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Laminar BL flow over flat plate: Uniform wall heat flux 

 

Hello everyone. So, today we will consider Boundary Layer flow over a flat plate with 

Uniform wall heat flux condition. So, in last lecture we considered uniform wall 

temperature condition, but today we will consider uniform heat flux boundary condition. 

We wish to determine the wall temperature Tw, as a function of x and the local Nusselt 

number. 

(Refer Slide Time: 00:56) 

 

So, let us consider this flat plate, y is measured perpendicular to the flat plate, your free 

stream velocity is U∞ and temperature is T∞. Up to x = x0 it is insulated, so it will be 

maintained at temperature T∞ as there will be no heat transfer. From x = x0, you can see 

this plate is maintained at uniform wall heat flux ''

wq .  

So, your thermal boundary layer thickness will start developing from x = x0 and 

hydrodynamic boundary layer thickness will start developing from x = 0. So, these are 

the assumptions; two dimensional steady incompressible laminar flow with constant 
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properties, insulated section of length x0, uniform wall heat flux condition x > x0, 

negligible viscous heat dissipation and no internal heat generation. 

So, in last class already we have derived the energy integral equation. So, that we will 

use. And, we will first find the temperature distribution using third degree polynomial. 

And, we will put the velocity distribution and temperature distribution in the energy 

integral equation and we will find the expression for thermal boundary layer thickness.  

And, then we will find the wall temperature distribution as well as local Nusselt number. 

So, we can see this is the energy integral equation already we have derived. This right 

hand side 0y

T

y
 


 


this we can write

''

w

p

q

C
, because 

p

K

C



 and ''

0w y

T
q K

y



  


. 

Hence, this right hand side can be written as
''

w

p

q

C
. You know that in this particular case 

''

wq is constant and 
pC are the properties and that also are constant. So, right hand side is 

a constant term.  

However, you can see here temperature Tw, wall temperature Tw will be function of x; 

because along the x, your Tw will increase. So, as ''

wq is constant, you can find the local 

heat transfer coefficient
''

( )
( )

w

w

q
h x

T x T




. So, you can see T∞ is your free stream 

temperature and Tw is function of x. And, ''

wq is constant. 

So, this is from Newton’s law of cooling we have written. Now, Nusselt 

number x

hx
Nu

K
 . So, you can see, you can write

''

( )

w
x

w

q x
Nu

T x T K




. So, this is the 

expression for Nusselt number. Now, first let us consider a third degree polynomial for 

temperature distribution and we will find the coefficient using the boundary conditions. 
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So, assume a third degree polynomial for the temperature profile. So, T which is function 

of (x, y) we can write 2 3

0 1 2 3( , )T x y C C y C y C y    . So, these coefficients Cc0, C1, C2, 

C3 are function of x. So, now, we have boundary conditions at y = 0; y = 0, you can see 

your heat flux is given. So, you can write
''

0y w

T
K q

y



  


. 

So, you can write
''

0
w

y

qT

y K



  


, and at y = δT you have temperature T∞ and also a 

temperature gradient 
T

y




= 0. So, at y = δ T, you have T = T∞ and also you have at y = δT, 

T

y




= 0; because, that is the free stream temperature, so there will be no gradient. And, 

another boundary condition we will derive from the energy equation satisfying it at the 

wall. 

So, at y = 0, you can write
2

2
0

T

y





. So, you remember in last class we have 

done
2

2

T T T
u v

x y y


  
 

  
. So, this is your boundary layer energy equation. So, at wall 

you have u = v = 0. So, if u and v are 0; so obviously, left hand side terms will be 0.  
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So, 
2

2
0

T

y





. So, now, you have four boundary conditions and four coefficients. So, 

those four are known coefficients you can find satisfying these boundary conditions. So, 

2

1 2 32 3
T

C C y C y
y


  


;

2

2 32
2 6

T
C C y

y


 


. 

