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So, next we start with the concept of a dyad or a dyadic vector. So, given two vectors u and

v, the dyad or the tensor product is defined as in direct notation; u tensor product v, ok. So,

the symbol that you see here across with a circle is called tensor product, ok. So, the way to

read this is u tensor product v ok; please do not read this as u multiplied by v or u

multiplication v, ok. So, this is specifically read as u tensor product v. So, the in direct

notation you write u tensor product v, in indicial notation it can be written as u i v j, ok.



So, the matrix notation, although I am writing it here for the sake of completeness; how we

have come to this will be discussed later ok, in maybe a few slides later. So, it is written as

vector u multiplied by transpose of vector v, ok. So, where vector u is u 1, u 2, u 3 and vector

v is v 1, v 2, v 3. So, you can recognize from your concepts of linear algebra that, this matrix

product is basically the outer product of two vectors ok; just like you had the inner product of

two vectors which results in a scalar. So, the outer product of two vectors leads to a matrix,

ok. And we will see that, you can actually write a second order tensor as a matrix ok, that for

later, ok.

Now as I already mentioned that, the tensor product of two vectors gives you a tensor, ok.

So, you can see from the indicial notation; you have two free indices i and j, ok. So, there are

two indices i and j. So, there are total two indices, that is why it is a tensor or specifically a

second order tensor. 

Now, how does tensor product acts? So, if you take a arbitrary vector w and write u tensor

product w; then what do you get? So, as you know a tensor maps one vector to another

vector, ok. So, if you take a vector w; so how does this tensor product u tensor product v acts

on w? So, the way it acts is, it projects the vector w along the vector u and scales it by a factor

of v dot w dot v, ok.

So, in indicial notation you can write this as u i v j w j, ok. So, v j w j you can take in the

bracket and v j w j is nothing, but w dot u, ok. So, a dyad operates on a vector by projecting

the vector along one out, one of its vector and by scaling it. So, this definition of the tensor

will make more sense I mean when we will discuss about the stress tensor ok, from which the

word tensor itself originates. There are some properties of tensor product which I am stating

here; the first one is the transpose of a dyad ok, u tensor product v is nothing, but dyad of v

tensor product u, ok.

Now, if A is a second order tensor, then the product of A with the dyad u tensor product v is

nothing, but A u tensor product v. Again the products of the dyad u tensor product v with a



second order tensor A is nothing, but u tensor product A transpose v, ok. Finally, u tensor

product v plus w is nothing, but u tensor product v plus u tensor product w. 

So, you can actually show all of these properties that they hold by taking an arbitrary vector

and using the operational approach that we discussed in the previous lectures; you take a

arbitrary vector and operate and try to see what is the resulting output that you get, ok. With

this concept operation of approach operational approach, you will be able to prove all these

properties, ok.
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So, let us try to prove the second property that we had. So, now we want to show that A into

u tensor product v is indeed equal to A u tensor product v, ok. So, we can either follow direct

notation or we can follow indicial notation ok, and we use the operational approach. So,

in operational approach, what we do? We consider or an arbitrary vector w and operate it on



our given expression. So, we start with the left hand side, ok. I am doing the direct notation

and I leave the indicial notation for you to complete, ok. If you have any problem in indicial

notation, you can always write a email to me or you can get back to me and I will reply with

necessary hints, ok.

So, let us start with the left hand side; so A u tensor product v operating on arbitrary vector

w, ok. So, now, you know from the previous slide that, u tensor product v into w will be

nothing, but v dot w into u. So, v dot w is a scalar, ok. So, the dot product of two vectors is a

scalar. So, if we use this in our expression, we get A v dot w into u or I can write A u and v

dot w

Now A u ok; so A is a second order tenser, u is a vector, so indeed A u will give you another

vector say y, ok. So, now, what we have is v y v dot w, ok. Now again using the same

property which is here, ok. So, you can relate to this property and you can write this

expression as y dot v into w. Now y is nothing, but A sorry, this is tensor product A u tensor

product v into w, ok.

