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Hello everyone. So, in last lecture we have calculated the mean temperature for two 

different types of boundary conditions; uniform wall heat flux and uniform wall 

temperature. Today, we will discuss about the mean temperature first; then we will 

discuss about the dimensionless temperature in thermally fully developed region, then 

we will determine the heat transfer coefficient and Nusselt number. 

(Refer Slide Time: 01:03) 

 

In external flow, we have seen that you can calculate the wall heat flux as 

'' [ ]w w mq h T T  which is your Newton’s law of cooling. Here, Tw is the wall temperature 

and T∞ is the free stream temperature. But, internal flows you can see that, there is no 

such free stream temperature.  

Hence, we need to find some constant temperature at different axial location. And, we 

will define the mean temperature or bulk temperature. So, you can see that in channel 

flow, the wall heat flux is calculated as '' [ ]w w mq h T T  . So, here you can see Tw is the 
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wall temperature and Tm is the mean and sometime it is known as bulk temperature. And, 

depending on thermal boundary condition, Tw maybe constant or Tw may be function of 

x and Tm is always function of x. 

Now, let us define the mean temperature. The mean temperature is defined as the energy 

average fluid temperature across the channel. You can see that, we can also calculate the 

wall heat flux as, 
.

'' [ ]w p out inq mC T T  . So, you can see that there will be variation of 

temperature at different axial location. So, at outlet and inlet you can have radial 

variation of temperature; so obviously, this will not be useful if you do not know a 

constant temperature at the outlet and inlet. So, now, this Tm will give you a proper area 

weighted average or a mean temperature at any location. 

So, you can write that, total energy flow through channel. So, that is you can 

write
.

p m pmC T uC TdA  . So, if you see that, 
.

1
m p

p

T uC TdA

mC

  .  

Now, what is 
.

m ? 
.

m is your mass flow rate , mass flow rate. So,
.

m udA  ; if you 

define a mean velocity at that cross section, then 
.

mm u A . So, flow cross sectional 

area, not the heat transfer area; it is a flow cross sectional area. 

So, if you put it here and if you assume constant properties, assume constant properties, 

then this 
pC you can take it outside and this 

.

m this ρ you can take it outside. So, you 

can write 
1

m

m

T uTdA
u A

  ; because, ρ Cp you can cancel or you can write A

A

uTdA

udA




.  

So, for any channel of different cross section maybe circular cross section or square cross 

section or flow between two parallel plates; you can calculate the mean temperature 

using this formula, where you can write A
m

A

uTdA

T
udA





. And, this is your bulk mean 

temperature Tm. 
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So, now if you consider a circular pipe; so this is your circular pipe. So, if you consider a 

fully developed region, then that will be your velocity distribution u r,. So, it is 

hydrodynamically fully developed ; hydrodynamically fully developed flow; then, your 

velocity will be only function of r, so u is functional of r.  

And, if you see the flow cross sectional area, so that is circular, because it is a circular 

pipe. And, if you consider a small elemental area at a radial distance r of distance dr. So, 

this is the elemental flow area you are considering. So, this is your radial distance r and 

this thickness is dr; then, you can write for circular pipe. 

For a fully developed profile u(r) you can write Tm as; so,

0

0

0

0

( ) 2

2

r

m r

u r T rdr

T

u rdr










. 

So, that is the elemental flow cross sectional area. So, this 2π you can cancel out in the 

denominator and numerator. So, you can write

0

0

0

0

( )

( )

r

r

u r Trdr

u r rdr





. 

Similarly, if you consider flow between two parallel plates. So, in this particular case let 

us say two infinite parallel plates. So, you can have the central line as shown here. So, 

this is your axial direction x and this is your y. And, the parallel plates are separated by a 

distance 2 H. So, when you calculate the flow cross sectional area, so you can see that at 

a distance y, you take a small elemental area that is of distance dy.  

