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Module - 04
Convective Heat Transfer in External Flows - |1
Lecture — 10
Momentum integral equation for flat plate boundary layer

Hello everyone, till now we have solved the boundary layer equation using similarity
method, where you convert the partial differential equation to ordinary differential
equation and you can easily solve ordinary differential equations with given boundary
conditions. Today we learn one new method, which is an approximate method known as

integral method.
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Approximate Solutions: The Integral Method

Why approximate solution?

When exact solution s not auafiable or can not be easily abtaned.,
When solutions are too complex, implicit of require numerical integration,

Advantages

The integral methed is simple and it can deal with complicating factors.
The mtegrai method is wsed extensively in fid flow, heat trarsfer, mass [V.IF’;‘C',

Mathematical Simplification
Numier of independent variables are reduced.
Reduction in order of dfferential equation,,

There are many situations where it is desirable to obtain the approximate analytical
solutions. When can we have this approximate analytical solution? When exact solution
is not available or cannot be easily obtained and when solutions are too complex implicit
or require numerical integration. So, the advantage of these approximate solutions is; the

integral method is simple and it can deal with complicated factors.
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The integral method is used extensively in fluid flow heat transfer and mass transfer. The
mathematical simplifications are there in approximate solutions because number of

independent variables are reduced.

When you consider 2 dimensional situation, you can see that using integral method you
can convert the partial differential equation to ordinary differential equation. So, you can

see that there is reduction in order of differential equation.

(Refer Slide Time: 02:05)

Differential vs. Integral Formulation

DiMerential Formulation Integral Formulstion
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This element (dx X dy) is infinitecimal This element (dx X §) is infinitesimal
bothin x and ¥ inx but finite in y
Conservation laws are applied to an Conservation laws are satisfied in an
infinitesimal element dx x dy average sense
Sofutions are exact | Solutions are approximate,

So in differential formulation we know that we consider one infinitesimal element of
length dx and dy and the conservations laws are applied to this infinitesimal element. So,
the solutions are exact whereas, in integral formulation the element is infinitesimal in X,

but finite in y.

In this particular case when you consider boundary layer equations you can see for a
flow over flat plate 6 is the boundary layer thickness and your infinitesimal element is
dx. So, the element is (dx X 8). So; obviously, we apply the conservation laws in an

average sense and hence, solutions are approximate in integral formulation.

Now, let us discuss what is the procedure we will follow when we use this approximate

method or integral solution.
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Procedure
1. Integral formulation of the basic laws
The first step is the integral farmulaticns of the principles of cansenvation of mass momentum and energy
2. Assumed velocity and temperature profiles,
Approximate vefocity and temperature profiles are assumed which satisfy known boundary conditions.,
An asstmed profile can be in the farm of podynomia/ linear/ exponential,

A polynomial is usually used in Carteslan coordinate,
An assumed profile & expressed In terms of a single unknown parametas or variable which must be dme«mg—:-d.

3. Determination of the unknown parameter or variable,
Conservation of momentumn gives the unkrown variable in the sssumed velocity.
Conservation of energy gives the unknown vartable In the assumed temperature,,

First, we have this integral formulation of the basic laws. The first step is the integral
formulation of the principles of conservation of mass, momentum and energy. So, first
you see, what are the governing equations for that fluid flow and heat transfer

phenomena, then you write it in integral form.

Next, you assume the velocity and temperature profiles. So, approximate velocity and
temperature profiles are assumed, which satisfy known boundary conditions. An
assumed profile can be in the form of exponential. A polynomial is usually used in
Cartesian coordinate. An assumed profile is expressed in terms of a single unknown

parameter or variable which must be determined.

So, in this boundary layer equation for flow over flat plate, we will see that this unknown
variable is your boundary layer thickness 6. And finally, you determine the unknown

parameter or variable.