So, since w is an arbitrary vector, we can say on the left hand side you had A u tensor product

v into w, ok. Let me just write, which is equal to this quantity over here. Now w is an arbitrary

vector; so you can see that A u tensor product v is nothing, but A u tensor product v, ok. So,

that is how and this is nothing but your right hand side, ok.

So, similarly you can show the other properties using the similar concept ok; you take an

arbitrary vector w and then operate it on the left hand side, ok. You start with the left hand

side, it does not matter, you can also start with right hand side; but if you start from left hand

side, you can follow the similar procedure and you can establish the right hand side by what

we have applied to this particular case.

So, the indicial notation is left for you as an exercise and it will follow a similar procedure, ok.
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So, next we move to the basis of second order tensor, ok. So, you must, you may recall that a

vector ok; as you see here you have a Cartesian coordinate system x 1, x 2, x 3 and e 1, e 2, e

3 are the base vector, ok. So, any vector v can be written in terms of the base vectors as v 1 e

1 plus v 2 e 2 plus v 3 e 3 or in short you can write summation v i e i; or if we follow our

summation convention, so this is nothing, but simply v i e i with the implication that a

summation over i is implied, ok.

Now, the question arises; can a second order tensor have a basis ok? And the answer is yes, a

second order tensor can be expressed in terms of linear combination of dyadic product of the

base vectors, ok. So, u tensor product v is also called the dyadic product. So, you should form

a dyad of these base vectors which is written as e i tensor product e j, for i and j going from 1

to 3, you have total of 9 such dyads, ok.



You have e 1 tensor e 1, e 1 tensor e 2 all the way up to e 3 tensor e 3; you have 9 such dyads,

ok. And any second order tensor can be written as scalar multiple of these base vectors ok,

dyad of these base vector. For example, let us consider a second order identity tensor, ok. So,

in direct notation it is written as i equal to delta i j e i tensor e j; or using the substitution

property of chronicle delta, you can write i as summation over i e i tensor product e i, ok.
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So, can you show that I u is equal to u. So, I is a identity tensor; so it will map the vector to

itself, ok. So, let us start from the left hand side and we will substitute on the left hand side the

expression for I in terms of its bases which is nothing, but summation over i e i tensor e i into

u. Now using the property of dyad product, you can write this as i equal to 1 to 3 e i dot u

into e i, ok. So, what is e i dot u? It is nothing but u i; it is nothing but the i th component of

vector along the e ith base vector. So, you have summation i equal to 1 to 3 u i e i.



And what is this? This is nothing, but vector u itself. So, you can show that a second order

identity tensor maps the vector to its itself, ok. So, generalizing we can write that any given

tensor A can be written as a linear combination of the dyads of the base vectors and it has 9

components ok; sorry this should be A i j as A equal to a summation over i and j A i j A i

tensor e j, ok. Now, how do you get each component of the tensor that is A i j? For this the

formula is A i j is equal to e i dot A operating on e j, ok.

So, can you show that; yes, we can show. So, we can start from the right hand side now ok; I

can start from the right hand side and what I will do is, I can substitute this expression over

here ok, here on the right hand side ok; and instead of i and j, I will use k and l ok, k and l A k,

l e k tensor product e l e j,. So, now, I can write this as e i dot summation over k, l A k l e l

dot e j into e k, ok. So, what is e l dot e j? E l dot e j is nothing, but ok; let me write here e l

dot e j is nothing but delta l j, ok.

And now I can take this e i dot inside ok; because both A k l and delta l j are nothing, but

scalars, ok. So, I can take e i dot e k. And what is e i dot e k? It is nothing, but delta i k, ok.

So, I can write delta i k and this summation sign also goes away. So, what I am left with is, A

k l delta l j delta i k. So, using the substitution property, this k over here will be replaced by i

and this l over here will replace by this j. So, finally, what I will get is A i j, ok. So, this is

nothing but your left hand side, ok. So, to get the i jth component of a second order tensor;

what you have to do is you have to take the operation which is e i dot A operated on e j.

Now, a task for you now is, to show that a dyadic of two dyads is insufficient to represent an

arbitrary second order tensor. Till now we have not shown that u tensor product v is a second

order tensor; but considering that this is indeed the fact that, u tensor product v is a second

order tensor.

