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Hello everyone. So, in today’s lecture, we will consider different thermal boundary 

conditions and we will try to find the mean temperature variation as well as for different 

boundary conditions we will find either the variation of heat flux or variation of 

temperature on the walls. 

(Refer Slide Time: 00:58) 

 

First, we will consider channels with uniform heat flux. So, you can see so, we have a 

channel where on the channel, we have uniform wall heat flux boundary condition so, 

''

wq we have given. Now, we consider that a section where x is measured from here where 

x = 0 and up to x = L.  

So, this is the length. So, obviously, you can see at this section, if you considered the 

temperature mean temperature so, there will be inlet mean temperature will be Tmi and at 

any section x, you can find what is the mean temperature Tm. So, as we considered here 
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uniform wall heat flux, then your temperature at the wall Tw will also vary in axial 

direction. So, Tw will be function of x.  

So, here you can see as heat is added on the surface so, the fluid flowing in the channel, 

it will take the heat from the wall. So, here we wish to determine; we wish to determine 

first thing is that total heat transfer rate; total heat transfer rate qs between x = 0 and 

location x along the channel.  

Then, we want to find the mean temperature variation this mean temperature is also 

known as bulk mean temperature mean temperature variation so, which will be function 

of x and also in this case, we will see the wall temperature variation Tw which will be 

function of x.  

In this particular thermal condition as heat flux is uniform, then we can calculate the total 

heat transfer rate from the wall to the fluid. So, the total heat transfer rate qw will be just 

whatever heat flux you have given ''

wq into the surface area heat transfer area qs. 
''

wq So, 

into heat transfer area As. So, what is the As in this case? So, if P is the perimeter and x is 

the length, then your heat transfer area As will be P into x where P is the perimeter.  

So, now from the energy balance, we will find what is the mean temperature variation. 

So, we are assuming that it is a steady state assume steady state, no energy generation, 

negligible changes in kinetic and potential energy, no axial heat conduction; no axial 

heat conduction and no viscous dissipation. 

So, you can see that now with this assumptions, if you do the energy balance whatever 

heat is transferred from the wall to the fluid actually fluid gain the temperature from inlet 

while going from inlet to the distance x. So, energy added at the wall will be energy 

absorbed by the fluid. So, this is just simple energy balance.  

So, now, what is energy added at the wall? That is nothing, but ''

w w sq q A . So, 

sA Px area is P into x where P is the perimeter and what is the energy absorbed by the 

fluid? So, at any section x, 
.

'' [ ( ) ]w p m miq Px mC T x T  because this is the temperature 

difference and where 
.

m fm u A so, flow area so, that will be for pipe it is π 2

0r so, this 

will be flow area Af.  
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And now, you can write, 
''

.
( ) s

m mi

p

q P
T x T x

mC

  . So, you can see that this is the expression 

for bulk mean temperature variation along the x where Tmi is the mean temperature at the 

inlet and qs or you can write qw here ''

wq which is your heat flux constant. 

P is the perimeter that is also constant for constant cross sectional channel, 
.

m is the mass 

flow rate and Cp is the specific heat and with x obviously, it will vary so, but you can see 

that 
.

m . So, you can see that 
''

.

w

p

q P

mC

. So, this is your constant for this particular case for 

constant cross sectional; constant cross sectional area duct.  

So, now, you can see the temperature is varying from inlet Tmi to the any distance x Tm. 

So, the fluid properties you need to determine at the average temperature. If it is Tmi and 

Tm at any location x, then at average temperature you determine the fluid properties 

while calculating the variation of this Tm(x).  

(Refer Slide Time: 09:36) 

 

Now, we want to calculate the axial variation of wall temperature. So, for that we will do 

the we will use the Newton’s law of cooling. So, from Newton’s law of cooling what you 

can write? So, Newton’s law of cooling what you can write?  