So, in this particular case if you consider flow between two parallel plates; two parallel 

plates , then what will be your dA? So, dA in this particular case you can see that it will 

be dy , dy into third direction whatever width you have; so, into w we can write or per 

unit width also you can calculate. So, dA = dyW, where W is the width, so perpendicular 

to this board. 
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So, if you calculate the mean temperature in this particular case, then it will be you can 

see that your y is varying -H to H. So, u which is function of y, then your cross sectional 

area is dA = dyW; so, 

(y)

(y)

H

H
m H

H

u TWdy

T

u Wdy










. So, w is constant.  

So, you can write now

(y)

(y)

H

H
m H

H

u Tdy

T

u dy










. So, depending on the flow cross sectional area, 

you can consider the elemental flow area dA. And, accordingly you can calculate the 

mean temperature or it is also known as bulk temperature. 

So, now let us discuss about the dimensionless temperature in thermally fully developed 

region. So, already we have introduced this dimensionless temperature Φ which 

is ( ) w

w m

T T
r

T T






. So, in this particular case you can see that Tw-T varies in similar way as 

Tw-Tm; so that, in axial direction there is no variation of this dimensionless temperature 

phi in fully developed region. So, Φ is function of r only. 

(Refer Slide Time: 13:49) 
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So, thermally fully developed region, we can introduce this dimensionless 

temperature
( ) ( , )

( )
( ) ( )

w

w m

T x T r x
r

T x T x






. So, you know that Tw is the wall temperature, Tm is 

the mean temperature and T(r,x) is the fluid temperature distribution. So, this is your 

fluid temperature distribution. So, this dimensionless temperature expression is valid for 

both thermal condition constant wall temperature and constant wall heat flux.  

So, now, for thermally fully developed condition 0
x





; because, Φ is function of r 

only, so 0
x





. So, if it is so, so you can see that

( ) ( , )
[ ] 0

( ) ( )

w

w m

T x T r x

x T x T x




 
. So, if you take 

the derivative; so, you can write,  

 
2

{ ( ) ( )}{ } { ( ) ( , )}{ }

0
[ ( ) ( )]

w w m
w m w

w m

dT dT dTT
T x T x T x T r x

dx x dx dx

T x T x


    

 


.  

{ ( ) ( )}{ } { ( ) ( , )}{ } 0w w m
w m w

dT dT dTT
T x T x T x T r x

dx x dx dx


     


 

So, if you rearrange it, you can write
( ) ( , )

{ }
( ) ( )

w w w m

w m

dT T x T r x dT dTT

x dx T x T x dx dx


  

 
. So, you 

can see that, this quantity is nothing but, Φ. So, you can write it 

now ( )[ ]w w mdT dT dTT
r

x dx dx dx



  


. 

So, this result will be used in analyzing thermally developed flow in channels. So, later 

we will use this relation, but now let us consider two different boundary conditions. So, 

now, let us consider two different boundary condition and see the simplification in 

finding
T

x




. 
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So, for uniform wall temperature case. So, if you consider this, then what you can write? 

So, our expression is ( ){ }w w mdT dT dTT
r

x dx dx dx



  


. So, in this particular boundary 

condition Tw = constant. So, 0wdT

dx
 . So, you put it in this expression. So, Tw = constant 

; hence, 0wdT

dx
 . So, you can write ( ) mdTT

r
x dx







. 

So, the axial variation of this temperature profile T, 
T

x




you can express in terms 

of ( ) mdT
r

dx
 . Now, if you consider for uniform wall heat flux case, then these expression 

you can write as; so, for uniform wall heat flux case. So, for uniform wall heat flux case 

we know that, ( ) ( )w mT x T x = constant. So, that we have shown.  

So, this is your constant. So, if it is constant, then you can write w mdT dT

dx dx
 ; because this 

is constant, so it will be 0. So, w mdT dT

dx dx
 . So, thermally fully developed region, you can 

write ( ) 0wdTT
r X

x dx



 


, because you can see w mdT dT

dx dx
 . So, it will be 0. 
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So that means, you have w mdT dTT

x dx dx


 


. And, already we know that you 

have
''

.
( ) w

m mi

p

q Px
T x T

mC

  . So,
''

.

m w

p

dT q P

dx mC

 . So, now, you can see this quantity is constant, 

because 
''

.

w

p

q P

mC

all are constant. So, mdT

dx
is constant. So, this you can write 

''

.

w

p

q P

mC

=constant. So, these are the simplification to find the 
T

x




 for a thermally fully 

developed region for both the thermal conditions. So, now, to calculate the heat transfer 

coefficient, first we will use the scale analysis. 

