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Lecture - 40
Finite Element Formulation of Ductile Fracture in Coupled-Thermo-Elastoplastic
Dynamic Contact Problems
So, welcome to this last lecture on Finite Element Formulation of Ductile Fracture in
Coupled-Thermo-Elastoplastic Dynamic Contact Problem ok. So, in today’s lecture, we will
discuss the thermal formulation, the contact formulation, we will see some validation

problems ok; finally, some results and then, we will conclude this course by discussing what

we have covered and what we have not covered ok.
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5. Thermal Formulation w

+ The governing equations of previous slides especially the incremental stress-strain relation
(equations 48 - 50), depend on the incremental temperature rise due to the heat produced by the

incremental plastic deformation.m\cremental heat conduction analysis is required to determine this

temperature rise. In impact problems, heat is also generated at the contact surface also due to
—

contact friction. This heat generation at the contact surface provides the boundary condition for the
heat conduction analysis.

* Next, we describe a finite element-finite difference formulation for a three dimensional transient heat
conduction problem.

+ First, the governing equation for a general case is presented.
S T

+ Next, the heat generation due to plastic work and friction is described. Then, using the Galerkin
~—
od, the finite element equations are derived.

+ Finally, a finite difference scheme is presented for solving a system of ordinary differential equations.
¥___‘_/--

So, in today’s lecture, we are going to cover following five topics ok. So, till last lecture, we
had covered the finite element, finite difference, discretization ok for
coupled-thermo-elastoplastic problem. Now, during that discretization, we had treated

temperature to be at time T ok. So, how do we calculate temperature? Ok.

So, for this ok what we have to do is we have to do the incremental heat conduction analysis
to determine the temperature rise ok. Now, in impact problem, you will have heat which is
generated at the contact surface because of the contact friction ok. So, in elastoplastic

problem, you also have heat generated because of the incremental plastic deformation ok.

So, now, you have two different ways in which the heat is generated in the system; one is
because of the plastic work which is taking place and then, the other is because of the

frictional heat which is generated at the contact surface ok. Now, these two heat generation ok



have to be taken into account ok. So, in this section, we describe a finite element, finite

difference formulation for a three-dimensional transient heat conduction problem ok.

So, first we will present the governing equation followed by expression for the heat
generation due to plastic work and frictional heat and then, we will use the Galerkin method
for finite element discretization and then, we use the finite difference scheme for solving a
system of ordinary differential equation, which is of first order ok. So, in previous chapters,
we had a second order ordinary differential equation. Now, we will have a first order ODE

ok.
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+ Governing Equation

Three dimensional heat transfer equation in Cartesian coordinates x; can be expressed as

Eq. (115)

where the comma denotes the derivatives with respect to x; and a dot over T denotes the derivative with respect to
time t. In expanded form, the equation becomes

g ar . or - oar . o
Bl ot el iy = = Eq. (116)
where,
= specific he

= temperature
k = thermal conductivity

)= internal heat generation per unit volume per unit time. " (T)
b 2
It is assumed that the material propexti do not depend on temperature. 79_’ /" (T
-
el

So, the governing equation for a three- dimensional heat transfer equation ok in Cartesian

coordinate is given by following equation. So, this called the Fourier’s law and here your k is



the thermal conductivity; T is your temperature; q dot is the internal heat generation per unit

volume per unit time ok.

This is the heat generation because of the plastic work ok. Rho is the density; c is the specific
heat ok and this dot over T denotes derivative with respect to time. So, if you write explicitly,
you can write equation 115 in following form ok. Now, we assume that these material

properties do not depend on temperature ok for simplicity.

However, they can be taken function of temperature ok, that would be more realistic; but then
this adds lot more complication into the analysis. So, right now what we will take? We will
take this material properties independent of the temperature ok. So, that means, k can be

taken out here ok.
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+ Heat Generation

> Heat Generation due to Plastic Work
Heat generation per unit volume per unit time at a paint in the body due to the plastic deformation of time

interval At is given by -
GL " ; EVL
@= = [ oyt M A€ Eq. (117)
is~the fraction of plastic work converte at—LUs {3 lies in the range
0.85 < 3<0.95 . In the present work( 3 has been chosen as 0.9,

- Heat Generation due to Friction

Heat generation per unit area per unit time at a omt on the contact sun’ace due to ntactcglctlon is
given by / 2 0.
ir D) 6)1’ &+ ?118)

where T, dﬂdﬂllt the frictional (ie.. shear) stress at the contact surface and the @ (4 Vi
tangential relative velocity at the contact surface respectively. The factor p is taken as 62 ) f—'l—/

a function of the effusivities of the two materials in contact zc./




Now, the heat generation term q dot due to the plastic work is given by beta by delta t integral
t to t plus delta t sigma contracted with the incremental plastic strain ok. So, this you can
write sigma d epsilon PL ok. So, this is the plastic work that is being dissipated and a bulk of
it ok, roughly 90 percent of it ok; so, this beta is a factor which says how much of plastic
work is getting converted to heat and experimentally people have found that this beta lies in

the range of 0.85 to 0.95.

So, here in all the simulation that will show, we will take beta as 0.9 ok. Now, the heat
generation due to the friction is taken as q dot f and it depends on the shear stress at the

contacting surface and also, the relative tangential velocity V s ok.

