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Hello everyone, till now we have solved the boundary layer equation using similarity 

method, where you convert the partial differential equation to ordinary differential 

equation and you can easily solve ordinary differential equations with given boundary 

conditions. Today we learn one new method, which is an approximate method known as 

integral method.  
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There are many situations where it is desirable to obtain the approximate analytical 

solutions. When can we have this approximate analytical solution? When exact solution 

is not available or cannot be easily obtained and when solutions are too complex implicit 

or require numerical integration. So, the advantage of these approximate solutions is; the 

integral method is simple and it can deal with complicated factors. 
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The integral method is used extensively in fluid flow heat transfer and mass transfer. The 

mathematical simplifications are there in approximate solutions because number of 

independent variables are reduced.  

When you consider 2 dimensional situation, you can see that using integral method you 

can convert the partial differential equation to ordinary differential equation. So, you can 

see that there is reduction in order of differential equation. 

(Refer Slide Time: 02:05) 

 

So in differential formulation we know that we consider one infinitesimal element of 

length dx and dy and the conservations laws are applied to this infinitesimal element. So, 

the solutions are exact whereas, in integral formulation the element is infinitesimal in x, 

but finite in y.  

In this particular case when you consider boundary layer equations you can see for a 

flow over flat plate δ is the boundary layer thickness and your infinitesimal element is 

dx. So, the element is (dx X δ). So; obviously, we apply the conservation laws in an 

average sense and hence, solutions are approximate in integral formulation.  

Now, let us discuss what is the procedure we will follow when we use this approximate 

method or integral solution. 
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First, we have this integral formulation of the basic laws. The first step is the integral 

formulation of the principles of conservation of mass, momentum and energy. So, first 

you see, what are the governing equations for that fluid flow and heat transfer 

phenomena, then you write it in integral form. 

Next, you assume the velocity and temperature profiles. So, approximate velocity and 

temperature profiles are assumed, which satisfy known boundary conditions. An 

assumed profile can be in the form of exponential. A polynomial is usually used in 

Cartesian coordinate. An assumed profile is expressed in terms of a single unknown 

parameter or variable which must be determined.  

So, in this boundary layer equation for flow over flat plate, we will see that this unknown 

variable is your boundary layer thickness δ. And finally, you determine the unknown 

parameter or variable. 

So, conservation of momentum gives the unknown variable in the assumed profile and 

conservation of energy gives the unknown variable in the assumed temperature. So, if 

you follow these 3 steps, then you can use this integral approach to solve the boundary 

layer equations and we can find the velocity and temperature profile, as well as we can 

find the heat transfer coefficient and the Nusselt number. 
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So, what is the accuracy of this integral approach? Since basic laws are satisfied in an 

average sense, integral solutions are inherently approximate. So, accuracy depends on 

assumed profile which is not unique, because you can use third order polynomial or 

second order polynomial. So accordingly, you will get the velocity profile or the 

temperature profile.  

The accuracy is not very sensitive to the form of an assumed profile. So you can see 

there will be little variation when you use different degree of polynomial in the final 

solution of temperature profile or velocity profile or the boundary layer thickness. There 

is no procedure available for identifying assumed profiles that will result in the most 

accurate solutions. We do not know the optimum temperature or velocity profile for 

which you will get the results which is closer to the exact solutions. 

Today, we will consider only fluid flow, because you know that in convective heat 

transfer we need to solve the fluid flow equation as well as the energy equation. In 

today’s class, we will solve the fluid flow equation using the integral method and we will 

find what is the boundary layer thickness, then we will find what is the shear stress 

acting on the flat plate and then we will find the coefficient of friction. 
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So now, let us consider flow over a heated flat plate. First, we will solve the fluid flow 

equation, then we will solve the energy equation for two different boundary conditions; 

with constant wall temperature and with constant heat flux.  

So you can see, this is your heated flat plate; this is the x direction; perpendicular to the 

plate is y direction; your free stream velocity U∞; and free stream temperature T∞; and 

this is your age of the boundary layer. And this is the boundary layer thickness δ; 

obviously, it is hydrodynamic boundary layer thickness and the velocity profile will vary 

like this where U is function of x and y and here U∞ is the free stream velocity.  

So, let us write the governing equations. First is continuity equation; that is your 

0
u v

x y

 
 

 
. So; obviously, you are considering a 2 dimensional case, then you have 

boundary layer equation for flat plate, you know, 
2

2

u u u
u v

x y y


  
 

  
. 