So, conservation of momentum gives the unknown variable in the assumed profile and
conservation of energy gives the unknown variable in the assumed temperature. So, if
you follow these 3 steps, then you can use this integral approach to solve the boundary
layer equations and we can find the velocity and temperature profile, as well as we can

find the heat transfer coefficient and the Nusselt number.
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Accuracy

Since basic laws are satisfied in an average sense, integral solutions are inkerently appronmate,

Accuracy depeedds on assumed profile which s not unkjue,
The acuracy is not very sensitive to the form of an sssumed profile,
There & na procedure available for identifying assumed profiles that will result in the most accurate solution

So, what is the accuracy of this integral approach? Since basic laws are satisfied in an
average sense, integral solutions are inherently approximate. So, accuracy depends on
assumed profile which is not unique, because you can use third order polynomial or
second order polynomial. So accordingly, you will get the velocity profile or the
temperature profile.

The accuracy is not very sensitive to the form of an assumed profile. So you can see
there will be little variation when you use different degree of polynomial in the final
solution of temperature profile or velocity profile or the boundary layer thickness. There
is no procedure available for identifying assumed profiles that will result in the most
accurate solutions. We do not know the optimum temperature or velocity profile for

which you will get the results which is closer to the exact solutions.

Today, we will consider only fluid flow, because you know that in convective heat
transfer we need to solve the fluid flow equation as well as the energy equation. In
today’s class, we will solve the fluid flow equation using the integral method and we will
find what is the boundary layer thickness, then we will find what is the shear stress

acting on the flat plate and then we will find the coefficient of friction.
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Momentum integral equation for flat plate boundary layer
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So now, let us consider flow over a heated flat plate. First, we will solve the fluid flow
equation, then we will solve the energy equation for two different boundary conditions;

with constant wall temperature and with constant heat flux.

So you can see, this is your heated flat plate; this is the x direction; perpendicular to the
plate is y direction; your free stream velocity U.; and free stream temperature T.,; and
this is your age of the boundary layer. And this is the boundary layer thickness 3;
obviously, it is hydrodynamic boundary layer thickness and the velocity profile will vary

like this where U is function of x and y and here U, is the free stream velocity.

So, let us write the governing equations. First is continuity equation; that is your

g—i+%:0. So; obviously, you are considering a 2 dimensional case, then you have

2
boundary layer equation for flat plate, you know, u au +V6_u =v ou

x oy oy

2
And; obviously, energy equation you can write asuaa—T+v%:agy—z. So; obviously,
X

you can see v is your kinematic viscosity and a is your thermal diffusivity.
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So now you can see, once to solve the energy equation we need to know the velocity
profile, because in the energy equation you have the velocities. So first, let us solve this

equation for the case flow over flat plate using this integral approach.

So, already we discussed the first approach is that you have to integrate the governing

equation. So, first we are considering the momentum equation, which is your

So now, let us integrate this equation in the boundary layer because 0 to 6. So, as you are
using integral approach; obviously, in y direction we are using 6 and in x direction it is
infinitesimal distance dx. So, if you integrate it; integrating the above equation between 0
and 6, where & is your hydrodynamic boundary layer thickness.

_fou, ¢ ou, ¢ &u . .
So you can see, you can erteju—dy+jv—dy=jv—2dy. Now, we will consider
0 8X 0 6y 0 8y

this each term separately and we will integrate step by step. So, first let us give the term
as 1, this is the first term; the second term is this one in the left hand side and in the right

hand side let us name as term 3.

5
So, term 1; let us write asju Z—udy . We will take this u inside this derivatives. So, if you
X
0

) 2
put it inside the derivative then you can writej%ﬁaldy. So, you can see; so, if you take
X
0

the derivative; obviously, you will get 2 u and you will get back this term. Now term 2;

5
50, this is the term 2. So, this is yourjv%udy .
0

So now, we will use integration by parts. And, you because there are 2 variables, v
andg—u. So use integration by parts. So, if you write it, so integrating by parts what you
y
5

will get? So,[vu]} —I%udy .

0
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So now, let us see the continuity equation. So, what is your continuity equation?