So, absolute value, it depend on the absolute value; it does not depend on which direction
there is a slip. If there is a slip, there will be heat generated and then, this row ok is taken as a
function of the effusively of the two materials in contact ok. So, this is not rho; I mean let us

say this factor ok is e upon e 1 ok e 1 upon e 1 plus e 2 ok for first body.

And e 2 equal to I mean rho 2 equal to e 2 upon e 1 plus e 2 and e 1 is root over K by rho C K
1 rho 1 by rho C and e 2 is root over K 2 rho 2 by C 2 ok. So, 1 denotes body 1; 2 denotes
body 2 ok. So, part of the heat which is generated at the contact surface will go inside the one
body; the part of the heat which is generated if assume will completely go inside the other
body ok. There is no heat which is getting dissipated to the surrounding environment ok, that

1s what we assume ok.
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+ Initial and Boundary conditions

= Initial condition

Initial condition for the whole body is expressed as

Eq. (119)

Eq. (120)

where the prescribed temperature T, is a function of the boundary coordinate.
=% e, g

Now, to complete the given differential equation ok, we need what is called the initial
condition and the boundary condition ok. So, the initial condition is specified by specifying

the initial temperature T 0 ok of the body ok as a function of spatial coordinates.

So, at time T equal to T 0; the initial temperature field is TO and then, on the boundary ok, we
have some temperature boundary condition specified ok. So, certain part of the boundary may
have temperature which is fixed ok. So, let that boundary be denoted by del omega 0 and at
those boundary’s temperature will always remain T s ok; where, T s stands for the prescribed

temperature and it has the function of the boundary coordinate ok.
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- Prescribed Surface Heat Flux (on the Boundary@

Heat flux is specified when a surface is exposed to a heat source or heat sink. If g* is the.
heat flux received by the boundarg 0¢; ) then this boundary condition can be expressed

Eq. (121)
where n; are the components of the unitomward normal to the boundﬂxv@l Here

also, ¢* is a function of the boundary coordinate. For the case of heat sink, ¢* is negative.

In impact problems, ¢ represents the heat flux due to frictional heat generation at the

contact surface.
S e T .
- Prescribed Surface Convection ( on the Boundary
Convection boundary condition is specified when a hot free surface is exposed to a colder

— Eq.(122)

Here, h is the convective héat-transfer coefficient (LS the ambient temperature and T'is.
the baundary temperature. Here, negative sign is chosen because at. is tra d
to the_surrounding. In this work, h is assumed to be independen ary
temperature

Now, at the certain part of the boundary del omega 1 there will be heat which is coming
inside the body ok. So, heat flux is q star is received on the boundary del omega 1 and this is
specified by following condition ok. k del t by del x ok into n 1 equal to q star. Here x, I mean
spatial coordinate x ok and then, n i is the component of the unit outward normal vector on

the boundary del omega 1 ok.

So, this q star represent the heat flux due to frictional heat generation at the contact surface.
So, that is how we will take into account the frictional heat ok. And also, if your problem is
such that convection also becomes necessary to take, then we also have the convection

boundary condition given by equation 122 ok at boundary del omega 2 ok.

Here, we assume that h is a convective heat transfer coefficient and it is independent of the

temperature and T infinity is the ambient temperature which always remains constant and T is



the boundary temperature ok and this negative sign is chosen because heat is transferred to
the surrounding. We assume that T will be greater than T infinity therefore, the heat goes

outside the boundary ok.
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+ Weak Form
Let T be a function which satisfies the temperature boundary condition exactly. Then

T constitutes a weak solution if the following weighted integral of equatio is set to zero:

Eq. (123)
L W is 3 i oenous version of the
temperature boundary contlition and (2 is the doman for the theriyal analysis. Perform-
ing the integration by part§ on the first term of the Ybove integral ¥nd using the Gauss
iverg 0 @ ¢ expressed §s
(KT )W, d9+ qu 9 - ptTWdQ =0 Eq. (124
% A q.(124)

Splmmg the botrdary Tntegral of equation (124) into three parts and using the conditioy W = 0 pn the

emp \/a&ﬂreB surfa weget
@ds + H@dS T W.d0 + /qwm = /,,c:furdg =0 Eq. (125)
Q [

Now, we develop the weak form first and for weak form, what we do? We multiply equation
116 by a weight W ok. So, there is multiply by weight W and integrate over the entire domain
of the problem omega ok. So, W is the thermal weight function and it satisfies the
homogeneous version of the temperature boundary condition and omega is the domain for the

thermal analysis ok.

And now, you do; here you do integration by parts ok and then, you use the gauss divergence
theorem. So, equation 123 can now be written in the following form and then, and this is so it

will this is component to two terms; one is here and the other is here ok and these two terms



remain as it is ok. Now, you can split this boundary integral into three parts; one which is the

boundary del omega 1; other is del omega 2.