So, ''

wq what is your heat flux at the wall that you can write as, '' ( )[ ( ) ( )]w w mq h x T x T x  . 
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In this case, when you consider the internal flows, you can see that you cannot take as T∞ 

or T inlet as your reference temperature while calculating the heat transfer coefficient or 

the Nusselt number. Here, we will consider the bulk mean temperature at any cross 

section.  

So, while writing the Newton’s law of cooling, the wall heat flux we have written as the 

temperature difference as w mT T . So, for internal flows we will consider w mT T . So, 

you can write the, 
''

( ) ( )
( )

w
w m

q
T x T x

h x
   and Tmx already we know,

''

.
( ) w

m mi

p

q P
T x T x

mC

  .  

So, you can write in terms of Tmi now this Tw (x) so, if you substitute this, you can write 

'' ''

.
( )

( )

w w
w mi

p

q Px q
T x T

h xmC

   . So, you can rewrite it as, ''

.

1
( ) [ ]

( )
w mi w

p

Px
T x T q

h xmC

   . 

Now, you can see that to calculate the wall temperature variation, you need to know the 

heat transfer coefficient because h is your heat transfer coefficient. So, you can see from 

this expression Tmi is your inlet mean temperature that will be known, this is your wall 

heat flux that will be known and it is constant, P is the perimeter, x is the axial direction 

so, at any location x, you can calculate the Tw, 
.

m and Cp are also known only unknown is 

h(x). 

So, you can see that while deriving this, we did not take the assumptions whether it is 

laminar or turbulent or the region is developing or fully developed. So, these expression 

this Tm(x) and Tw(x) is the expression of Tw(x) and Tm(x) are valid for both laminar and 

turbulent flows as well as for entrance region as well as fully developed region.  

Only thing is that while calculating the wall temperature, you need to calculate the h(x) 

and h(x) will depend whether it is developing region or fully developed region at the 

same time whether it is laminar or turbulent flows. So, this h(x) we need to find. So, 

depending on h(x) if you know h(x), then you can find Tw(x) for constant wall heat flux 

boundary condition. 
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(Refer Slide Time: 13:58) 

 

Now, let us consider channels with uniform wall temperature. So, you can see this is the 

channel at x=0, you have inlet mean temperature Tmi the walls are maintained at 

temperature Tw and Tw is constant.  

So, in this case, you can see that heat flux is not constant. So, heat flux will vary in axial 

direction. So, for that reason, while solving this problem, we cannot consider the full 

length of the channel as we considered for the uniform heat flux case because in earlier 

case, the heat transfer rate qw you could calculate using ''

wq into the surface area As. 

But here as ''

wq  is not constant for uniform wall temperature condition so obviously, we 

cannot consider the full length and do the energy balance for that we will consider a 

small elemental area in the flow region and we will do the energy balance.  

In this particular case also, our objective is to find what is the axial variation of mean 

temperature, axial variation of the heat flux and what is the total heat transfer rate at the 

wall. So, we wish to determine the following: one is total heat transfer rate qw, then mean 

temperature variation; mean temperature variation so, Tm as function of x and in this 

particular case as Tw is constant so, we want to calculate the wall heat flux variation ''

wq  

as function of x.  

So, now, in this region, you consider one small elemental volume at a distance x of 

distance dx.  So, at this inlet of this elemental volume, you can see that we have the inlet 
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mean temperature as Tm; obviously, at a distance dx using the Taylor series expansion 

what you can write?. So, at a distance dx using the Taylor series expansion you can write 

this. 

And so, you have the wall temperature constant so, there will be the heat transfer from 

the wall to the fluid in this elemental volume so, that is your dqw. So, whatever heat is 

added here the fluid which is passing through this dx distance that is actually that fluid 

absorbed this heat. So, you can do the energy balance as.  

So, applying conservation of energy to the element what you can write? dqw so, dqw is 

the heat added to the fluid from the surface. So, what is heat absorbed that is your 

just
.

p TmC  . So, T  is nothing, but you can see it will be m
m m

dT
T dx T

dx
  . So, this is the 

temperature difference . So, you can write
.

dqw p mmC dT . 