Then, can we say that all tensors can be written as u tensor product v; or this u tensor product

v is insufficient to represent any given second order tensor, ok?



So, you can show that dyad of two vectors that is u tensor product v is insufficient for

representing any second order tensor. For this what you have to do is, take an arbitrary vector

w and operate u on and take the dyad u tensor product v and operate on w.

So, what you get? You will get a vector, ok. So, that vector will always be along the uth

direction, ok. So, whatever may be your vector w; u tensor product v will always project that

vector w in the direction of u, which is not general. So, this proof I will leave it to you, and

now again if you have any doubt you can always come back to me; you can contact me and I

will be able to help you out.
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Now, in finest element context, it is always essential that we should be able to write the

components of a second order tensor in a matrix form and that is how you can write, ok. So,

the components of a second order tensor A can be written as a 3 by 3 matrix, where a symbol,



following symbol is used; either you can put A as a bold or in when you are writing by hand,

you can just put this square brackets, inside that you can put A and then A 1 1, A 1 2, A 1 3,

A 2 1, A 2 2, A 2 3, A 3 1, A 3 2, A 3 3.

So, this forms here 3 by 3 matrix. So, all 9 components of a second order tensor can be nicely

put into a 3 cross 3 matrix. With the help of this you can duplicate the tensor operations in

terms of matrix operation. So, for example, tensor A operating on vector u gives another

vector v; so in matrix form this can be written as matrix A multiplied by vector u gives you

vector v, ok. Similarly you can write the expression for sum, product, dyadic product, and

transpose of the tensors in the matrix operation ok, which are shown here, ok.

So, for example, the sum of two tensors A and B is nothing, but the sum of the matrix

components of the two tensors; the product of two tensors A and B is nothing but the product

of the matrix form of the two tensors A and B, ok. So, u tensor product v is nothing, but

vector u and v transpose, u v transpose, ok. So, u transpose v will actually make it a dot

product. So, u v transpose will make the matrix equivalent of the tensor expression u tensor

product v, ok.
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Now, you might recall that we had discussed how the components of a vector transform when

the Cartesian basis are rotated, ok. So, this was the expression we dash equal to Q transpose

v, where Q was the matrix of transformation; or it was T transformation vector, now

transformation tensor.

Now again if the Cartesian basis are rotated, how does the components of the tensor A i j ok;

for example, how do they transform, ok? So, now, if you rotate your basis; then in the old

basis e i tensor product e j, the tensor A is given by following expression, ok. And just like in

the case of vector, when you rotate the Cartesian system ok, your vector is not rotating; the

vector is there itself, so the vector stays, ok. Now in the new basis e i dash e j dash, the same

tensor can be written as A dash i j e i dash tensor e j.



Now, the question is, what is the relation between A dash i j and A i j? The component of the

tensor in the new basis, and the component of the tensor in the old basis, ok. So, can we find

this relation? So, the answer is yes, we can start by our expression; the relation between the

basis vectors in the two coordinates system ok, in the two Cartesian coordinate systems. So, e

i dash is nothing, but Q k i e k, and e j dash is nothing, but Q l j e l. So, these two we can

substitute here ok, we can substitute it here. And then, what we can do? We can do some

simple linear algebra and finally, we will end up getting the following relation.

So, this is the indicial notation first you will get this that, A dash i j is nothing, but Q k i A k l

Q l j or in direct notation this is nothing, but A trance A dash is Q transpose A Q. In matrix

notation this is matrix A dash equal to matrix Q transpose matrix A into matrix Q, ok. Now

any tensor which satisfies this relation will be called a second order tensor.
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Now, question comes, are there certain tensors whose component will not change with the

change in the coordinate system? The answer is yes, there are tensors, and these tensors are

called isotropic tensors.

So, for isotropic tensors, the component of the tensor in the new basis is same as the

component of the tensor in the old basis; and one of the examples of this is a identity tensor,

ok. So, in identity tensor I dash is same as I, ok. So, you can actually show that, a quantity is a

second order tensor ok; suppose you are given a quantity and you want to show that that

quantity is a second order tensor.