So, we can see at y =0, you have
2

2
0

T

y





. So, if you satisfy this from this equation, you 

can see C2 = 0. Then, at y = 0, you have
''

wqT

y K


 


. So, this is your

T

y




. So, at y = 0 if 

you satisfy, so last two terms will become 0. So, that will give
''

1
wq

C
K

  . And, now you 

see at y = δT, you have
T

y




= 0.  

So, if it is 0, so you can see from this equation, you will get
''

2

30 3w
T

q
C

K
   . So, that 

means, from here you will get
''

3 23

w

T

q
C

K
 . Now, another boundary condition you apply 

at y = δT is, you have T = T∞.  

So, from this equation you can see, you can write
'' '' 3

0 23

w w T
T

T

q q
T C

K K





    . So, you can 

see this will be
''

0

2

3

w
T

q
C T

K
  . 

(Refer Slide Time: 10:24) 
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So, we have found four coefficients, now you put it in the temperature expression; then, 

your final temperature distribution will be for these boundary conditions, 

''3

2

2 1
( , ) ( )

3 3

w
T

T

qy
T x y T y

K



    . So, this is the general temperature distribution. Now, 

at the wall if you want to find what is the temperature variation, then you put y = 0. 

So, at y = 0, T = Tw(x). So, if you put y = 0; so these two terms will become 0, so you 

can write
''

2
( )

3

w T
w

q
T x T

K


  . And, also you can write

''
2

( )
3

w Tq
T x T

K


  . So, now, you 

can put it in the Nusselt number distribution whatever we have found. 

So, Nusselt number we have written, 
''

[ ( ) ]

w
x

q x
Nu

K T x T




. So, if you put ( )T x T this 

expression, so what you will get; 
''

''
2

3

w

w T

q x

q
K

K


. So, finally, you can write this

3

2
x

T

x
Nu


 .  

So, you can see in this expression Nusselt number now you can find, once you find the 

thermal boundary layer thickness δT. So, once we find T

x


, then you will be able to find 

the local Nusselt number. So, what we will do now? We know the velocity profile, we 

know the temperature profile, we have the energy integral equation; so, you put it in the 

energy integral equation, then you will be able to find the thermal boundary layer 

thickness δT. 

(Refer Slide Time: 13:10) 
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So, we can see we have the velocity profile already we have derived using third degree 

polynomial and from that solution, hydrodynamic boundary layer thickness we have 

found, T

x


as this. In today’s class we have found the temperature distribution for the 

given boundary conditions and this is the energy integral equation. So, now, you put the 

value of u here and value of T here; so you will be able to find, what is the thermal 

boundary layer thickness? 

So, you can write
'' ''3 3

3 2

0

3 1 2 1
{ } ( )

2 2 3 3

T

w w
T

T p

q qd y y y
U y dy

dx K C




   

     .  

So, in this expression you can see ''

wq is constant. So, these ''

wq you can take it outside the 

integral and you can cancel, right. So, this ''

wq can cancel and this k you can take in the 

right hand side. So, in the next step you can see, we can 

write
2 4 4 6

3

2 3 3 3 2

0

3 1 1 1 1
( )

2 2 3 2 6

T

T T

T T p

d y y y y K
y y dy

dx C U


 

        

      . 

Because, these are constant, so you can take it outside the integral and you take in the 

right hand side. So, you can write
p

K

C U 

. And, 
p

K

C



  right, thermal diffusivity; so, 

U





. So, now, you integrate it. So, if you integrate it. So, you can see we can find. So, at 

y =0, this will become 0 anyway and y =δT, we will put after the integration. 

 So, we can write, 
2 3 5 4 5 7

2 3 3 3 2

3 1 1 1 1 1 1
[ ]

2 2 3 2 5 3 4 2 5 6 7

T T T T T T T T

T T

d

dx U

        

       

      . So, 

now you simplify it, you cancel some terms. 
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So, you can see here these 3, 3 will get cancel and you can write finally, 

3 3 3
2

3 3 3

1 1 1 1 1 1
[ { }]

2 2 10 12 10 42

T T T T T T
T

d

dx U

      


      

      . So, you can see these first 

two terms. So, you will it will get cancel. 