And; obviously, energy equation you can write as
2

2

T T T
u v

x y y


  
 

  
. So; obviously, 

you can see ν is your kinematic viscosity and α is your thermal diffusivity.  
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So now you can see, once to solve the energy equation we need to know the velocity 

profile, because in the energy equation you have the velocities. So first, let us solve this 

equation for the case flow over flat plate using this integral approach.  

So, already we discussed the first approach is that you have to integrate the governing 

equation. So, first we are considering the momentum equation, which is your 

2

2

u u u
u v

x y y


  
 

  
 right. 

So now, let us integrate this equation in the boundary layer because 0 to δ. So, as you are 

using integral approach; obviously, in y direction we are using δ and in x direction it is 

infinitesimal distance dx. So, if you integrate it; integrating the above equation between 0 

and δ, where δ is your hydrodynamic boundary layer thickness.  

So you can see, you can write
2

2

0 0 0

u u u
u dy v dy dy

x y y

  


  

 
     . Now, we will consider 

this each term separately and we will integrate step by step. So, first let us give the term 

as 1, this is the first term; the second term is this one in the left hand side and in the right 

hand side let us name as term 3. 

So, term 1; let us write as
0

u
u dy

x




 . We will take this u inside this derivatives. So, if you 

put it inside the derivative then you can write
2

0

1

2

u
dy

x




 . So, you can see; so, if you take 

the derivative; obviously, you will get 2 u and you will get back this term. Now term 2; 

so, this is the term 2. So, this is your
0

u
v dy

y




 . 

So now, we will use integration by parts. And, you because there are 2 variables, v 

and
u

y




. So use integration by parts. So, if you write it, so integrating by parts what you 

will get? So, 0

0

[ ]
v

vu udy
y


 



. 
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So now, let us see the continuity equation. So, what is your continuity equation? 

Continuity equation is 0
u v

x y

 
 

 
. So, this 

v

y




term, you can write as

v u

y x

 
 

 
.  

So you see, this we put the limit. So if you put y = δ, so at y =δ, what is the velocity u? u 

will be U∞, because that is the age of the boundary. So you will have U∞. So, you can 

writeU v , this is unknown and if you put the lower limit so velocity is at 0. So, it will 

be 0 only. 

So, if you put 
v u

y x

 
 

 
and if you multiply with u and this u if you take inside this 

derivative then you can write
2

0

1

2

u
dy

x




 . 
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So, the left hand side, let us write all the terms. So, in the left hand side we have all the 

terms as
2 2

0 0

1 ( ) 1 ( )

2 2

u u
dy U v dy

x x

 



 
 

   .  

Now, in this equation you can see vδ is unknown right. So, what will do now, we will 

again use the continuity equation and we will integrate between 0 and δ. So, these two 

188



terms if you put together, it is 1/2 and 1/2, so it will be 1. So it will be 

just
2

0

( )u
dy U v

x








 . And, this we need to determine, vδ.  

So, let us consider the continuity equation. So continuity equation is 0
u v

x y

 
 

 
. And, 

integrating between 0 and δ; within the boundary layer thickness.  

So, we can see it will be
0 0

0
u u
dy dy

x y

 
 

 
   . So now you can see this term will remain 

as it is, 
0

u
dy

x





at this term. So, it will be integral 0 to δ dv. So it will be just

0[ ] 0v   . 

So you can see, you can write as
0

0 0
u
dy v

x






  


. So you can find the

0

u
v dy

x






 


. 

So this vδ now you put here. So now, left hand side you can see; you can write 

as
2

0 0

( )u u
dy U dy

x x

 



 


   . 

So you can see, in the first term, so in the first term you have, 
2( )u

dy
x




. So, this now; we 

will use the Leibniz theorem. So that we can integrate this term which is having 

derivative and you can take this derivative outside the integral. 

(Refer Slide Time: 17:01) 
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So, you can see the Leibniz integral rule gives a formula for differentiation of a definite 

integral whose limits are functions of the differential variable. So, if you have, 

( ) ( )

( ) ( )

( , )
( , ) ( , ( )) ( , ( ))

b x b x

a x a x

d f x y db da
f x y dy f x b x f x a x

dx x dx dx


  

  . So, a and b are the 

limits and function of x.  

So now, you see in our left hand side the first term, so u
2
 you can take as f right. So you 

can see, that this f (x,y) so this you can take as u and this limits; obviously, you can see a 

x. So this is your lower limit, so it is 0.  

And, the upper limit in our case, it is δ and which is function of x, and; obviously, u is 

function of x and y. So now, you can see that in the left hand side we have this term. So, 

this we want to write this derivative with respect to a, we can take outside the integral 

using this Leibniz theorem. 

So you can see now, so you can see we have this term as well as this term; 
u

x




. So, f will 

be one time u and another time will be u
2
 and we will take the derivative outside the 

integral and, another time f (x,y) will take u 
2
.  

