Fundamentals of Convective Heat Transfer
Prof. Amaresh Dalal
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Module - 04
Convective Heat Transfer in External Flows — 11
Lecture — 12
Laminar BL flow over flat plate: Uniform wall heat flux
Hello everyone. So, today we will consider Boundary Layer flow over a flat plate with
Uniform wall heat flux condition. So, in last lecture we considered uniform wall
temperature condition, but today we will consider uniform heat flux boundary condition.
We wish to determine the wall temperature T, as a function of x and the local Nusselt

number.
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So, let us consider this flat plate, y is measured perpendicular to the flat plate, your free
stream velocity is U, and temperature is T,. Up to X = Xo it is insulated, so it will be

maintained at temperature T, as there will be no heat transfer. From x = Xo, you can see

this plate is maintained at uniform wall heat flux g, .

So, your thermal boundary layer thickness will start developing from x = X and
hydrodynamic boundary layer thickness will start developing from x = 0. So, these are

the assumptions; two dimensional steady incompressible laminar flow with constant
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properties, insulated section of length X, uniform wall heat flux condition x > Xo,

negligible viscous heat dissipation and no internal heat generation.

So, in last class already we have derived the energy integral equation. So, that we will
use. And, we will first find the temperature distribution using third degree polynomial.
And, we will put the velocity distribution and temperature distribution in the energy

integral equation and we will find the expression for thermal boundary layer thickness.

And, then we will find the wall temperature distribution as well as local Nusselt number.
So, we can see this is the energy integral equation already we have derived. This right

hand side —a%ly_o this we can write G , because a = % andq, =-K Z—T|y_0.
y

PC, PCy

A,

Hence, this right hand side can be written as c
Py

. You know that in this particular case

g, is constant and pC are the properties and that also are constant. So, right hand side is

a constant term.

However, you can see here temperature T,,, wall temperature T,, will be function of x;

because along the x, your T,, will increase. So, as q,is constant, you can find the local

Gy

heat transfer coefficienth(x) = —*—
T,()-T,

. S0, you can see T, is your free stream
temperature and T, is function of x. And, q,, is constant.

So, this is from Newton’s law of cooling we have written. Now, Nusselt

number Nu, :ﬁ. So, you can see, you can write Nu, :q—Wl. So, this is the
K T,(x)-T, K

expression for Nusselt number. Now, first let us consider a third degree polynomial for

temperature distribution and we will find the coefficient using the boundary conditions.
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So, assume a third degree polynomial for the temperature profile. So, T which is function
of (X, y) we can write T(x,y) =C, +C,y+C,y* +C,y*. So, these coefficients Cco, C1, C,

Cj3 are function of x. So, now, we have boundary conditions at y = 0; y = 0, you can see

your heat flux is given. So, you can write —K a—T| =0,
ay y=0 w

G

So, you can write%ly_0 = and at y = 67 you have temperature T., and also a

temperature gradient %: 0. So,aty =0 T, you have T = T,, and also you have at y = dr,

T . . :

g—: 0; because, that is the free stream temperature, so there will be no gradient. And,
y

another boundary condition we will derive from the energy equation satisfying it at the

wall.

0T .
So, at y = 0, you can write—-=0. So, you remember in last class we have
ayZ

2
doneuaa—T+v%- :agy—-lz-. So, this is your boundary layer energy equation. So, at wall
X

you have u =v =0. So, if u and v are 0; so obviously, left hand side terms will be 0.
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2
So, gy—-l;:o. So, now, you have four boundary conditions and four coefficients. So,

those four are known coefficients you can find satisfying these boundary conditions. So,
2

ﬁ:Cl+2C2y+3C3y2 ;Q: 2C, +6C,yY.

oy oy

2
So, we can see at y =0, you haveﬂ =0. So, if you satisfy this from this equation, you
8y2

can see C, = 0. Then, aty =0, you have%r=—%w. So, this is yourg—T. So,aty =0 if
y

you satisfy, so last two terms will become 0. So, that will giveC, = —q?W. And, now you

see at y = dt, you have%: 0.

So, if it is 0, so you can see from this equation, you will getO:—q?W+3C35TZ. So, that

G
5t

means, from here you will getC, = Now, another boundary condition you apply

aty =oris, you have T = T..

" "3
So, from this equation you can see, you can writeT_ =C, —q—Wc‘ST + qW5T2
K 3Kor

. S0, you can

see this will beC, =T +ZQ_W5T .
3K
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So, we have found four coefficients, now you put it in the temperature expression; then,
your final temperature distribution will be for these boundary conditions,
T(x,y)=T, +( o — y+é§2 ?<W So, this is the general temperature distribution. Now,
at the wall if you want to find what is the temperature variation, then you put y = 0.