Continuity equation is A + o =0. So, this l term, you can write as ol = _u :
oX oy oy oy OX

So you see, this we put the limit. So if you put y = 8, so at y =6, what is the velocity u? u
will be U., because that is the age of the boundary. So you will have U.. So, you can

writeU v, this is unknown and if you put the lower limit so velocity is at 0. So, it will

be 0 only.
. ov ou . . i . . . .
So, if you put @=—&and if you multiply with u and this u if you take inside this
5 2
derivative then you can Writejlaldy.
52 OX

(Refer Slide Time: 13:31)
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So, the left hand side, let us write all the terms. So, in the left hand side we have all the

) 2 o) 2
terms asjlmdy+umv5 +I1@dy.
52 OX 52 OX

Now, in this equation you can see Vs is unknown right. So, what will do now, we will

again use the continuity equation and we will integrate between 0 and 6. So, these two
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terms if you put together, it is 1/2 and 1/2, so it will be 1. So it will be

5 2
justI%dy+Uwv5. And, this we need to determine, v;.
X
0

So, let us consider the continuity equation. So continuity equation isg—z+% =0. And,
integrating between 0 and §; within the boundary layer thickness.

So, we can see it will be'[&dyﬂ'ady 0. So now you can see this term will remain

o
asitis, jg—udy at this term. So, it will be integral 0 to & dv. So it will be just[v] =0.
X
0

g )
S0 you can see, you can write asJ.Z—udy+v5—O:O. So you can find the v, :—J’Z—udy_
X ) ox

So this vs now you put here. So now, left hand side you can see; you can write

) 2 )
asj—da(alj() y—UwJ.Z—idy
0 0

o(u?)
"X

So you can see, i

dy . So, this now; we

will use the Leibniz theorem. So that we can integrate this term which is having

derivative and you can take this derivative outside the integral.

(Refer Slide Time: 17:01)
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So, you can see the Leibniz integral rule gives a formula for differentiation of a definite

integral whose limits are functions of the differential variable. So, if you have,
d b

d e of (X,)
dx Jax) f (X' y)dy B Ia(x) OX

+ f(x,b(x))@— f(x,a(x))%. So, a and b are the
dx dx

limits and function of x.

So now, you see in our left hand side the first term, so u? you can take as f right. So you
can see, that this f (x,y) so this you can take as u and this limits; obviously, you can see a

X. So this is your lower limit, so it is 0.

And, the upper limit in our case, it is & and which is function of x, and; obviously, u is
function of x and y. So now, you can see that in the left hand side we have this term. So,
this we want to write this derivative with respect to a, we can take outside the integral

using this Leibniz theorem.

. . ou .
S0 you can see now, So you can see we have this term as well as this term; = So, fwill
X

be one time u and another time will be u? and we will take the derivative outside the
integral and, another time f (x,y) will take u 2
j-au

—dy.

5
So now you can see, if you put this f (x,y) as u then you can writedij'udy: o
X 0

0
now, fat x =b. So now, u aty = 4. So, you have to see that f at y = b, so in this case u at
y =90.

So, what is that? That is your free stream velocity u. So, you can write plus U, and what
is b? b is your 8. So, (jj—fand minus, so this is your at y = 0. So that is your O right. So a

is also 0. So this term will become 0.

_tou d ¢ do . o
So, you can see, you can wrltej'—dy:—_[udy—uw—. And, if you use f (x,y) = u*,
5 OX dx g dx

S5 5 2
then what you can? Writeifuzdy = f o) dy +U? d_5_o ,
dx g y OX dx
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. to®u?) d ¢, ,do .
So, you can see, you can ertej—dy =—Iu dy—-UZ- —. So you notice these two
y OX dx g dx

equations. So now, inside the integral we had partial derivative, but using this Leibniz

. . .. d do . . .

integral rule you can see you have used ordinary derivative d—andd— , similarly for this
X X

equations.

(Refer Slide Time: 22:10)
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Now, you put this expression in the left hand side terms. So, we can write finally, so left

) 2 5

hand side we hadj%dy—uwj'g—udy. So now, this using Leibniz rule whatever you
0 X 0 X

have got, so that you just write it.

do

d ¢ ds
=2 _U_[— [udy-U_==1].
dx ”[dx!; d “’dx]

. : d ¢
So, this we have written, d—juzdy ~U?
X
0
So, from Leibniz integral rule whatever we got, the partial differentiation inside the
integral that we have written in terms of the ordinary derivative outside the integral; so

that we have just put the terms in this expression. So, now, if you rearrange you can see;

so, it will be, —juzdy Uzzi—ijuu dy + U2d6
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S5
So, you cancel these two terms. So, you will getdij(uz—uum)dy. And you can
XO

5
Write—difu@w —u)dy . Now, let us consider the third term, which was in right hand
X 0

side of the boundary layer equation. So, if you see the third term. So that is in the right

o 2
hand side. So you have.[v%dy.
0

So, what you can write this? 0 to &; v we can take it outside because this is your fluid
T o ou

property and constant. So, you can write vj@(a)dy . So you can see. So this del y del y
0

will get cancelled, so you can write this as v[%“]g. Now you see, that at y= & which is

your edge of the boundary layer.