So, this is where your heat flux is there, this is where your convection boundary condition is
there ok and one where your temperatures are specified; so, where temperature are specified,
you will have W equal to 0 at the temperature boundary condition. So, instead of 3, you will

finally have 2 surface integrals.
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Further, substituting the boundary conditions (Egs. 119 to 121) we get

hTws+/ I WS — /(@,)W;dﬂ+ /qli/'dﬂ—[ch'WdQ =0
o, o0, o Q o

+ Galerkin FE Formulation

The domain is discretized into a number of elements. The temperature T and weight W ov&r a typical

Eq. (127, 128)
% o USIAG TOllOWITTg-8XRLESSIO ,weget

W Eq. (129, 130)

T = Ny { Eq. (131)

where for an eight noded element we can write

element is approximated by
Rl aPRIONTIISCEY,

Substituting F

1Y \OBGOG LT (WY =, Wy, W, Ws, We, We, i), EQ.(132,133)
VY = QN N, Ni N, No, N Ve Eq. (134, 135)

And then, if you substitute from equation 119 and 121, we will get on del omega 1, we will
have this term equal to k T comma i; n i will be q star and k T comma i ni will be h T minus

T infinity ok. So, this is the second term ok; and then, this is your weak form ok.



So, you have reduced the continuity requirement on the approximation of T by one order and
then, what we can now do is we can discretize the domain into a number of finite element and
the temperature T and the weight W over a typical element can be approximated using
equation 127 and 128 ok; where, n is the shape functions corresponding to the element that

you have chosen and T corresponds to the temperature at the elemental nodes ok.

Now, if we choose an eight noded brick element, then you will have 8 temperatures at 8
nodes and you have 8 shape functions ok. Therefore, you can write the derivative of
temperature with respect to spatial coordinate x like this and the time derivative of T can be
written like equation131 and the gradient of W is obtained like this ok. Now, the heat
generation ok per unit volume per unit time can be written in terms of the heat generation at

the nodes ok, by usual this kind of discretization ok.
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ij:{u;}w ( /x 2{ i) - i e ( ng h' " @

Nl

b=1 o

we get

TNYd5) - U / FN )N do) (1)

e=1 o

Ne

F /“ VYK - vy /n N (T g Eq. (136)

e=1

wher
T= {N}"T (ry where the vector@ and {IV}” contain the nodal values of T" and W' respectively over

W= {N}"T {W}b a typical area element. Eq. (137, 138)

For eight noded element /(71" = (7} 7¢ 7% 77 Wy = {wh,ws,wi,we} Eq. (139, 140)

where T? stands for the unknown temperature of node i of a typical area element.




And once you substitute all these approximations ok; so, if we substitute all these
approximation here ok, so equation 127 to 135 if you substitute in equation 126, then you will
get following form ok. So, once you have this following form, here you have we have used

matrix vector notation ok.

So, where we have used the boundary ok, so at the boundary we have to use T equal to N b
transpose T b; where, T b contains the nodal values of T over a typical area element ok. So,
remember say for a 8 noded element which lies on the boundary, so at the surface; so, if this

is the bulk on the surface, you will have only 4 nodes ok.

So, therefore, the boundary temperature will be only consisting of these 4 nodes ok. So, that
what you have to see here ok; so, all these here represent the boundary ok. Here, T i1 b stands

for the unknown temperature of node 1 on a typical area element ok.
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Eq. (136) can be expressed as

=

Eq. (137)

where the element specific heat matrix [C]¢, the element conductivity matrix [K,J¢ and the element

c&vecti/on_@tri[\Kh]'J are defined as

= [ pe{NHNYds , Eq. (138
S /Q,ﬂ {NHVY' d0 g.(138)
T = / RNV a0 Eq. (139)

A 0e

K = [ h{NNP" ds Eq. (140)

s &

So, now I can further simplify equation 136 by following these notations given in equation
138 to 140 ok. So, here C, K k and K h are called the specific heat matrix, elemental
conductivity matrix and elemental convection matrix and if you use this in equation 136, you

will get equation 137 ok.

So, you will get summation over all the elements, the specific heat matrix term ok, you have
the (Refer Time: 15:14) matrix term and you will have the convection matrix ok, you have the

heat generation matrix ok like this.
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And the element heat generation vector, the element heat flux vector and the element convection
vector are defined as T

@F = [ Mo Eq. (141
@) = [ vt Eq. (142)
{Qf = | WI{NYds Eq. (143)

o
Since the nodal values of weight are arbitrary, the element equation (137) becomes the following global

equation after the global assembly:

; . Equation (144) represents a system of
h Z ) tﬁg\}_ { coupled, linear, first order ordin: 2l 1)
Where

differential equations.
oy =V TN - 5 2

{T} = global temperature vector  [K] = global static coefficient matrix

- EODE LRI ICOCI CICTUIIAL,
{ = global temperature derivative vector {Q} = global right side vector.
A B e

[C] = global dynamic coefficient matrix (or global specific heat matrix)

And then finally, the heat generation vector, the heat flux vector and the elemental convection
vector are defined using equation 141 to 143 ok. Now, the only job is you assemble these
elemental quantities over all the surface and the bulk elements and you get what is called the
global equation after the assembly as C T dot plus KT equal to Q ok. So, equation 144

represent a system of coupled linear first order ordinary differential equation ok.

So, T here is a global temperature vector, T dot is the global temperature derivative vector, C
is a global dynamic coefficient matrix or the global specific heat matrix, K is the global static
coefficient matrix and Q is the global right hand side vector ok. Now, this is a first order
linear ordinary differential equation and to solve this, what we have to do is we have to

discretize this time derivative of temperature ok.
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+ The solution of a system of coupled ordinary differential equations, such as those arising from a
finite element formulation, is obtained either by the modal method or by the direct integration
method.