So, 
3

2

3

1 1
[ { }]

10 140

T T
T

d

dx U

  


  

  . So, now, we will assume that Prandtl number is > 1. 

So, if Prandtl number > 1, then you know δT < δ. And, from this expression, now we will 

neglect the second term in the left hand side. So, you can see we are assuming, assume 

Prandtl number > 1 and for Prandtl number > 1, you know T


< 1. 

So, in this particular case, you can see that your thermal boundary layer thickness will be 

less than the hydrodynamic boundary layer thickness. So, if it is so, if you compare these 

two terms; then you can see 
3

3

1

140

T


<<

1

10

T


.  

So, neglect this term, this term you neglect. So, you can write
3

3

10
( )Td

dx U

 

 

 . Let us 

integrate this. So, this is ordinary differential equation. So, you can integrate it and you 

know that at x = x0, you have thermal boundary layer thickness δT as 0. 
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So, if you integrate it, so you will get integrating the above 

equation
3

3

10
( )Td dx C

U

 

 

   . So, you will get
3 10T x C

U

 

 

  . And, we know at x=x0, 

you have δT = 0.  

So, your thermal boundary layer thickness starts from x=x0; so here at x=x0, δT = 0. So, 

from here you can see, 
0

10
C x

U





  . Hence, you can see that,
3

0

10
( )T x x

U

 

 

  . 
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So, you can write
1

3

0[10 ( ) ]T x x
U


 



  . Now, let us put the expression for 

hydrodynamic boundary layer thickness δ that we have already found from solving the 

momentum integral equation. So, you can write 1
2

280 1

13 Rex
x


 . So, this is the 

expression we have.  

So, now, you can see, you can write from this expression T

x


; so we are dividing by x. 

So, if you divide the right hand side by x and if you take inside this power; so you will 

get x
3
, right. So, you can write

1
3

1
2

0

3

1 280
[10 (1 ) ]

13 Re

T

x

x x
x

x U x x

 



  .  
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So, you can see, you can find T

x


as so, here you have x

2
 and so, if you rearrange it; so 

you can see, you will get, 
1

3

1
2

0280 1
[10 (1 )]

13 Re

T

x

x

x U x x

  

 

  . So, you can write T

x


. 

So, you can see here; what is this expression? This is here
1

Rex

. 

So, 
1

Rex

and here
1

2Rex ; so it will be 3/2. So, it will be 3/2 and here Pr



 . So, you 

have Pr



 . So, and Rex

U x


 . So, you will get here

1

Pr
, here you will get 

1

Rex

and 

1
2Rex you have.  

So, it will be 3 /2, and outside this bracket if you take, then it will become Rex . So, you 

can see, you can write
1

3

1 1
3 2

03.594
(1 )

Pr Re

T

x

x

x x


  . So, after simplification, we have now 

derive the expression for T

x


. 

Now, once you know T

x


, now you will be able to find, what is the temperature 

distribution and what is the Nusselt number? So, if you put this T

x


, then you can get 

your wall temperature distribution as; wall temperature variation as
''

2
( )

3

w
w T

q
T x T

K
  . 

So, if you put this expression, then you will get, 
1

3

1 1
3 2

''

02 3.594
( ) (1 )

3 Pr Re

w
w

x

x qx
T x T

x K
   . 

So, hence you will get
1

3

1 1
3 2

''

0( ) 2.396 (1 )
Pr Re

w
w

x

q x x
T x T

K x
   . So, this is the wall 

temperature variation. So, you can see from this expression that it is function of x, right. 

Now let us find, what is that local Nusselt number? Already, we have written local 

Nusselt number in terms of the thermal boundary layer thickness. 
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So, if you remember, we have already derived this expression local Nusselt 

number
3

2
x

T

x
Nu


 . And now, we know the expression of T

x


. So, we can 

write
1

1 1 3
3 2 03 1

Pr Re (1 )
2 3.594

x

x

x



 . So, if you rearrange, you will get Nusselt number as, 

1
1 13

3 200.417(1 ) Pr Rex x

x
Nu

x



  . 