(Refer Slide Time: 22:41) 

 

So, you can see that, if you have let us say a circular pipe of radius r0 and this is your 

radial direction. And, if you take the qw in inward direction. So, ''

wq ; then, you can define 

whatever heat is conducted that will be conducted. So, from is equating the Fourier’s and 

Newton’s law, you can write equating Fourier’s law and Newton’s law of cooling. What 

you can write? You can write; so, 
0r r

T
K

r






.  
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So, at r =r0. So, it is plus, it is not minus, because you are taking in a negative r direction, 

because this 
T

K
r




in general for Fourier’s law heat conduction we write minus; but in 

this particular case you can see that radial direction is in this outward direction, but 

''

wq we are considering in the inward direction. So, it will be plus, 
0

[ ]r r m w

T
K h T T

r



  


. 

So, you can see that
0

h
r r

m w

T
K

r

T T









. So, as earlier we will use the scale analysis. So, the 

temperature difference we will take the scale of ΔT. So, we will take ΔT and the radius 

we will take order of the thermal boundary layer thickness δT. So, T

T
K

h
T






.  

So, you can see that
T

K
h


. So, now, if you see the Nusselt number based on the 

diameter, then you can calculate Nusselt number. So, this is your heat transfer coefficient 

and Nusselt number now you can calculate as; so, D

hD
Nu

K
 . So, you can see D

h
Nu

K
. 

So, it will be
D

T

D
Nu


.  

So, now, if you consider entrance region and the fully developed region, then what will 

be your Nusselt number? So, you can see for fully developed region , we are talking 

about thermal fully developed region ; thermal fully developed region. So, in this case 

your δT will be order of diameter, because in a fully developed region your T D . So, 

your 1DNu . So, you can see in the fully developed region, Nusselt number is constant 

right. And, heat transfer coefficient you can see it is
T

K
h


. 

So, in fully developed region, what will be your h?
K

h
D

; because your thermal 

boundary layer thickness merges at the center line. So, your thermal boundary layer 

thickness will be just δT as D; actual case the thermal boundary layer thickness will be 

order of r naught which is your radius of the pipe; but, as we are using the scale analysis, 
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T D . So, you can write
K

h
D

. So, you see k is the for a constant properties k is 

constant, D is the diameter is constant. So, it will be also constant in a fully developed 

region.  

So, using scale analysis we are showing that heat transfer coefficient and Nusselt number 

are constant in a thermally fully developed region. And, later when you will actually 

calculate the value of Nusselt number, it will be constant. Now, if you consider entrance 

region. So, in the entrance region your thermal boundary layer thickness will start 

growing. So, you can take
1

Re Pr

T

x
x


. 

(Refer Slide Time: 28:05) 

 

So, for developing region or entrance region; developing region or entrance region; so, 

what you can write? δT grows from 0 to r0, right. So, your 
1

Re Pr

T

x
x


that we have 

shown in external flows right, 
1

Re Pr

T

x
x


for all Prandtl number range.  

So, now,
D

T

D
Nu


. So, you can write

D

T

D x
Nu

x 
. So, Nusselt number D will be; 

now,
1 1

2 2Pr ReD x

D
Nu

x
. 
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So, now this convert this Reynolds number based on x to Reynolds number based on 

diameter. So, Re Rex D

x

D
 ,right. So,

1 1 1
2 2 2Pr ( ) ReD D

D x
Nu

x D
. So,

1 1 1
2 2 2( ) Pr ReD D

D
Nu

x
.  