+ Ifthe problem is dominated by the lower eigen modes and if the solution is required over an
appreciable time span, the modal mm

+ Ifthe problem contains transients, then the direct integration method is favored.

+ In the present work, a direct integration methsadyis adopted because of the transient nature of
i
- \Direct Integration Method \ W W&\! /

* In direct integration method, the temporal integration of equation 144 is carried out using an appropriate
finite difference scheme. In the present work, the following finite difference scheme is used:

e

For this, you can use again the finite difference scheme ok and here, what we do we use what

is called the direct integration method ok. So, remember time integration are of two types.

So, there are direct time integration, direct time integration schemes and there are modal
methods ok. So, modal methods are usually favoured when you have lower eigen modes and
direct time integration scheme works for all cases. So, we use direct time integration and for

this, we have to use an appropriate finite difference scheme.
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Eq. (145)

Here, {T} and “*2{T} denote the global teémperature vectors at times ¢ and ¢ + At
and {7} and 24T} represent the glohfal temperature derivative vectors at ¢ and ¢ +

At. Like the Newmark’s method of Atructural dynamic problems, equation 145 also

piacoc S P
contains a parametﬁr 9 §hat can l)({chosen to obtain the desired accuracy and stability.

+ We first write Eq. (144) at time t gnd multiply it by (1 y) Then, we write it a a\na time t+At and
torv Ty s T 1 *(D o
multiply it by y. Thus, we get _/ E’ci'”’[ HACM_,(_ )

%[Cl@m )( o Eq. (145)

'7 Eq. (147)

(@i g “A‘{ }
M .from equationd 46 and 147 using Eq. (145), we get

So, in this particular discussion we use the following finite difference scheme. So, 1 minus
gamma times the rate of temperature at time T plus gamma times the rate of temperature at
time t plus delta t is roughly equal to the difference of the temperature at t plus delta t and
time T divided by delta t ok.

So, that is the approximation that we use ok. And then like the Newmark’s method for
structural dynamics equation 145 also contains a parameter gamma that can be chosen to
obtain a desired accuracy and stability ok; and at the end of this particular section we will see,

what are different values of gamma which are commonly chosen ok.

So, now what we do is we write equation 144 at time t ok. So, our equation 144 over C dot

plus K T equal to Q. So, we first write this equation at time t ok; I can write this as time t and



then, I can also write this as time t plus delta t ok; I can write t plus delta t T dot plus K t plus
delta t T equal to t plus delta t Q.

Now, I have two equations; I multiply this equation by 1 minus gamma. I multiply this by
gamma and [ simply add these two. So, this is the first equation, this is the second equation
and I just then eliminate the rate of temperature T dot and t plus delta t T dot from equation

146 and 147 using this equation over here ok.

So, if [ add these 2 terms over here, you see I will have 1 minus gamma into t plus deltatt T
dot and plus gamma times t delta t plus delta t T dot ok and this is nothing but this term over

here, then that I can substitute.
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A= (0 4980K)

5B} = (0]~ (1= )AL [K]) T} 47460}

Equation (149) is a set of linear algebraic equations which can be solved by the Gauss elimination
E ey el 8 Mol

Jnethod.




If I do this finally, I will get ¢ plus gamma delta t K into the vector of temperature at time t
plus delta t equal to C minus 1 minus gamma delta t K ok into the temperature at time T plus
gamma delta t into the vector Q at t plus delta t plus 1 minus gamma into delta t the vector Q

at time t ok.

So, I basically will know my heat generation at t plus delta t because at that point, I would
have computed my displacements, I would have computed my stresses in the plastic strain

and using those updated values, I can compute t plus delta t Q and then, I can find out C, K.

I know my delta t, I can set my gamma and then, I can and I also know the temperature at the
previous time step. I can directly compute my t plus delta t using following equation 149 ok;
where, A is given by this and B is given by this. So, this is a set of linear algebraic equation,

which can be solved by Gauss elimination method ok.

Now, here what we have assumed? We have first solved the mechanical problem using a
particular temperature once and at the end we have got our stresses at time t plus delta t and
plastic strains ok at time t plus delta t and using this, I can now solve my thermal problem ok
and then, I can get my temperature t plus delta t; and then, I have to iterate between these two

till I get a final convergence when both of these are not changing.

If my time step is very small, then I can do within 1 Newton-Raphson iteration, I can one
solve this and one solve this and that should be enough. But if the time step is very large, then

I'have to do the iteration between these two mechanical and thermal problems ok.
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+ Choice of the Value of y
Various finite difference schemes
S.No | Value of 4 Scheme Stability
1 ‘(;Qz Forward difference or Euler S@n&ﬁmﬂaﬂvﬁab}l@&
2 | (32 |Hyank-Nicolson or trapezoidal rule [Uncondifionally stable/
3 B H(7 _Krlerkin Unconditionally stable
4 ( il ) —Backward difference Unconditionally stable

/ ——

So, now there are different values of gamma that one can choose. If you choose gamma equal
to 0, you get what is called the Forward difference or the Euler method and this is an explicit
method which is only conditionally stable. For gamma 1 by 2, you get what is called the

Crank-Nicolson or the trapezoidal rule and this is unconditionally stable.