So now you can see, if you put this f (x,y) as u then you can write
0 0

d u
udy dy

dx x

 



  . 

now, f at x = b. So now, u at y = δ. So, you have to see that f at y = b, so in this case u at 

y = δ.  

So, what is that? That is your free stream velocity u. So, you can write plus U∞ and what 

is b? b is your δ. So, 
d

dx


and minus, so this is your at y = 0. So that is your 0 right. So a 

is also 0. So this term will become 0. 

So, you can see, you can write
0 0

u d d
dy udy U

x dx dx

 





 

  . And, if you use f (x,y) = u
2
, 

then what you can? Write
2

2 2

0 0

( )
0

d u d
u dy dy U

dx x dx

 





  

  . 
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So, you can see, you can write
2

2 2

0 0

( )u d d
dy u dy U

x dx dx

 





 

  . So you notice these two 

equations. So now, inside the integral we had partial derivative, but using this Leibniz 

integral rule you can see you have used ordinary derivative 
d

dx
and

d

dx


, similarly for this 

equations. 

(Refer Slide Time: 22:10) 

   

Now, you put this expression in the left hand side terms. So, we can write finally, so left 

hand side we had
2

0 0

( )u u
dy U dy

x x

 



 


   . So now, this using Leibniz rule whatever you 

have got, so that you just write it.  

So, this we have written, 2 2

0 0

[ ]
d d d d

u dy U U udy U
dx dx dx dx

 
 

      . 

So, from Leibniz integral rule whatever we got, the partial differentiation inside the 

integral that we have written in terms of the ordinary derivative outside the integral; so 

that we have just put the terms in this expression. So, now, if you rearrange you can see; 

so, it will be, 2 2 2

0 0

d d d d
u dy U uU dy U

dx dx dx dx

 
 

       

. 
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So, you cancel these two terms. So, you will get 2

0

( )
d

u uU dy
dx



 . And you can 

write
0

( )
d

u U u dy
dx



  . Now, let us consider the third term, which was in right hand 

side of the boundary layer equation. So, if you see the third term. So that is in the right 

hand side. So you have
2

2

0

u
dy

y






 .  

So, what you can write this? 0 to δ; ν we can take it outside because this is your fluid 

property and constant. So, you can write
0

( )
u

dy
y y




 

  . So you can see. So this del y del y  

will get cancelled, so you can write this as 0[ ]
u

y





. Now you see, that at y= δ which is 

your edge of the boundary layer.  

So, what is the velocity gradient?
u

y




,because at the edge of the boundary layer and 

outside the age of the boundary layer you have a free stream velocity U∞. So, velocity 

gradient becomes 0. So that means, 
u

y




will be 0 at y = δ. So you can see, at y = δ it will 

be 0 and 0y

u

y
 


 


at wall will have some value right. So that is y = 0.  

Now, this term we can represent in terms of shear stress; wall shear stress right. In terms 

of wall shear stress, τw. So, you can write wall shear stress. So, 0w y

u

y
  


 


. So you can 

see, you can write 0
w

y

u

y







 


.  

So now you see, the left hand side term is this one; which has one negative sign and right 

hand side this is the term and if you put the value of 0y

u

y






you will get as minus, so ν is 

your, what is ν? So





 . So you will get
1

w


.  
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So you can see, you have minus. So, now if you write left hand side is equal to right 

hand side, so what you are going to get? So, if you put left hand side is equal to right 

hand side, so we will get
0

( ) wd
u U u dy

dx





    . So, you divide both side by 2U

.  

So, and this minus and right hand side minus we will cancel, so you can 

write
2

0

(1 ) wd u u
dy

dx U U U




  

  . So this equation is known as momentum integral 

equation.  

So, we started with the momentum equation. We integrated between 0 and δ and finally, 

we have arrived in this expression. So, you can see this is known as momentum integral 

equation and you can see that this is your ordinary derivative
d

dx
. Now, we need to 

assume the velocity profile. Now, we need to go to the second step.  

So, we need to approximate the velocity profile. Now, let us assume the velocity profile. 

So, assume velocity profile. So, we will use polynomial expression. So, 

0

( , ) ( )
N

n

n

n

u x y C x y


 . So today we will consider 3rd degree polynomial. So if you 

consider 3rd degree polynomial, then you can express this velocity profile as 3rd degree 

polynomial. 
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You will get 2 3

1 2 3ou c c y c y c y    . So, considering 3rd degree polynomial we got 4 

coefficients. So we need to determine c0 ,c1 ,c2 and c3. So how many boundary condition 

do you require to find this 4 coefficients? Obviously, you need 4 boundary conditions.  