So, in
1

2

1
Pr Re

( )

D

D

Nu

x
D

. So, you can see that your Nusselt number will be will depend on 

Prandtl number and Reynolds number and it is in developing region, the Nusselt number 

will be 
1 1

2 2Pr ReD  into some constant. 

So, later we will consider one case, where we will consider a fully developed, 

hydrodynamically fully developed flow and thermally developing flow where we will 

calculate the Nusselt number. But, in the other two cases, we will consider both 

hydrodynamically and thermally fully developed region. So, it is easy to calculate the 

Nusselt number and you have we have shown now that Nusselt number will be constant 

value for both the thermal boundary conditions.  

Now, if you write this heat transfer coefficient in terms of dimensionless temperature; 

then, 
( ) ( , )

( ) ( )

w

w m

T x T r x

T x T x






, where Tm is the mean temperature. So, if you take the 

derivative with respect to r. So, what we will get?
1

( ) ( )w m

d T

dr T x T x r

 
 

 
. So, now, let 

us calculate the heat transfer coefficient h.  

So, you can see that h equating the Fourier’s law and the Newton’s law, you can write h 

equal to; so, equating the Fourier’s law and the Newton’s law of cooling, you can 

write
0

h
r r

w m

T
K

r

T T









. So, we are considering this as r, tube radius is r0 and qw we are 

considering this. So, now, you can see. So, 
T

r




 if you put it here; so, what you will get? 

So, h is equal to; so, 
0r r

d
h K

dr


   . 
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So, and you can see here k is thermal conductivity, right. So, for constant properties r is 

constant and
0r r

d

dr


 , at r = r0; so obviously, this will be also constant. So, for a fully 

developed region, so you can write that, this is equal to constant.  

So, from the scale analysis we have already shown that, your h and Nusselt number will 

be constant for a thermally fully developed region. And, in this case also you can see k is 

the thermal conductivity that is constant and
d

dr


, because Φ is function of r only, right. 

So, 
d

dr


you are calculating at r = r0; that means, at the tube surface. 

So, obviously 
d

dr


 will also constant, so h will be constant. And, similarly Nusselt 

number you can write D

hD
Nu

K
 . So, from here you can see it will be 

0r r

d
D

dr


  . So, 

you can see here also this is constant. So, for thermally fully developed region you can 

calculate the
0D r r

d
Nu D

dr


   , where Φ is the dimensionless temperature defined as this 

and it is true for both the thermal boundary conditions. 

(Refer Slide Time: 34:45) 

 

So, now let us solve one example problem; Water flows through a tube with a mean 

velocity of 0.2 m/s. The mean inlet and outlet temperature are 20
0
C and 80

0
C 
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respectively. The inside diameter of the tube is 0.5 cm. The wall is heated with uniform 

heat flux of 0.6 W/cm
2
. If the flow is fully developed at the outlet, the corresponding 

Nusselt number for laminar flow is given by NuD = 4.364. Determine the maximum wall 

temperature. 

So, you can see that, first we have to consider whether this is laminar flow or turbulent 

flow. And, whether it is developing region or fully developed region. If it is fully 

developed region, then the Nusselt number is given for this particular constant wall heat 

flux condition. So, you can see schematically. So, this is your qw right, constant wall heat 

flux is given and at x =0 you have Tmi and at x = L you have Tmo. And, in this case Tw is 

function of x and Tm is also function of x. And, you can see that your mean velocity is 

given as 0.2 m/s. 

Your inlet mean temperature is given as 20
0
C and outlet mean temperature is given as 

80
0
C, ''

wq =0.6 W/cm
2
. So, if you convert it to W/m

2
. So, it will be 6000 W/m

2
. And, 

diameter of the pipe is 0.5 cm, so it will be 0.005 m. And, the properties are also 

provided; so, at mean temperature. So, the properties are given as Cp = 4.82 J/kgK or 

J/kg
0
C, thermal conductivity 0.6405 W/m

0
C, Prandtl number is given as 3.57. 

Kinematic viscosity of the fluid is given as 0.5537 X10
- 6

 m
2
/s, and density is given as 

988 kg/m
2
. So, the fluid is a water, because it is already given water. So, now, you 

calculate the Reynolds number. So, Reynolds number you can calculate as Re m
D

u D


 . 