Gamma 2 by 3 gives you the Galerkin method and gamma 1 gives you the Backward
difference method. The last three are all unconditionally stable, while the first one gamma

equal to 0 is the conditionally stable; it depends on delta t that you choose ok.
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+ Contact Conditions
R
The primary phyE{cquirements of a contact problem are(impenetrability of bod

On the other hand, the material points on the boundaries ‘S* and ‘S* may coalesce

during the motions of bodiesIf the contact surface at time ¢ is defined by S, then

Eq. (153)

In the derivation of expressions for the contact conditions or contact forces, it is conve-

nient to choose one contact surface as hitting surface and the other as target surface. The
rent position of the target surface defines the boundary of an inadmissible region. for

So, once we have completed our thermal formulation, our final job is to do the contact
formulation. Now, the all the derivation that you have done till now, it is for two body contact
problem and what happens at the contact surface, we neither know the displacement and we

neither know the forces.

So, what happens? We have more number of unknowns than the number of equation. So, we
have to generate some extra set of equations and these extra set of equations will be generated
using the contact formulation ok. So, in contact rather than discussing in detail about the
contact formulation, what we will do is we will just look into some of the essential features of

contact ok; and we will discuss the Lagrange multiplier method in a brief sense ok.

Because contact itself is a very big subject which requires itself a whole course on contact

formulation which I am not doing here. So, but I will give you the basic idea ok. So, now the



first we have to write what is the contact conditions ok. So, the primary physical requirements
of a contact problem are impenetrability of bodies, compressive interaction between the

bodies and contact friction ok.

So, if you are at the macro scale and you are not at a very small scale where the adhesion
comes into picture, in that case if you are solving the contact problem, non-adhesive contact
problem; then, the interaction between the bodies can only happen if the tractions between the

bodies are compressive in nature ok.

If you go to adhesive contact problem, then there can be tensile tractions also ok. Now, this is
one important thing. The other is impenetrability, which means that during the entire course
of simulation or the contact, one body cannot penetrate the other body that is physically not
possible ok. So, the impenetrability condition means that the interiors of the domains of the

two bodies cannot overlap ok.

So, if you have one body over here and you have the another body over here ok and this is
volume 1 and this is body 2 ok. So, this 1 denotes body 1; 2 denotes body 2; so, this body
cannot penetrate this body and this body cannot penetrate this body. So, mathematically, you

can write the intersection of the volume for the two body is a null set ok.

So, this is the condition that you have to satisfy. Also, on the other hand, the material points
on the boundaries may coalesce during the motion of the bodies ok. So, during contact this
part of the boundary say ok, so, the top is t S 1 and this is t S 2 ok. So, now the two bodies
can have a common contact surface called S ¢ ok. So, the intersection of the surface of two

bodies ok; so, this is the ok; so, the cc.

So, this is the entire surface of body 1; this is the entire surface of body 2; and if you take the
intersection of these two, you will get what is called the contact surface and this is not null
set. So, the volumes intersection of the volume gives you the null set; while the intersection

of the surface gives you the contact surface ok.



Now, in the derivation of the expression for the contact condition or contact forces, it is
convenient to choose one contact body as hitting surface, while the other at the target surface
ok. When you do contact analysis, one body is always chosen as the hitting body and the
other body is chosen as the target body ok. So, this is also called the master body and this is
the slave body ok.

(Refer Slide Time: 26:32)
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the current position of all the hitting points. Points of the hitting s,}g‘fa\ce lying exactly

+ Local Co-ordinate System for Contact Expressions
= e e e S

Contact conditions are described with the help of a set of unit vectors attached to
the contacting surfaces. Assuming that the hitting suzface 'S" is smooth everywhere

¢ an outward unit normal vector, denoted by(*hjcan be defined at each point

'x"' €'S") Now, two orthogonal tangential unit vectors "N} and ‘N are chosen in such

a way that the triad forms a right-handed system:
e

And the current position of the target surface defines the boundary of an in admissible region
for the current position of all hitting points ok. So, the points on the hitting surface lying
exactly on the target surface are said to be in contact ok. So, we can choose body 1 as the

hitting surface and body 2 as the target surface ok.

Now, before we proceed with the contact simulation, we have to define what is called the

local coordinate system ok, for the derivation of the contact expression ok. So, contact



conditions are described with the help of set of unit vectors attached to the contacting surface
ok. So, at each contacting point, you have to define a set of unit vectors ok which are normal

and tangential to that point ok.

So, assuming that the hitting surface is smooth everywhere such an such that an outward
normal denoted by N 1 1 ok. So, this N hat 1 1; so, this 1 shows body 1 and the so superscript
1 shows body 1 and super subscript 1 shows the direction. So, the one direction is always
taken as the normal direction N hat; so, hat shows it is a unit vector and t denotes here that it

1s at time t.

It is calculated based on the configuration of the body S 1 at time t ok and this is defined at
each point x 1 which belongs to body surface body 1 ok. Now, two in orthogonal tangential
vectors N 2 and N3 are chosen such that the cross product of N 2 and N 3 ok gives you the

normal ok.