So,aty =0, T = Tw(x). So, if you put y = 0; so these two terms will become 0, so you

2 qvlva . S0, now, you

can writeT,(X)=T_+— 2 GuSr
3 K

And, also you can writeT (x)-T, = 3

can put it in the Nusselt number distribution whatever we have found.

So, Nusselt number we have written, Nu, :L. So, if you put T(x)—T,_ this
KIT(X)-T,]
g, X 3 X
expression, so what you will get, —*<—. So, finally, you can write thisNu, = ——.
K qw T 2 5T
3 K

So, you can see in this expression Nusselt number now you can find, once you find the
thermal boundary layer thickness 7. So, once we findé—T, then you will be able to find
X

the local Nusselt number. So, what we will do now? We know the velocity profile, we
know the temperature profile, we have the energy integral equation; so, you put it in the
energy integral equation, then you will be able to find the thermal boundary layer
thickness or.

(Refer Slide Time: 13:10)
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So, we can see we have the velocity profile already we have derived using third degree

polynomial and from that solution, hydrodynamic boundary layer thickness we have
found, %Tas this. In today’s class we have found the temperature distribution for the

given boundary conditions and this is the energy integral equation. So, now, you put the
value of u here and value of T here; so you will be able to find, what is the thermal

boundary layer thickness?

1 L2
3y y}qW(_gT_

G
d
25 26° )y

So, you can wrlte— U
y -[ A 352 pC

p

So, in this expression you can see g, is constant. So, these g, you can take it outside the

integral and you can cancel, right. So, this g, can cancel and this k you can take in the
right hand side. So, in the next step you <can see, we can

3y 1y 168 5 1y* 1 y° K
erte— - +=—=—= dy =
I( 735 2552 35°) 25 6535$)y pC U

p~

Because, these are constant, so you can take it outside the integral and you take in the

right hand side. So, you can write . And, %= a right, thermal diffusivity; so,

pCU. PC,

Ui' So, now, you integrate it. So, if you integrate it. So, you can see we can find. So, at

o0

y =0, this will become 0 anyway and y =&t, we will put after the integration.

d. 882 38 1168 16,68 18 11 4
So, we can write, —[-L-L-=-T +--—L T L4 —— T
dx 0 2 236 25085, 306° 4 255° 670570

So,

1=

o
U,

now you simplify it, you cancel some terms.
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So, you can see here these 3, 3 will get cancel and you can write finally,

3 3 3
i[5T2 15—T—la—T+i5—T—i5—2+i5—2—i5—2} -2 So, you can see these first
dx 20 206 1006 12¢6° 106° 4206 U

o0

two terms. So, you will it will get cancel.

3
So, i[5T2 i5—T—i5—g}]=i. So, now, we will assume that Prandtl number is > 1.
dx~ 10 6 1400 U

o0

So, if Prandtl number > 1, then you know &1 < 8. And, from this expression, now we will

neglect the second term in the left hand side. So, you can see we are assuming, assume

Prandtl number > 1 and for Prandtl number > 1, you know %T< 1.

So, in this particular case, you can see that your thermal boundary layer thickness will be
less than the hydrodynamic boundary layer thickness. So, if it is so, if you compare these

3
two terms; then you can see ig—g«ii.
1406° 100

: : . d & 10a
So, neglect this term, this term you neglect. So, you can erted—(g)zu—. Let us
X

o0

integrate this. So, this is ordinary differential equation. So, you can integrate it and you
know that at X = X, you have thermal boundary layer thickness 6+ as 0.
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So, if you integrate it, so you will get integrating the above
3
equationjd(%)_loafdx+c So, you will geti =1L(J)—ax+C.And, we know at X=X,

o0

you have 67 = 0.

So, your thermal boundary layer thickness starts from x=Xo; so here at x=Xo, 61 = 0. So,

3
from here you can see, C = _18_0‘ X,. Hence, you can see that, %T _ 10_a( “x).

o0
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So, you can writeaT:[loui(x—xo)é]%. Now, let us put the expression for

o0

hydrodynamic boundary layer thickness 6 that we have already found from solving the

: . : 2 1 -
momentum integral equation. So, you can Wl‘lteéz 280 . So, this is the

x \ 13 Re”

expression we have.

. . .0 -
So, now, you can see, you can write from this expression—; so we are dividing by x.
X

So, if you divide the right hand side by x and if you take inside this power; so you will

get X%, right. So, you can write%T=[1Oi L x(1- ) 280 X

u, x* R
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) . .
So, you can see, you can find ——as so, here you have x* and so, if you rearrange it; so
X

you can see, you will get, 5—T:[10 280 v 1 (1—&)]%. So, you can write(s—T.
X \ 13 vU_xRe” " x X

So, you can see here; what is this expression? This is here

1
JRe,
So, %and hereRe’?; so it will be 3/2. So, it will be 3/2 and here £ = Pr. So, you
e, a

have Pr =~ . So, and Re, = U.x
a 14

. So, you will get herei, here you will get Land
Pr Re

X

Re*you have.