Now, you apply the Newton’s law of cooling. So, Newton’s law of cooling you can write 

dqw so, that you can write the h which is function of x the temperature [ ( )]w mT T x A , so, 

area is Pdx. So, this is the P, P is the perimeter and dx is the length. So, your heat transfer 

area will be Pdx.  

So, now, this both you can equate. So, if it is equation number 1 and if it is equation 

number 2 so, from equation 1 and equation 2, you can write, 

.

( )[ ( )]p m w mmC dT h x T T x Pdx  . So, now, you rearrange it. So, 
.

( )

( )

m

w m
p

dT Ph x
dx

T T x mC




.  

268
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So, now, you integrate it from x =0 to any distance x so, if you do that. So, now, 

integrate this. So, from at x =0, you have Tmi and at any distance x, you 

have

( )

.

0

( )

( )

m

mi

T x x

m

w mT
p

dT Ph x
dx

T T x mC


  .  

So, now, you can integrate and put the limits. So, this you can see it will be, 

.

0

( )
ln[ ] ( )

x

m w

mi w
p

T x T P
h x dx

T T mC


 

  . So, if you know the variation of heat transfer 

coefficient in axial direction, then you will be able to integrate this. 

So, we can find the average heat transfer coefficient as; average heat transfer coefficient 

ok. So, that will be 
0

1
( )

x

h h x dx
x

  . So, now, we will substitute this part as x h . So, if you 

do so, you can write
.

( )
ln[ ]m w

mi w
p

T x T Ph
x

T T mC


 


.  

So, you can now find the axial variation of mean temperature as, 

.

( ) ( ) p

Ph
x

mC

m w mi wT x T T T e



   . So, you can see your mean temperature varies 

exponentially right. 
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So, you can see that while deriving this expression, we did not assume whether flow is 

laminar or turbulent or whether it is entrance region or fully developed region. So, this is 

valid for all the conditions, but now you have to find what is the heat transfer coefficient. 

So, while finding the heat transfer coefficient, you need to have these assumption so, 

whether it is laminar or turbulent or it is entrance region or fully developed region. 

So, now let us calculate the total heat transfer rate from the wall. So, we can write total 

heat transfer rate. So, total heat transparent rate qw so, what is that we can 

write
.

[ ( ) ]w p m miq mC T x T  . So, you can write and '' ( )[ ( )]w w mq h x T T x  . 

So, you can see that once you calculate the h(x) so, Tw is known so, you can calculate the 

mean temperature. Once you know the mean temperature, then you can calculate the 

total heat transfer rate as well as the heat flux. So, this is your wall heat flux. So, because 

h(x) you need to find once h(x) is known and Tmx is known from this expression, then 

you will be able to calculate what is the wall heat flux ''

wq .  

(Refer Slide Time: 26:02) 

 

So, now for both the thermal conditions, we have found what is the axial variation of 

mean temperature as well as the total heat transfer rate. Now, let us see the variation of 

this bulk mean temperature of the fluid in the tube. So, you can see for uniform wall heat 

flux so, what is the variation of Tm?  
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Tm which is function of x we have written as
''

.
( ) w

m mi

p

q P
T x T x

mC

  . So, how it is varying? 

You can see your Tm is varying linearly because 
''

.

w

p

q P

mC

this quantity is constant. So, Tm is 

varying linearly with x. 

When we consider uniform wall heat flux, the Tm variation we have seen, 

.

( ) ( ) p

Ph
x

mC

m w mi wT x T T T e



   . So, in this case, you can see your mean temperature varies 

exponentially.  

So, now, if we plot. So, this is your temperature axis and this is your axial direction and 

in this case also this is your temperature axis and this is your axial direction. So, your 

this is your x and this is your T.  

So, now, you can see that in this case, you have uniform wall heat flux right. So, uniform 

wall heat flux so, you can see that also we have found. So, here you can see that, 

''

( ) ( )
( )

w
w m

q
T x T x

h x
   

So, now, you can see that in this particular case, h(x) is unknown obviously, your heat 

transfer coefficient will vary in axial direction, but we will show later that in fully 

developed region fully developed means both hydrodynamically and thermally, in that 

region h is not function of x, h is constant. 