So, at the contact surface ok, you can define ok what is called the normal like this N2
tangential vectors like this ok; so, N 2 cross N 3 gives you the normal vector N 1 ok. This is
said by the right hand rule ok. So, if you would curl your fingers from this to this, then the

direction of the thumb will give you the normal ok. So, this is the convention that we follow.
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Eq. (155)

essive interaction and friction law are described with respect to

Points in contact and associated normal and tangent vectors Body 2 (Target Body)

Therefore, similarly a triad of vectors normal vectors N 1 2, N 2 2 and N 3 2 can be defined
for the corresponding point x 2 on target surface ok. Now, if the two boundary points x 1 and
X 2 are in contact, then in unit vectors ok satisfy the following condition. So, they are equal,

but opposite in sign ok.

Now, the impenetrability condition and the compressive interaction and the Friction law are
described with respect to these coordinate systems ok. Remember all these impenetrability
condition that mathematically will derive the compressive traction ok, everything have to be

described with respect to these coordinate system ok.

So, normally you will have those traction with respect to the global coordinate system, but
then you have to transform those vectors to the local coordinate system defined by these

normal and tangential vectors ok. So, you can use the concept, where they discuss in our



discussion on tensors where how to transform one tensor from one coordinate system to

another coordinate system ok.
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+ Geometric Representation of Impenetrability

Let two houndary points ‘x' € *S* and 'x* € *S* be in contact at time . Then, the
impenetrability condition implie ! f

l;, = ()) Also called the gap function Eq. (156)

where ‘p; is the penetration in the normal direction at the contact point.

+ Traction Conditions at Contact

points ‘x* € 'S and x* € 'S be in contact at ti@Then, from
Newton’s third law, O

where, ‘t" = Cauchy stress vector at_the contact point of body n. For the normal
T——
component of the stress vector at the contact point to be compressive, the following

condition must be satisfied: -

Eq. (157)

Now, mathematically you can express the impenetrability condition using what is called the
gap function ok. So, now, this is your target surface ok, target body and this is the target
surface and let the point which comes in contact on the target surface have the coordinate x
two and the point on the hitting body which comes in contact with the target point, let its

coordinate be x 1 ok.

So, then this vector over here will be nothing but x 2 minus ok. This from A to B ok, let us
say this is p. So, t p plus t x 1 will be t x 2 ok. So, tp equal to t x 2 minus t x 1 and then, if you

take a dot product with the normal in this particular direction, you will get the penetration ok.



So, this is your normal and if you take the dot product of this penetration with respect to that
normal, you will get the component along the normal direction and this is called the gap
function ok. So, this is the penetration that can happen and from the impenetrability criteria,

this penetration always has to be equal to 0 ok.

So, when you are writing the code, you always have to ensure that this gap function turns out
to be 0 and this gap function for every point A, it is used to find out the corresponding point B
on the target surface on which point A will come in contact with ok. So, that is where the gap
function is usually used. That dot problem itself is a non-linear problem which is solved

locally at each contacting point using Newton-Raphson iteration ok.

Now, in the tangential direction; so, this was along the normal direction, now what happens in
the let us say in the tangential direction ok. So, if this point is contact within this point, then

depending on the tangential traction, the body may slip or the body may stick ok.

So, if the two boundary points are in contact at time t, then from the Newton’s third law you
know that the traction ok, the contact traction at the contact point are equal and opposite ok.
So, for normal component of the stress vector at the contact point to be comprehensive, the

following conditions have to be satisfied ok.
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O t’;:d =12 Eq. (158)

or any £. The tangential components of the stress vector at the contact

_ eff) n-12 Eq. (159
@ n=12 Eq.(160)

The tangential components 't} 't4 are related to the normal component by friction law.

Hence,

é

point are

According to the Coulomb friction law, the tangential components are constrailfgﬁL

q@glﬂ't;)wftz)? () n=12 <§QF Eq (161

where, ji; =friction coefficient. The two contacting points remains stuck if 7 is smaller

than it} Otherwise relative shdlng g etw enhe two points.
Y b=pl Sy

So, if the contact traction have to be compressive, then the normal tangential vector dotted
with the in the normal vector on body n ok should be less than equal to 0 and hence, for all

time t, if the traction is less than equal to 0, the two points will remain in contact.

If this traction t 1 n becomes greater than 0, then we say that the body has gone out of contact
and in the tangential direction you can find out respectively the tangential tractions t 2 and t 3

the by taking the dot product of the traction t n with the tangential vectors N 2 and N 3 ok.

And then, if the resulting traction ok; so, this is the resulting traction root over t 2 square plus
t 3 square and that gives you the tangential traction and if this tangential traction is less than
mu times t mu f times t normal traction, then you have what is called the sticking condition,

then the two bodies cannot move relative to each other. However, if t T becomes greater than



mu times t 1 n, then t T should be equal to mu t n and the body is set to be in the slipping

condition ok.