So, this is the Nusselt number expression we have found for Prandtl number > 1 using 

the approximate method; because we have approximated the velocity profile as well as 

the temperature profile. So, this is valid for Prandtl number >1, because we have 

assumed δT < δ. 

(Refer Slide Time: 30:04) 
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So, you can see, we have finally derived in today’s class this δT in terms of 

hydrodynamic boundary layer thickness δ; then putting the value of δ, we have 

found T

x


. And, you can see it is also function of Prandtl number and Reynolds number. 

And, putting this expression in the wall temperature variation, we found this is the wall 

temperature variation and then, we have found the local Nusselt number as this. 

Now, let us consider a special situation when there is no insulated region; so that means 

x0 = 0. So, in this expression you can see, if you put x0 = 0; then, you will get the 

expression for thermal boundary layer thickness, wall temperature variation and local 

Nusselt number for the unheated region as 0. 

(Refer Slide Time: 31:10) 

 

So, you can see in this particular case x0 = 0; so, thermal boundary layer thickness and 

hydrodynamic boundary layer thickness starts developing from x = 0. So, in for the 

special case, in earlier expression if you put x0 = 0, where you have plate with no 

insulated section; then, we have already found
x


, then this is your T

x


 putting 

x0=0and T


.  
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If you can see that T


if you put; then, you will get as 1

3

0.775

Pr
. And, wall temperature 

variation you can see here you will get as
1

3

1 1
3 2

''

0( ) 2.396 (1 )
Pr Re

w
w

x

q x x
T x T

K x
   . 

So, you can see it varies with x. And, 
1

1 13
3 200.417(1 ) Pr Rex x

x
Nu

x



  . In this expression 

you can see, does ( )wT x increase or decrease with distance x? You can see that, you have 

here Rex ,one x is there and also here x is there; so you can see that your wall 

temperature will increase along x. So, if you although in this particular case your; you 

have this plate with uniform wall heat flux; but Tw which is function of x will increase 

along x. 

Now, let us see, what is the accuracy compared to the exact solution? Because, in this 

particular case, we have used approximate method where we have approximated the 

velocity profile as well as the temperature profile as third degree polynomial; so, we 

have found what is the thermal boundary layer thickness as well as the Nusselt number. 

Now, let us compare this with the exact solution. So, you can see for Prandtl number= 1 

exact solution T


should be 1; because δT =δ for Prandtl number= 1. But, from the 

integral solution you can see, for Prandtl number =1 , T


= 0.775. So, error is much in 

predicting the thermal boundary layer thickness, it is 22.5 . 

Now, if you compare the Nusselt number with the exact solution. So, this is the exact 

solution, you can see
1 1

3 20.453Pr Rex xNu  . So, this is your follows a solution with 

unheated region. So, you can see this is the expression; but from the approximate 

solution, we have found
1 1

3 20.417Pr Rex . 

So, you can see error is almost 8 , but it is Nusselt number is predicting well right; but 

here δT is having much difference with the exact solution. So, in this particular 

expression you can see, your Rex

U x


 . So, you have; so that means your, in the 

denominator you have x and this is your x, so that means Tw varies with x , you can 

see.  
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So, this is in the numerator we have x and in the denominator you have x . So, in the 

x
x

x
 . So, Tw varies x . Now, if we assume a variable temperature profile in the 

flat plate; then, can we get back the same expression of Nusselt number whatever we 

have got assuming the constant wall heat flux boundary condition. So, let us see that. 

(Refer Slide Time: 35:12) 

 

So, now we are considering laminar boundary layer flow over flat plate with variable 

wall temperature. So, you can see that your wall temperature varies with x . So, we 

have taken this flat plate where temperature varies asT C x  , where C is your 

constant.  

And, in last slide we have seen that, generally for constant wall heat flux condition Tw 

varies as x . So, we have taken ( )xT x T C x  . So, you have free stream temperature 

T∞ and Prandtl number > 1, so that δT < δ. 