So, if you plot h with axial direction, then you will see that when the fluid is entering in 

the channel so, it will have very high heat transfer coefficient in the developing region it 

will gradually decrease, then once it will become fully developed both hydrodynamically 

and thermally, then your heat transfer coefficient will become constant and we will show 

it later that h is constant for a fully developed flow. 

So, we plot this h as a function of x. So, in the developing region, it will decrease, then 

after that it will become constant. So, you can see if this is your entrance region or 

developing region, then it will gradually decrease and in fully developed region; fully 
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developed region, you can see h is no longer function of x it is constant. So, in fully 

developed range, h is constant and in this region, h is function of x.  

So, you can see that
''

( )

w
w m

q
T T

h x
  . So, in fully developed region, h(x) is constant hence, 

w mT T will be constant.  

So, in fully developed region; fully developed region; fully developed region w mT T for 

uniform wall heat flux boundary condition will become constant. This is also true that 

fully developed region h is constant for uniform wall temperature. So, h is constant for 

both the thermal condition uniform wall temperature and uniform wall heat flux for both 

hydrodynamically and thermally fully developed region.  

So, now, you can see here uniform wall heat flux. So, your Tm will vary linearly. You 

can see from this expression so, you draw this. So, this is linear variation. So, this is your 

Tm which is function of x it is varying linearly and you can see that w mT T  will be 

constant in the fully developed region.  

So, if you see that this is your fully developed region and this is your entrance region, 

then in this region fully developed region w mT T will be constant. So, you can see that 

your Tw also will vary linearly. So, it will also vary linearly. So, this is your Tw (x) and 

you can see that this difference in fully developed region, it is constant w mT T  is 

constant.  

However, in your entrance region, there will be variation. So, it may vary like this and 

this is your the temperature difference w mT T  at inlet. So, this is the temperature 

variation. So, you can see that this Tw will vary linearly in the fully developed region and 

so, that w mT T  will remain constant. 

Now, you plot for uniform wall heat flux. So, for uniform wall heat flux so, Tw is 

constant right. So, you can draw this Tw it is constant. So, this is your Tw is constant and 

your Tm will vary exponentially so, if you plot it so, there will be variation like this. So, 

this is your Tm which will vary exponentially with x. So, this is ( )i w m inletT T T   .  
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So, you can see that there will be always decrease in the temperature w mT T . Tm is 

function of x, but Tw is constant and that you can see from here that it will how it will 

vary. So, you can see 
.

( ) ( ) p

Ph
x

mC

w m w miT T x T T e



   .  

So, in today’s lecture, we considered two different types of thermal conditions one is 

uniform wall heat flux and uniform wall temperature and we have just done the energy 

balance and we have tried to find what is the variation of mean temperature and the total 

heat transfer rate from the wall in both the cases.  

However, in uniform wall temperature case, your heat flux at the wall also will vary so, 

we have found what is the variation of wall heat flux in axial direction and for uniform 

wall heat flux, your wall temperature will vary axially and we have found what is the 

variation of Tw with x.  

Then, we have plotted this temperature; mean temperature and the wall temperature and 

also in this expression of mean temperature, we have seen that your heat transfer 

coefficient arises.  

So, depending on whether the flow is laminar or turbulent or whether it is developing 

region or fully developed region, you need to find the heat transfer coefficient and also 

we have told that in fully developed region for both the thermal condition, your h is 

constant so, for a uniform wall heat flux condition w mT T  will be constant. However, in 

uniform wall temperature boundary condition, w mT T will also vary exponentially. 

We have plotted this mean temperature and wall temperature for both the thermal 

conditions and we have shown that in fully developed region, the temperature difference 

between wall and the bulk mean temperature will remain constant as your heat transfer 

coefficient remains constant in fully developed region for both the thermal conditions. 

Thank you.  
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