So, how do you show that, this is a two step procedure; in the first step whatever is the

quantity that you have been given, write that quantity in a prime system, that dash system, ok.

And then using the transformation relation for quantities which are specified as vectors or

tensors; you can show that the quantity of interest transforms according to this relation, A

dash is Q transpose A Q, ok.

So, whatever quantity that you have been given, write that quantity first in the prime system;

and then already you would have been given that certain quantities are vectors, tensors. So,

which means those quantities will be satisfying certain transformation relation; use those

transformation relation in the expression written in step one and then you can show that, if that

quantity transforms according to this particular relation over here, then that quantity is a

second order tensor. So, suppose you are asked to show that dyad u tensor v is a second order

tensor. Now if u tensor v is a second order tensor, it should transform according to this

relation over here, ok.

So, how do you begin? So, first note that, you have been given that u and v are vectors. So, if

u and v are vectors; then in the first step what we do, we write A in the prime system which is

A dash is u dash v dash that is the first step, ok. So, A dash is u dash tensor product v dash; in

the second step we use the fact that u and v are vectors, so u dash is Q transpose u and v dash

is Q transpose v, ok. 



And now these two relations, you can substitute in your expression in the first step and you

can solve, ok. So, this solution I will leave it to you to work it out, and finally you can show

that A dash equal to u dash tensor product v dash is nothing, but Q transpose u tensor product

v Q or Q transpose A Q. Hence, because the dyad transform, components of the dyad

transform according to this relation; therefore dyad is a second order tensor.

So, remember is something has to be a second order tensor, the components of that quantity

have to transform according to this relation A dash is Q transpose A Q, ok.
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Now, coming to the next topic, which is vectors and tensor in variance. Now as you rotate the

coordinate system what would happen? The components of the tensors or the vectors will

change, ok. Now you might recall that tensors represent physical quantities.



So, the coordinate system is something that you have chosen, and these tensors represent

something which is physical quantity. Now what you have chosen can be different for

somebody else; somebody else can use some other coordinate system, but the physics of the

problem should not change with the coordinate system, ok.

So, what happen? The physics of the problem should be described in terms of what is called

the invariants of the quantity or the tensor ok; so quantities which do not change with the

coordinate systems or when the axes are rotated, ok.

In general, you note that the components of vectors and tensors will change as the axes are

rotated. However, there are certain intrinsic quantities which are called invariants which

remain unchanged under the change of axes, ok. For example, consider two vectors u and v

and if you take the dot product u dot v; then this u dot v is a invariant quantity. Once you

rotate the coordinate system, u dot v, the value of u dot v will not change and this you can

prove by starting in the prime system, ok.

U dash dot v dash; let us see what happens to u dash dot v dash, where u dash v dash are the

new vectors which are in the prime system. Now writing in matrix notation, you can write u

dash transpose v dash. Now u dash is Q transpose u and v dash is Q transpose v; that you can

substitute here ok, that we have substituted here, ok. And then opening up the first bracket,

we can write u transpose Q Q transpose v. Now Q is an orthogonal tensor or orthogonal

matrix; so Q Q transpose is an identity, ok. So, finally, you get u transpose v which is nothing

but u dot v, ok.

So, on the left hand side you have the dot product in the prime system which is the new

coordinate, I mean new basis, and right hand side you have the dot product of the vector in the

original basis. Now you see that u dash dot v dash is same as u dot v; which means that, the

dot product of two vectors has not changed as the coordinate system has rotated, ok.

So, the magnitude or the dot product remains same after the transformation, hence it is called

an invariant, ok. So, if you put u equal to v or v equal to u, you can define what is called the



magnitude or modulus of a vector which is given by following expression; norm of u is root

over u dot u and you can also show that this is also invariant quantity.

So, this modulus or the magnitude of the vector is an intrinsic physical property of the vector.

Now coming to the invariants associated with the tensors, ok.
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So, there are three invariants associated with the tensor; the first invariant is called the trace of

the tensor and this is given by the symbol I subscript A, A is here just to denote that this is a

first invariant associated with the tensor A, ok. And this I subscript a is nothing, but trace of

A; and if you write A in matrix form, then trace of A matrix is nothing, but the summation of

the diagonal component which is A i i. And if you expand it, this is A 1 1 plus A 2 2 plus A 3

3.