So, the in the tangential traction, you again have two ways, | mean two conditions either the
body may stick, if this is less than equal less than equal to mu times t or it may slip. In that
case, t T is greater than this. Then, t T has to be set equal to mu t and during the numerical

simulation ok.
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When there is no sliding between the two contacting points, more kinematic con-

straints come into play, in addition to equation 156 Now, the points can not move

L= Eq.(162)

relatively in tangential direct]

Eq. (163)
U tp, are the penetrations 1al directions at the contact point.
+ (Lagrange Multiplier Method
The @is given by
HAt[ 121 (=) Qc](i_l) Ay} = —HALLED Eq. (164)

and for a §lipping contact point jgiven by

2+At{N12}(z‘71)T Qt](ifl) t{Auc (i) — _t+at (-1) - Eq (165)

So, these two conditions can be written in the following penetrations in the tangential
direction in the following equation form and then, once we have set up the penetrations and
the impenetrability criteria, then we can use one of the constraint handling techniques

available in contact mechanics ok, computational contact mechanics.



There are Penalty method, Augmented Lagrangian multiplier method, Lagrange multiplier
method. So, we use what is called the Lagrange multiplier method and for that, the kinematic
constraint for a contact point is given by following equation and for a slipping point will have

the following equation ok.
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[for { sticking contact poin, we get |

_1+At[ql](i-1)7 t+A1{f‘2}(i) ~ H—At{p}(i—l)
_t+At[ql](i-1) 0 {AuJ0 - — t+tfy 1 (-1) Eq. (166)

(=T _ ttat [Nz}(l-llT [QC](i—l)

where
Eq. (167)

‘for f{ slipping contact point, we)get‘

- _z+At{q3}(i-1)T l+Atf12(') _ t+Atp1(*-1}
_t+At{q2}(i-1) 0 {Aug)® = — Aty A Eq. (168)

where

1+AL {qs}(i—l)’l' — At {le}(i-l}T [ch(i—l} Eq. (169)

t+At {qg}(i_” - IQC](i—UT(HAl{NlZ}(z—l) _ H-At{NZZ}(z—l)uf costl _¢+A:{N32}(i-1)uf S-mtg) Eq. (170)

And these when we assemble ok for all these sticking contact point, we will get this final
form ok. So, this is a very long derivation. So, I am just giving you the final expression ok

and for a slipping contact point will have this particular form ok.



(Refer Slide Time: 36:08)

6. Contact Formulation L

Assembling equation: 3 8) over all the potential contact points, we get the following global equation:

[ 0 _ t+At [QI](!'—I}

W\ = \
_ tHAt [QZ](H) EMJ @) £ > )/

Here, the vectors {{AU.}" and *24{R.}=") are the assembled versions of ({Au,}
and 247, 10=Y respectively. Further, the vectors "AH{F2}) and *44{ P}i=1 are the

assembled versions of A4 2} and 44{p}i-Y) respectively for the sticking contact
t+At f12 @)

points and and ”A‘pgi‘l' for the slipping contact points. Similarly, the matrices
A0, and 44Qy] Y are the global versions of “4¢{q;}i=T and tAt{g, }(-1
for the sticking contact points and +4¢{gs}¢(=YT and *+4{q, }i=1 for the slipping contact

points.

Note that, while the whole global coefficient matrix is known from the geometry of
(i = 1) iteration, only a part of the right side vector, namely 44 P}(=) is known

from the geometry. The other part, 4R, }(=Y), is unknown. This vector is eliminated

So, you can assemble these globally and you can get the following global form ok and here,
you notice that we do not know part of the right hand side vector and also, we do not know
the part of the I mean this is obviously the contact displacement and the contact reactions are

not known also; we just know p from the geometric consideration ok.

So, what we do is we add this equation with the equation that we get from the
Newton-Raphson iteration to eliminate the reactions corresponding to the contact node. So,
these are global unbalanced force vector corresponding to the contact nodes and this when we
add with the Newton-Raphson iteration, we can eliminate this over here and then, you will get
the tangent matrix K of two bodies here. In that case, you can solve for the unknown contact

displacement and the contact forces ok.
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+ Algorithm for Dynamic Large Deformation Thermo-Elasto-Plastic Contact Problem
\_\—\——__—_____—__—

F&r solving a typical dynamic, large deformation, elasto-plastic, contact problem, the following steps are used:

=
Step 1: Finding the potential contact nodes for which the hitting and target nodes are closer fhan a prescribed

length.
Stgz 2\Renumbering the nodes: Nodes of the hitting and target bodies are renumbered such that the contact

/ﬁ are numbergdi issseg[ried out to facilitate the static condensation of the stiffness matrix which helps
ireduo W /Ww/-/vﬁ

Step 3: q rlght side yector: Based on the current geometry and state of stress,
condenst ‘ nd\force vector are formed.

Y et Ww

Step 4-1: Contact searchy Search for the target segment corresponding t¢ each hitting node. Master-
ithm is used here. . T

slave

So, what is the algorithm for dynamic large deformation thermal elastoplastic contact
problem? Ok. So, the first step is, find the potential contact nodes for which the hitting and

target nodes are closer than a prescribed length ok.

So, when you start a simulation, one body is already a master’s body; the other is a target
body and then within a prescribed length from the master’s body, you check master surface
you check whether there are some nodes of the hitting body that are coming in contact. And

then, what you do?

You can and this step is optional; but you can do the renumbering of the nodes, nodes of the

hitting and target bodies are renumbered such that the contact nodes are numbered first and



this is carried out to facilitate the static condensation of the stiffness matrix, that we discuss at

the end of the finite element discretization to in reducing the computational time ok.