So, what is the velocity gradient?g—u,because at the edge of the boundary layer and
y

outside the age of the boundary layer you have a free stream velocity U... So, velocity

gradient becomes 0. So that means, %uwill be 0 at y = 3. So you can see, aty = & it will

be 0 and —va—u|y:O at wall will have some value right. So that isy = 0.
oy

Now, this term we can represent in terms of shear stress; wall shear stress right. In terms

. ou
of wall shear stress, 1. So, you can write wall shear stress. So, 7, = y—|y:0 . So you can

. ou T,
see, you can wrlte—|y:0 =,
oy U

So now you see, the left hand side term is this one; which has one negative sign and right

hand side this is the term and if you put the value of Z—u|y_0 you will get as minus, so v is
Yy

your, what is v? Sov = # 5o you will getlrw.
Yo
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Momentum integral equation for flat plate boundary layer
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So you can see, you have minus. So, now if you write left hand side is equal to right

hand side, so what you are going to get? So, if you put left hand side is equal to right

S5
hand side, so we will get—di.[u(uw —u)dy = ~lw So, you divide both side byU?.
X3 o)

So, and this minus and right hand side minus we will cancel, so you can
. dfu u
write— | — (1——)dy =
dx-[U ( Uw) Y

0 0

Tw

. S0 this equation is known as momentum integral

o0

equation.

So, we started with the momentum equation. We integrated between 0 and 6 and finally,

we have arrived in this expression. So, you can see this is known as momentum integral
. o . .. d

equation and you can see that this is your ordinary derlvatlved—. Now, we need to
X

assume the velocity profile. Now, we need to go to the second step.

So, we need to approximate the velocity profile. Now, let us assume the velocity profile.

So, assume velocity profile. So, we will use polynomial expression. So,

N
u(x, y)=ZCn(x)y”. So today we will consider 3rd degree polynomial. So if you
n=0

consider 3rd degree polynomial, then you can express this velocity profile as 3rd degree

polynomial.
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You will getu=c, +cy+c,y*+c,y°. So, considering 3rd degree polynomial we got 4

coefficients. So we need to determine ¢ ,c1 ,C2 and ¢3. So how many boundary condition

do you require to find this 4 coefficients? Obviously, you need 4 boundary conditions.

So, now you can see, easily you can find 2 boundary conditions at y = 0, no slip
boundary condition. So u = 0 and y = 8, you have u = co. Another boundary condition at

y = §, you can easily find that velocity gradient is 0, so; that means, that y = 9, Z—; =0. So
this 3 boundary conditions you got easily.

So we need another boundary conditions. Now the fourth boundary condition will derive,
satisfying the Navier-Stokes equation or satisfying the boundary layer equation at the
wall. So aty = 0, let us see whatever boundary layer equation you have, what expression
you get and from there we will get the boundary condition that is why it is known as

derived boundary condition.

So let us write the boundary conditions. So, at y = 0 you have u =0 at y = §, you have u

= oo that is your free stream velocity, at y = 8, your velocity gradient is 0. So %u =0 and

2
at y = 0. Now, we will see the boundary layer equation isu 8_u+V8_u = vﬁ—l: .

ox oy oy
So this is your boundary layer equation. Now, you put at y = 0. What happens? So we

will derive this boundary condition. Soaty =0, uis 0; aty =0, v is 0. So we can see, left
2

hand side 2 terms are 0. So, we will get %: 0. So, this is your derived boundary
y

2
condition. So, Z—l:: 0. So now, you have 4 boundary conditions, so find these 4
y

coefficients.
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Momentum integral equation for flat plate boundary layer
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So, we haveu =c, +C y+C,y° +C,y°. SOZ—u , if you take the derivative with respect to y.
y

. ou ) o%u
So you find the, 5 =, +2¢,y +3c,y“and y =2C, +6¢C,Y .

