt

will be 1.386 meter. So, now, let us calculate the tube length, because this is unknown,

right.
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So, these L we have to calculate from this equation. So, we can see that g into the heat

. " : me (Tmo _Tmi)
transfer area. So, that is your, g, zDL=mC (T ,—T). So, yourL = T )
72: w

: D® . . -
So, you can see thatm = pu_, ﬂT and all the properties are given and q also is given.

So, Tmoe and T, are given. So, you just calculate the length of the pipe. And, this length

of pipe is you will get as; m if you calculate, it will be 0.00388 kg /s. So, L will be if you
put it 10.33 m.

So, now, the tube length is 10.33 m and your entrance length, you can see L, and L+ it is
just 0.506 m hydrodynamic entrance length, and thermal entrance length is 1.386 m. So,
it is very very small compared to the length of the pipe. And, you are asked to find the
maximum wall temperature at the maximum wall temperature, and maximum wall

temperature will occur at the outlet for this particular case.

(Refer Slide Time: 41:35)
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So, you can see your T, (x) for this particular case you know that it is

L Px 1 L . .
T,(X) =T +09,[——+=]. So, in this particular case as it is a fully developed flow, so h
mC, h
IS constant. So, in this expression you can see that, if this term is constant; so as x

increases, your T, also will increase.
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So, maximum temperature will occur, maximum temperature you will get,

T,|

max@x=L

=T, + q;V[P—L + %] . So this heat transfer coefficient for fully developed flow,
mC

p
. . . , hD
Nusselt number is given. So, that is your 4.364. So, this is nothing but,? =4.364. So,

if you calculate the h you will get 559 W/m?°C.

So, now this T,, maximum you can now calculate h you know, P Lme . What is P? P is

nothing but, P=7D, m already you have calculated, g, you know, Tpi you know; you

put all the values this T, |,W@X:L you will get as 90.7 °C.

So, in this particular case we have to calculate first, whether it is the flow is laminar or
turbulent and where are you are calculating at outlet, whether it is developing region or
fully developed region that we have calculated the entrance length for both thermal and

hydrodynamic.

So, we have seen that it is very very small compared to the length of the pipes. So, at the
outlet it will become anyway fully developed flow and fully developed flow Nusselt
number, from Nusselt number you can calculate the heat transfer coefficient. So, in
today’s lecture, first we have calculated the mean temperature, ok. So, if you know the
velocity profile and the temperature profile, then you can calculate the mean temperature

at any cross section.

Then, we have discussed about the dimensionless temperature phi in a thermally fully
developed region. And, we have simplified the aa—l for two thermal boundary conditions.

Then, we have calculated the heat transfer coefficient and the Nusselt number using scale
analysis. And, we have shown that in fully developed region h is constant and also

Nusselt number constant.

However, in developing region as delta increases with x, so your h and Nusselt number
both will increase in axial, both h and Nusselt number will vary in axial direction. Then,
also we have calculated the heat transfer coefficient and a Nusselt number in terms of the
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d¢
dr

developed for thermally fully developed region, the heat transfer coefficient and Nusselt

dimensionless temperature getting——. And, here also we have shown for a fully

number are constant.

Thank you.
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