So, now you can see, easily you can find 2 boundary conditions at y = 0, no slip 

boundary condition. So u = 0 and y = δ, you have u = ∞. Another boundary condition at 

y = δ, you can easily find that velocity gradient is 0, so; that means, that y = δ, 
u

y




=0. So 

this 3 boundary conditions you got easily. 

So we need another boundary conditions. Now the fourth boundary condition will derive, 

satisfying the Navier-Stokes equation or satisfying the boundary layer equation at the 

wall. So at y = 0, let us see whatever boundary layer equation you have, what expression 

you get and from there we will get the boundary condition that is why it is known as 

derived boundary condition.  

So let us write the boundary conditions. So, at y = 0 you have u = 0 at y = δ, you have u 

= ∞ that is your free stream velocity, at y = δ, your velocity gradient is 0. So 
u

y




= 0 and 

at y = 0. Now, we will see the boundary layer equation is
2

2

u u u
u v

x y y


  
 

  
. 

So this is your boundary layer equation. Now, you put at y = 0. What happens? So we 

will derive this boundary condition. So at y = 0, u is 0; at y = 0, v is 0. So we can see, left 

hand side 2 terms are 0. So, we will get 
2

2

u

y




= 0. So, this is your derived boundary 

condition. So, 
2

2

u

y




= 0. So now, you have 4 boundary conditions, so find these 4 

coefficients. 
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So, we have 2 3

1 2 3ou c c y c y c y    . So
u

y




, if you take the derivative with respect to y. 

So you find the, 2

1 2 32 3
u

c c y c y
y


  


and 

2

2 32
2 6

u
c c y

y


 


. 

Now, apply those boundary conditions. So, at y = 0, you have u = 0. So, if you see this 

equation at y = 0. So these last 3 terms will become 0 and left hand side u = 0, so that 

will give c0 is 0.  

Then at y = 0, you have 
2

2

u

y




=0. So, if you put it here, y = 0 left hand side this is 0, so it 

will give c2 = 0. And now at y = δ, you have u = U∞ right. So, if you put it in this 

expression, so you will get 3

1 3U c c    . 

And at y = δ, you have
u

y




= 0. So, if you put here, so left hand side is 2

1 30 3c c   . So, 

you can see, you can find 2

1 33c c   . And if you put it here, so you will 

get 3 3

3 33U c c     .  

So, what you will get? So, you will get you see here,- 3

32c  . So, 3 3

1

2

U
c


  .  
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And now, 
2

1 3

1
3( )

2

U
c 


   . So what you will get? So, it will get plus so it will 

be
3

2

U


 . 

So now, you can write the velocity profile as
3

3

3 1

2 2

U U
u y y

 
   . So, you can see your 

velocity profile. You can write 33 1
( )

2 2

u y y

U  

  . So you can see, that assumed velocity 

is in terms of a single unknown variables δ and ( )f x  .  

So, now, we will go to the next step. So, what is that step? Determination of this 

unknown variable. So, we have express the velocity profile in terms of hydrodynamic 

boundary layer thickness δ, which is function of x. So now this unknown variable δ, we 

need to find. So that will determine. 

(Refer Slide Time: 39:11) 

 

So, for this we will use this momentum integral equation. So, we have momentum 

integral equation, which we have already derived. This is 
2

0

(1 ) wd u u
dy

dx U U U




  

  . 

And we have velocity profile; 33 1
( )

2 2

u y y

U  

  .  

So now, let us put this velocity profile in this momentum integral equation and find the 

unknown variable δ. So, we will just use
y




 . So you can see, at y = 0 η = 0 and at y=δ 
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you will have η =1. So, this limit if you put it here, so all this expression you put, so put 

33 1

2 2

u

U
 



  in momentum integral equation.  

So, what we will get? So, we will get

1

3 3

2

0

3 1 3 1
( )(1 )

2 2 2 2

wd
d

dx U


     

 

    .  

So you can see here, your δ is function of x only right. So, this δ you can take it outside 

this integral, because this you are integrating with respect to η which is your y. So; 

obviously, you can take it outside the integrals.  

So, you can write, 

1

3 2 4 4 6

2

0

3 1 9 3 3 1
[ { }]

2 2 4 4 4 4

wd
d

dx U


       

 

      . 

So if you rearrange it, what you will get? 

 

1

2 3 4 6

2

0

3 9 1 3 1
[ { }]

2 4 2 2 4

wd
d

dx U


      

 

     . 

So if you integrate now, so you will get 

2 3 4 5 7
1

0 2

3 9 1 3 1
{ [ ] }

2 2 4 3 2 4 2 5 4 7

wd

dx U

    


 

     .  