Now, apply those boundary conditions. So, at y = 0, you have u = 0. So, if you see this
equation at y = 0. So these last 3 terms will become 0 and left hand side u = 0, so that
will give ¢q is 0.

2
Then at y = 0, you have %:O. So, if you put it here, y = 0 left hand side this is 0, so it
y

will give c; = 0. And now at y = 9, you have u = U, right. So, if you put it in this

expression, so you will getU_ =c 5 +¢,0°.
And aty = g, you haveg—; = 0. So, if you put here, so left hand side isO=c, +3c,5°. So,
you can see, you can findc, =—3c,0°. And if you put it here, so you will

getU_ =-3c,8° +¢,8°.

So, what you will get? So, you will get you see here,- 2¢,6°. So, ¢, = —%l;—f
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1U

And now, c, =-3(- 55—)52 So what you will get? So, it will get plus so it will
beSYe
2 6
3Uu,  1U_ ,
So now, you can write the velocity profile asu = 57 y—E? y”. S0, you can see your
3y 1.y
velocity profile. You can erteU 55—5(5) . S0 you can see, that assumed velocity

o0

is in terms of a single unknown variables 6 and 6 = f (x) .

So, now, we will go to the next step. So, what is that step? Determination of this
unknown variable. So, we have express the velocity profile in terms of hydrodynamic
boundary layer thickness &, which is function of X. So now this unknown variable 6, we

need to find. So that will determine.

(Refer Slide Time: 39:11)
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So, for this we will use this momentum integral equation. So, we have momentum

o
integral equation, which we have already derived. This is di [ -—dy=—»
X

OUoo Uoo Idji

And we have velocity profile; d §X—E(Xf.
U 25 26

So now, let us put this velocity profile in this momentum integral equation and find the

unknown variable . So, we will just user = % So you can see, at y =0n =0 and at y=9
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you will have n =1. So, this limit if you put it here, so all this expression you put, so put

M 3, L i momentum integral equation
u, 2" 2" '
d¢,3 T,
So, what we will get? So, we will get— | (=n—= ——n+=n>)odn =
g g dx!(zn 7°)d 77 77) =

So you can see here, your 6 is function of x only right. So, this & you can take it outside

this integral, because this you are integrating with respect to n which is your y. So;

obviously, you can take it outside the integrals.
9

d.t3 1 3 3 1 T
So, you can write, —[S|{=n—=n*—-=n*+=n*+Zp* == Ydnp=—2.
y ™l £{277 S0t =ttt =y i

So if you rearrange it, what you will get?

2 1 3, 3 4 1 6 T
— — I -+ 2t =St dy =
[I{ N =5 +57 =7 Hdn 02

So if you integrate now, so you will get

L R it 07

So now, at n = 0 anyway all these terms will become 0, at n = 1 you just put the value,

then what you will get’7—[5(§—§_l i__)]

4481028

cancel.
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So, you can get, so now if you rearrange this and you can get finally, in the left hand

side as 9% 3% and in the right hand side it is 2.
dx 280 pU

o0

So, now let us find what is the wall

shear stress, because wall shear stress you can express in terms of the velocity gradient at
y = 0 and velocity profile already you have derived. So you will be able to find what is

the shear stress.

S it — M and h locit
0, yOU can Wwrite TW—/J& y;oan yOU can see yOU can ave ve OCIy

profileuizgn—%ns. And also we have dy = & dn right, becauser :%. So, you can
write 8—u|
/ué‘dn n=0"*
Then you can write, <l =Uw[§—§772] ; SO, You can seea—ul _o- S0 you will getﬁ§ -
on 2 2 on " o2
So, finally 7, = >4
2 5

So, now, if you put 7, here, so you will get so you can writeE 39 = ! 5 3HY, .
dx 280 U2 &

S0 you can see, you can WritecS@ :L@§ . S0, this will be 6d6 :&de.

dx U. 39 2

o0

So if you integrate this equation, so you will be able to find the unknown variable 5. And

you know that x = 0, you have the hydrodynamic boundary layer thickness as 0 so; that