So, it will be 3 /2, and outside this bracket if you take, then it will become /Re, . So, you

S5, 3594 . X,k
can See, you can erte—:—( —-—
X

pra— . So, after simplification, we have now
X Pr?Rep

. . 0.
derive the expression for —.
X

Now, once you know5—T, now you will be able to find, what is the temperature
X

distribution and what is the Nusselt number? So, if you put this%, then you can get

your wall temperature distribution as; wall temperature variation asT,,(x) =T, +§5T q?W

. : . . 2 3594x . X5\%Q,
So, if you put this expression, then you will get, T ,(X) =T, + -———(1—-—) 2.
you p p y get, T, (x) 3 Pr% Reé( K

ﬁ)% X

. a.
So, hence you will getT (X)=T +2.3962(1- R
y getT, () =T, <O B R

So, this is the wall

temperature variation. So, you can see from this expression that it is function of x, right.
Now let us find, what is that local Nusselt number? Already, we have written local

Nusselt number in terms of the thermal boundary layer thickness.
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So, if you remember, we have already derived this expression local Nusselt

X . 0.
numberNung—. And now, we know the expression of—. So, we can
X
.

WriteE !

Pr Re?(l—ﬁ)% . So, if you rearrange, you will get Nusselt number as,
2 3.594 X

%

Nu, = 0.417(L—2%) “ Pr¥Re.
X

So, this is the Nusselt number expression we have found for Prandtl number > 1 using
the approximate method; because we have approximated the velocity profile as well as
the temperature profile. So, this is valid for Prandtl number >1, because we have
assumed ot < 4.

(Refer Slide Time: 30:04)
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So, you can see, we have finally derived in today’s class this &t in terms of

hydrodynamic boundary layer thickness &; then putting the value of &, we have
found%. And, you can see it is also function of Prandtl number and Reynolds number.

And, putting this expression in the wall temperature variation, we found this is the wall

temperature variation and then, we have found the local Nusselt number as this.

Now, let us consider a special situation when there is no insulated region; so that means
Xo = 0. So, in this expression you can see, if you put Xo = 0; then, you will get the
expression for thermal boundary layer thickness, wall temperature variation and local
Nusselt number for the unheated region as 0.

(Refer Slide Time: 31:10)
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So, you can see in this particular case xo = 0; so, thermal boundary layer thickness and
hydrodynamic boundary layer thickness starts developing from x = 0. So, in for the

special case, in earlier expression if you put X, = 0, where you have plate with no

. i ) . o .
insulated section; then, we have already found—, then this is your — putting
X X

Xo=0and 5—T .
1)
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0.775
Pr’

If you can see that %Tif you put; then, you will get as . And, wall temperature

- . Ay ., Xori % X
variation you can see here you will getasT, (X)=T +239%6*(1-2)" ———.
y y getasT,(x) =T, « L) o Re”

So, you can see it varies with x. And, Nu, = 0.417(1— %0y * pr Re’? . In this expression
X

you can see, does T, (X) increase or decrease with distance x? You can see that, you have
here Re, ,one x is there and also here x is there; so you can see that your wall

temperature will increase along x. So, if you although in this particular case your; you
have this plate with uniform wall heat flux; but T, which is function of x will increase

along x.

Now, let us see, what is the accuracy compared to the exact solution? Because, in this
particular case, we have used approximate method where we have approximated the
velocity profile as well as the temperature profile as third degree polynomial; so, we
have found what is the thermal boundary layer thickness as well as the Nusselt number.

Now, let us compare this with the exact solution. So, you can see for Prandtl number= 1

exact solution %Tshould be 1; because o6t =6 for Prandtl number= 1. But, from the

integral solution you can see, for Prandtl number =1 ,%T: 0.775. So, error is much in

predicting the thermal boundary layer thickness, it is 22.5 %.

Now, if you compare the Nusselt number with the exact solution. So, this is the exact
solution, you can see Nu, =0.453Pr* Re’2. So, this is your follows a solution with
unheated region. So, you can see this is the expression; but from the approximate

solution, we have found 0.417 Pr* Re’: .