So, for this expression if you use the third degree polynomial for velocity profile; so, we 

have already derived this, 
x


we have derived this, temperature profile. Now, with these 

boundary conditions if you see that we have, in the last class we have used uniform wall 

temperature boundary condition and for that, we have found the temperature profile. So, 

same temperature profile we can put it, where Tw is function of x.  
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So, we can see this is the same expression what we have derived already for uniform 

wall temperature boundary condition and this is the T (x, y); but here Tw is function of x. 

So, 
3

3

3 1
( , ) ( ) ( ( ))( )

2 2
w w

T T

y y
T x y T x T T x

 
    . And, this is the energy integral equation, 

right. So, now, in this expression you put u and T. 

So, already this we have derived and here already we have derived this; but here Tw is 

function of x, because your wall temperature varies like this. So, if you put it and you 

will get U∞ is constant. So, we have taken outside
d

dx
. So, you will get from this you can 

see, it will be 0

0

( )
T

y

d T
u T T dy

dx y



 


   

 . 

So, you will get, 2 4 ( ( ) )1 1
[ ( ( ) ){ ( ) ( ) }]

20 280 2

wT T
w

T

T x Td
U T x T

dx

 


  


 


   . 

So, if you see these two terms and we have used Prandtl number > 1; so that means 

T


<1. So, in this particular case you can see, you can neglect this term; because, this 

term will be much much less than the this term. And, ( )xT x T C x  . So, these if you 

put it here, you can see we will get this expression. And, it is easy to integrate, because 

you can see here you can put the expression for ( )xT x T C x  . 

(Refer Slide Time: 38:18) 
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And, after simplification you will get this, and integrate this above equation and put the 

boundary condition that at x = 0, you have δT = 0. So, you will get a δT like this 

expression. And, if you rearrange this you will get 1 1
3 2

3.594

Pr Re

T

x
x


 and 

3

2
x

T

x
Nu


 and 

Nusselt number x you will get this. And, you can see that this is the same expression as 

we derived for uniform wall heat flux condition. And, you can see the temperature 

profile whatever we have got it from the uniform wall heat flux condition. So, here we 

can see, if you take from Rex this x outside; then, you will get 
x

x
and it will be 

x and all other terms are constant, because ''

wq is constant, k is constant, Prandtl number 

is constant and here free properties and velocity are constant. 

So, all these will be constant. So, you can write ( )xT x T C x  . So, you can see that, 

keeping the flat plate at uniform wall heat flux condition or keeping the flat plate as 

variable wall temperature where wall temperature varies as x , both will give the same 

result; because, you have seen that Nusselt number expression and these T

x


 expressions 

are same in both the cases. So, in today’s lecture, we considered laminar flow over a flat 

plate with uniform wall heat flux boundary condition. 

So, ''

wq is constant on the flat plate; however, you have Tw which is your wall temperature 

varies with x. We considered initially up to x = x0 as a unheated region, and from x > x0, 

it is maintained at a uniform wall heat flux boundary condition.  

Then, we found the temperature profile using third degree polynomial; applying four 

boundary conditions, we found the four coefficients. And finally, these velocity profile 

as well as the temperature profile, we put it in the energy integral equation. And, 

integrating that equation we got finally the expression for T

x


, which is your δT is your 

thermal boundary layer thickness. 

Once you got the expression for T

x


; then, we found the wall temperature variation Tw 

and local Nusselt number xNu . And, putting the x0 = 0; that means there is no unheated 

region, then we found the as a special condition what are the expression for δT as well as 
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the wall temperature and Nusselt number. Next, we have considered variable wall 

temperature boundary conditions. 

So, we have taken the wall temperature variation ( )xT x T C x  . And, putting that 

wall temperature condition and using third degree polynomial of velocity profile and 

temperature profile, we have found the same thermal boundary layer thickness as well as 

same Nusselt number. So, we have seen that both conditions are same; however, if you 

maintain the variable wall temperature ( )xT x T C x  , it is equivalent to maintaining 

the flat plate as uniform wall heat flux condition. 

Thank you. 
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