. . . . 0% 140 v
means, 6 =0. So, if you integrate it so you will get7 = Eu—x+c. So now, you put at

x =0, & =0 right so; that means, it will give ¢ = 0 ok. So if your ¢ = 0.
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Momentum integral equation for flat plate boundary layer

- >
%-— . 12\30 - -%"\ U, o
< .
» 52 g™ noo 2
s"- 2 $0 o A
- - = —_ U Re T -
\ Vn®
230 Re = ~=—
2 2 57 TRe. =
Ra, = *_
3o X9 2
LS > Thex
x i /‘U- = A
Ty = = T = = "_““ s
T MY > 3 }i
= =2 o Ran o lRl S A
J-PU:‘ 4 = 4 PUr Aeam At W = "a ﬂ‘&\

C§ o646

TR

0% 140 v ) ) 280 v

So, you can write — = ————x. So if you rearrange, you will get 6> = ——— x or you

4 2 13 U 4 ge ¥ 9 13 U, 4

.. 6% 280 v
can write — = ————.
X 13 U_x

So now you see, in the last term you haveUL. So that you can express in terms of
X

0

Reynolds number. So, if you define the Reynolds number. Re, = Y.x , Which is x is your
14

axial direction. So, at x = | for the plate length | you can write Re, = Ut . So, if you put
14

. . 0 280 1 . 0 464
it here, so we can see you can write — = = = Or you can write — = .
X

JRe, x Re,

So now, we have found the unknown variable; the hydrodynamic boundary layer

thickness 6. So now, once & is known now you will be able to calculate the velocity
profile ok, because velocity profile we have expressed in terms of 5. So, now, 6 you have

found, so you will be able to find what is the velocity profile using the integral method.
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Now, let us find the coefficient of friction. So, we have found the shear

3

stressz,, =§T°°. So now you can put the value of & here. So, what you will get?
§% value you can see here. So, 6 you can write as, 6 = 4'24)( .
e

X
So if you put this, so you can see you can write as; SO now, Yyou can

JRe

write - — C, = §&_x So, you can see here, these 2 and 2 you can cancel.
1 .2 21 2 4.64x

EPUOO EPUOO

) 3
Now, you will get —— .
y g 4.64

. . ] 3 v
And here you see, it is; so it will be ust——ﬂ/Re )
y J 4.64U_x X

So the friction coefficient you will get asC, = % So today, we considered the flow

JRe.

over flat plate and used approximate solution method to find the boundary layer

thickness as well as the friction factor using assumed velocity profile.

So, in integral approach there are three steps. First step is that you have to integrate the
governing equation, then you assume the velocity profile and next you find the unknown

variable.

So, using the integral approach we have found u as well as the friction coefficient Cs in
X

terms of the Reynolds number.
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Momentum integral equation for flat plate boundary layer

Lodaspal Tt Blasiws »ebis
“'e% 3 - R -
*ewe- ="
: . o6k
e e TR Al

And finally, you can see that if you compare the results you got from the integral method

with the exact solution, so there is; if you see this is your almost 10.8 % error and if you
compare the Ct it is 2.7 % error.

(Refer Slide Time: 54:44)

Momentum integral equation for flat plate boundary layer

U, y :
Integral solution Blasius solution s Loy
- e 25
5 0113 464 oo % = SR

X \Re, Re,” % whe, 5
0.664
0.646 Cpamme v
Ur= ’ / )
! Re, ey

# Both solutions have same form -

¥ Error indis 10.8% ~

# Error in Cp is 2.7% ~

# Accuracy of C; 1s more important than §

So you can see; finally, we have derived the hydrodynamic boundary layer thickness

using integral solution é: . Similarly, coefficient of friction we have derived
X JReX
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_ 0.646
JRe.

approximate velocity profile.

C, . S0 you can see these are approximate solution, because we have used some

Whereas, you have the exact solution from Blasius solution; you can see

5_ 52 ¢, 0664

X Re Re

X X

. S0, you can see both solutions have same form.

If you compare & by x with this integral solution and Blasius solution, you will get error
in 6 as 10.8 % and error in Ctis 2.7 %. Obviously, error in Cs is less than the error in &

and accuracy of Cs is more important than & in design point of view.

Thank you.
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