So, you can see error is almost 8 %, but it is Nusselt number is predicting well right; but
here &1 is having much difference with the exact solution. So, in this particular

U_x

expression you can see, yourRe, = . So, you have; so that means your, in the

denominator you have Jx and this is your X, so that means T,, varies withV/x , you can

See.
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So, this is in the numerator we have x and in the denominator you have VX . So, in the
X _
Jx

flat plate; then, can we get back the same expression of Nusselt number whatever we

JX . So, T, varies +/x . Now, if we assume a variable temperature profile in the

have got assuming the constant wall heat flux boundary condition. So, let us see that.

(Refer Slide Time: 35:12)
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So, now we are considering laminar boundary layer flow over flat plate with variable
wall temperature. So, you can see that your wall temperature varies with/x . So, we
have taken this flat plate where temperature varies asT, +C~/x, where C is your

constant.

And, in last slide we have seen that, generally for constant wall heat flux condition T,
varies as</x . S0, we have taken T(X)=T, +C+/X . So, you have free stream temperature

T, and Prandtl number > 1, so that 61 < 4.

So, for this expression if you use the third degree polynomial for velocity profile; so, we

have already derived this, éwe have derived this, temperature profile. Now, with these

boundary conditions if you see that we have, in the last class we have used uniform wall
temperature boundary condition and for that, we have found the temperature profile. So,

same temperature profile we can put it, where T, is function of x.
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So, we can see this is the same expression what we have derived already for uniform

wall temperature boundary condition and this is the T (X, y); but here T, is function of x.

So, T(x,y)=T,(X)+(T, —TW(x))(ggl—%;a) And, this is the energy integral equation,
T

right. So, now, in this expression you put u and T.

So, already this we have derived and here already we have derived this; but here T, is
function of x, because your wall temperature varies like this. So, if you put it and you

. : ., d . .
will get U,, is constant. So, we have taken outS|ded—. So, you will get from this you can
X

5
see, it will be diju(T ~T.)dy=—a %'m
1 6 a(T,(x)-T,)
So, you will get, U —[5(T (X)-T ){20(5) _280(5)}] T

So, if you see these two terms and we have used Prandtl number > 1; so that means

) o . : .
?T<1. So, in this particular case you can see, you can neglect this term; because, this

term will be much much less than the this term. And, T (x) =T, +C+/x . So, these if you
put it here, you can see we will get this expression. And, it is easy to integrate, because

you can see here you can put the expression forT (x)-T, = CVx.

(Refer Slide Time: 38:18)
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And, after simplification you will get this, and integrate this above equation and put the
boundary condition that at x = 0, you have 6t = 0. So, you will get a &7 like this

0, 3.594

expression. And, if you rearrange this you will get 7T= d Nu =§5i and

—)— an
Pr’* Re/’ 26

Nusselt number x you will get this. And, you can see that this is the same expression as
we derived for uniform wall heat flux condition. And, you can see the temperature

profile whatever we have got it from the uniform wall heat flux condition. So, here we

. . . . X L
can see, if you take from Re, this JX outside; then, you will get ——and it will be

JIx
J/x and all other terms are constant, because g, is constant, k is constant, Prandtl number

is constant and here free properties and velocity are constant.

So, all these will be constant. So, you can writeT,(x)—T, =C+x. So, you can see that,
keeping the flat plate at uniform wall heat flux condition or keeping the flat plate as

variable wall temperature where wall temperature varies as~/x , both will give the same
, . Or .
result; because, you have seen that Nusselt number expression and these —- expressions
X

are same in both the cases. So, in today’s lecture, we considered laminar flow over a flat
plate with uniform wall heat flux boundary condition.

So, g, is constant on the flat plate; however, you have T,, which is your wall temperature

varies with x. We considered initially up to X = Xq as a unheated region, and from x > X,

it is maintained at a uniform wall heat flux boundary condition.

Then, we found the temperature profile using third degree polynomial; applying four
boundary conditions, we found the four coefficients. And finally, these velocity profile
as well as the temperature profile, we put it in the energy integral equation. And,

integrating that equation we got finally the expression for5—T, which is your &t is your
X

thermal boundary layer thickness.

. 0. i
Once you got the expression for—; then, we found the wall temperature variation Ty,
X

and local Nusselt number Nu, . And, putting the xo = 0; that means there is no unheated

region, then we found the as a special condition what are the expression for &+ as well as
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the wall temperature and Nusselt number. Next, we have considered variable wall

temperature boundary conditions.

So, we have taken the wall temperature variationTX(x):Tw+C\/;. And, putting that

wall temperature condition and using third degree polynomial of velocity profile and
temperature profile, we have found the same thermal boundary layer thickness as well as

same Nusselt number. So, we have seen that both conditions are same; however, if you
maintain the variable wall temperatureT, (X) =T, +C/x, it is equivalent to maintaining

the flat plate as uniform wall heat flux condition.

Thank you.
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