So now, at η = 0 anyway all these terms will become 0, at η = 1 you just put the value, 

then what you will get?
2

3 3 1 3 1
[ ( )]

4 4 8 10 28

wd

dx U




 

     . So these 3/4 and 3/4 you can 

cancel.  

(Refer Slide Time: 45:39) 

 

197



 So, you can get, so now if you rearrange this and you can get finally, in the left hand 

side as 
39

280

d

dx


 and in the right hand side it is

2

w

U



 

. So, now let us find what is the wall 

shear stress, because wall shear stress you can express in terms of the velocity gradient at 

y = 0 and velocity profile already you have derived. So you will be able to find what is 

the shear stress.  

So, you can write 0w y

u

x
  


 


and you can see you can have velocity 

profile 33 1

2 2

u

U
 



  . And also we have dy = δ dη right, because
y




 . So, you can 

write 0

u

d


 



 . 

Then you can write, 23 3
[ ]
2 2

u
U 





 


; so, you can see 0

u









. So you will get

3

2
U




 . 

So, finally 
3

2
w

U



 .  

So, now, if you put w here, so you will get so you can write
2

39 1 3

280 2

Ud

dx U



 




 . 

So you can see, you can write
280 3

39 2

d

dx U

 




 . So, this will be
140

13
d dx

U


 



 .  

So if you integrate this equation, so you will be able to find the unknown variable δ. And 

you know that x = 0, you have the hydrodynamic boundary layer thickness as 0 so; that 

means, δ =0. So, if you integrate it so you will get
2 140

2 13
x c

U

 



  . So now, you put at 

x = 0, δ = 0 right so; that means, it will give c = 0 ok. So if your c = 0. 
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So, you can write
2 140

2 13
x

U

 



 . So if you rearrange, you will get 2 280

13
x

U






 or you 

can write
2

2

280

13x U x

 



 . 

So now you see, in the last term you have
U x





. So that you can express in terms of 

Reynolds number. So, if you define the Reynolds number. Rex

U x


 , which is x is your 

axial direction. So, at x = l for the plate length l you can write ReL

U L


 . So, if you put 

it here, so we can see you can write
280 1

13 Rex
x


 . Or you can write

4.64

Rex
x


 .  

So now, we have found the unknown variable; the hydrodynamic boundary layer 

thickness δ. So now, once δ is known now you will be able to calculate the velocity 

profile ok, because velocity profile we have expressed in terms of δ. So, now, δ you have 

found, so you will be able to find what is the velocity profile using the integral method. 
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Now, let us find the coefficient of friction. So, we have found the shear 

stress
3

2
w

U



 . So now you can put the value of δ here. So, what you will get? 

3

2

U


 value you can see here. So, δ you can write as, 

4.64

Rex

x
  .  

So if you put this, so you can see you can write as; so now, you can 

write
2 2

Re3

1 12 4.64

2 2

xw
f

U
C

x
U U

 

 



 

  . So, you can see here, these 2 and 2 you can cancel. 

Now, you will get
3

4.64
. 

And here you see, it is; so it will be just
3

Re
4.64

x
U x





.  

So the friction coefficient you will get as
0.646

Re
f

x

C  . So today, we considered the flow 

over flat plate and used approximate solution method to find the boundary layer 

thickness as well as the friction factor using assumed velocity profile.  

So, in integral approach there are three steps. First step is that you have to integrate the 

governing equation, then you assume the velocity profile and next you find the unknown 

variable.  

So, using the integral approach we have found 
x


as well as the friction coefficient Cf in 

terms of the Reynolds number.  

200



(Refer Slide Time: 54:20) 

 

And finally, you can see that if you compare the results you got from the integral method 

with the exact solution, so there is; if you see this is your almost 10.8  error and if you 

compare the Cf it is 2.7  error. 

(Refer Slide Time: 54:44) 

 

So you can see; finally, we have derived the hydrodynamic boundary layer thickness 

using integral solution 
4.64

Rex
x


 . Similarly, coefficient of friction we have derived 
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0.646

Re
f

x

C  . So you can see these are approximate solution, because we have used some 

approximate velocity profile. 

Whereas, you have the exact solution from Blasius solution; you can see 

5.2

Rex
x


 and

0.664

Re
f

x

C  . So, you can see both solutions have same form. 

If you compare δ by x with this integral solution and Blasius solution, you will get error 

in δ as 10.8  and error in Cf is 2.7 . Obviously, error in Cf is less than the error in δ 

and accuracy of Cf is more important than δ in design point of view. 

Thank you.  
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