So, trace of A vector or trace of a tensor A i i is the first invariant of a second order tensor.

So, you can easily show that I A is a invariant; you can start from the transformation relation

A dash is Q transpose A Q, write in indicial notation and just substitute i equal to j; and then

using the property that the transformation tensor is a orthogonal tensor ok, Q is Q Q transpose

is the identity you can show that A dash i i is same as A i i, ok.

Again I leave it to you, you can always come back to me. So, there are some properties of

trace; the first is trace of a dyad u tensor product v is nothing, but u dot v. Trace of transpose

of A tensor is same as trace of a tensor itself; the trace of product of two tensors A and B is

same as the trace of product of tensor B and A, ok
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Now, next before discussing the next invariant; first we have to discuss what is meant by the

double contraction or double product of two tensors, ok. So, just like you had a dot product



of two vectors; similarly for tensors you can define dot product by what is called the double

contraction, ok.

So, if you have two tensors A and B, then the dot product or the double contraction is defined

as A and you see this symbol two dot line, ok. So, that is why it is called double contraction A

double contraction with B is nothing, but trace of A transpose B. In indicial notation this is A i

j B i j, ok. 

Now trace of A transpose B you can show is same as trace of A B transpose, same as trace of

B transpose A is same as trace of B A transpose, ok. So, some of the properties of double

contraction are trace of A; a second order tensor is nothing but the double contraction of A

with the identity tensor I, I double contraction with A. A contracted with dyad u tensor v is

nothing, but u dot A v, ok.

And then double contraction of two dyads u tensor product v contract double contracted with

v tensor product x is nothing but u dot w and v dot x, ok. So, notice that double contraction

just like the dot product of two vectors leads to a scalar. You see this indicial expression over

here, there is no free index here, there are only repeated index; say eventually you do not have

any component, you just have the scalar magnitude, ok.

Now, the fourth property is A contracted with B ok, where A and B are two tensor is 0; if and

only if A is a symmetric tensor and B is a antisymmetric tensor, ok. So, the double contraction

of a symmetric tensor with an antisymmetric tensor leads to 0, ok. So, this plays a very

important property with which you will come across again when we are discussing hyper

elasticity and in kinectics.

So, you just remember this property that, the double contraction of a symmetric tensor and an

antisymmetric tensor is equal to 0.
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So, with this we can now define the second invariant of a second order tensor; the second

invariant of a second order tensor is given by the symbol two subscript A is a double

contraction with A itself.

There is an another definition which is very common in some literature, which is 1 by 2 I A

square minus A contracted with A, which is nothing, but trace of A inverse determinant of A,

ok. And these are the indicial representation of the second invariant of the second order tensor

ok.

So, these are two definitions which are commonly used ok; depending on which resource you

are using, you might find one of the other definition, ok. So, it is we have to be very careful

when we are reading a text and a something like a second invariant of a tensor is used; we



have to go back and see what definition of second invariant of a tensor they are using, either

they are using first one or the second one.

Now, coming to the third invariant; the third invariant associated with a second order tensor is

nothing, but the determinant of a second order tensor, ok. It is denoted by symbol three

subscript A equal to determinant of A which is nothing but determinant of the matrix, 3 by 3

matrix of the components of the second order tensor, ok. So, you can easily show that this

determinant is also an invariant, ok.

To show that, you have to start with; first you have to write the determinant in the primed

basis that is the first step. So, you have to start with determinant of A dash, and A dash is

nothing, but Q transpose A Q. If you take determinant of both the sides; determinant of A

dash will be equal to determinant of Q transpose A Q, ok.

Now, determinant of Q transpose A Q will be determinant of Q transpose into determinant of

A into determinant of Q, ok. Now determinant of Q is nothing, but 1; it is a proper orthogonal

tensor. So, determinant of Q is 1; therefore determinant of A dash will be same as determinant

of A, ok. So, these are three invariants associated with the second order tensor, which you

need to remember.