So, if you put all these values, you will get 1806. So, you can see that the Reynolds 

number < 2300, obviously this is the laminar flow. Now, you see, whether it is 

developing or fully developed region. So, we know that Reh
h D

h

L
C

D
 . 

And, from here you can see that Ch for the circular pipe is given as 0.056 from the table 

we have already shown. So, Lh will be 0.506 m. And, Pr ReT
T D

h

L
C

D
 . And, for this 

circular pipe your CT =0.043, for the constant wall heat flux boundary condition; so, LT 

will be 1.386 meter. So, now, let us calculate the tube length, because this is unknown, 

right.  

285



So, these L we have to calculate from this equation. So, we can see that ''

wq into the heat 

transfer area. So, that is your,
.

'' C ( )w p mo miq DL m T T   . So, your

.

''

C ( )
L

p mo mi

w

m T T

Dq


 . 

So, you can see that
2.

4
m

D
m u


 , and all the properties are given and qw also is given. 

So, Tmo and Tmi are given. So, you just calculate the length of the pipe. And, this length 

of pipe is you will get as; 
.

m if you calculate, it will be 0.00388 kg /s. So, L will be if you 

put it 10.33 m.  

So, now, the tube length is 10.33 m and your entrance length, you can see Lh and LT it is 

just 0.506 m hydrodynamic entrance length, and thermal entrance length is 1.386 m. So, 

it is very very small compared to the length of the pipe. And, you are asked to find the 

maximum wall temperature at the maximum wall temperature, and maximum wall 

temperature will occur at the outlet for this particular case. 

(Refer Slide Time: 41:35) 

 

So, you can see your Tw (x) for this particular case you know that it is 

''

.

1
( ) [ ]

C
w mi w

p

Px
T x T q

hm

   . So, in this particular case as it is a fully developed flow, so h 

is constant. So, in this expression you can see that, if this term is constant; so as x 

increases, your Tw also will increase.  
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So, maximum temperature will occur, maximum temperature you will get, 

''

max@x L .

1
[ ]

C
w mi w

p

PL
T T q

hm
    . So this heat transfer coefficient for fully developed flow, 

Nusselt number is given. So, that is your 4.364. So, this is nothing but, 4.364
hD

K
 . So, 

if you calculate the h you will get 559 W/m
2 0

C. 

So, now this Tw maximum you can now calculate h you know, P L
.

C pm . What is P? P is 

nothing but, P D , 
.

m  already you have calculated, ''

wq  you know, Tmi you know; you 

put all the values this max@x LwT  you will get as 90.7 
0
C.  

So, in this particular case we have to calculate first, whether it is the flow is laminar or 

turbulent and where are you are calculating at outlet, whether it is developing region or 

fully developed region that we have calculated the entrance length for both thermal and 

hydrodynamic. 

So, we have seen that it is very very small compared to the length of the pipes. So, at the 

outlet it will become anyway fully developed flow and fully developed flow Nusselt 

number, from Nusselt number you can calculate the heat transfer coefficient. So, in 

today’s lecture, first we have calculated the mean temperature, ok. So, if you know the 

velocity profile and the temperature profile, then you can calculate the mean temperature 

at any cross section.  

Then, we have discussed about the dimensionless temperature phi in a thermally fully 

developed region. And, we have simplified the 
T

x




 for two thermal boundary conditions. 

Then, we have calculated the heat transfer coefficient and the Nusselt number using scale 

analysis. And, we have shown that in fully developed region h is constant and also 

Nusselt number constant.  

However, in developing region as delta increases with x, so your h and Nusselt number 

both will increase in axial, both h and Nusselt number will vary in axial direction. Then, 

also we have calculated the heat transfer coefficient and a Nusselt number in terms of the 
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dimensionless temperature getting
d

dr


. And, here also we have shown for a fully 

developed for thermally fully developed region, the heat transfer coefficient and Nusselt 

number are constant. 

Thank you.  

288