Now, we formed the coefficient matrix and the right hand side force vector based on the
current geometry state of stress and the condensed form of the effective stiffness matrix and
force vector are formed and then, we form the Newton-Raphson iteration. So, this here
corresponds to the modified Newton-Raphson scheme because the effective stiffness matrix

is formed outside the Newton-Raphson iteration ok.

First, what we have to do once the Newton-Raphson iteration start? we do contact search ok.
So, this step is called the global contact search ok. So, here we are more interested in whether
a node is coming in contact or not. We are not interested where it comes in contact, we are

just interested whether it can come in contact or not in the current load step ok.

Remember this is for one particular load step ok; one particular delta t, from t to t plus delta t

this is what we are discussing. So, now, you do what is called the local contact search ok.

You search for the target segment corresponding to each hitting node. Now, I am more
interested in where does my hitting node exactly come in contact with the target segment,
which target segment and which location ok. So, we can use what is called the master slave

algorithm and then, we start the contact iterations ok.
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Step 4-2: Contact iterations start‘\//

Step 4-2-1: Initially all the potential nodes are assumed to be in sticking friction condition. Then,

d combi ith the condensed

the contact stiffness matrix and right side vector ar

form of the effective stiffness matrix and the éffective force vects

soled =) Mlle F
Step 4-2-2: Then, the.‘out of contact” nodes, for which the normal component of the contact

reaction is tensile (refertee Biare found. The contact reactions at these nodes are set

. This system of equations is

(§1 59), ;pressed inanodalform. \ le7 7 /" b

Step 4-2-4:
for all the slipping nodes/and the status of all the contact noflgs does not change.

orce is obtained

attiterations are repeated till the corre

So, we initially we assume that all contact nodes are in a sticking friction condition; then, the
contact stiffness matrix in the right hand side vector are formed and combined with the

condensed form of the effective stiffness matrix and effective force vector and this system of

equation is then solved.

Then, we find out if there are some out of contact node for which the normal component of
the contact reaction is tensile. This may happen as you update the contact reaction some
nodes may go out of contact and some nodes may come in contact ok. So, the contact reaction

that this node are set to 0 during the subsequent contact iteration.

Then, we remove all the out of contact nodes the nodes which are slipping are determined ok,

after we have done this and we know that if the node slips, if the contact reaction at that node



violate equation159 which is the tangential traction is greater than equal to mu times the

normal traction t N, then I know that my node is slipping.

So, I determine which are the nodes which are slipping, there I have to set my tangential
traction equal to mu times normal traction t N. The contact iterations are repeated till the
correct direction of the friction force is obtained for all slipping nodes and the status of all

contact nodes does not change.
So, we have to do these iterations till there are no nodes which are going out of contact are

not coming in contact and the status of all the sticking nodes or the slipping nodes remain as

it is; once this happens, we will say that our contact iterations have converged ok.
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Step 4-3: Finding the displacements of the fon-contact nodes (type 2 nodes)from the displacements of

type 1 nodes.
Miels N niss,
Step 4-4: Radial Backward Return Algorithm Using New Objective Stress Measure Jsing the

incremental displacement, first deformation gradie\nrma-tfix-is-bund-eat—armﬁsing the pdfar Pvf}:%

decomposition theorem, the logarithmic strain is found. The initial stress is transformed to the material *

coordinate system. The change of state at the Gauss point is found. Depending on the change of state at

the Gauss point, the Euler forward integration scheme is implemented. Finally, the updated stress is

transformed back to the fixed frame.
s

2
Step 4-5: Updating: The an@ are updated.
<

Step 4-6: Convergence: TW(& is found an convergence is checked.

@d the next time

vergence criterion is not satisfied/the Newton-Raphson iterations are

fthe Ne
Raphson iterations converge, theTesults at the end of theT
e

increment is started.

e ——
continued till convergence.




Once we have found out the contact displacement, this is where we have found out the
contact displacement and we have found out the contact forces. Once we have found that, we
can find out the displacement of non-contact nodes from the displacement of contact nodes

which are called the type 2, type 1 node also.

This is done using static condensation scheme and then, we apply what is called the radial
backward return algorithm using new objective stress measure ok. So, this we have already
discussed. We find out the stresses and from these stresses, we find out the what 1s called the

internal forces ok and then, I can find the unbalance ok.

So, I can do the first updation of stresses strain in the contact forces, I can find out the internal
forces corresponding to the stresses and I can find out the unbalanced force vector and I can
check for the convergence. If the Newton-Raphson iteration has converged, then we print the

results at the end of the increment and we move to the next time increment ok.

And if the convergence criteria is not fulfilled, then the Newton-Raphson iterations are
continued till the convergence that is we go back to step 4 and we restart the next
Newton-Raphson iteration ok. So, here if your Newton-Raphson method is found to be
diverging ok, then we use what is called the line search method ok. Here is what we use radial
backward; radial backward radial backward return algorithm for integrating the incremental

stress strain relation ok.
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z
) A
Displicenentspciied on op sarice |

* Tensile Test of Cylindrical and Sheet Specimens [¥+ ; Zgiiil
Material properties of SAE 1045 steel tension specimen | |
BR[O MPD OB [ ()],

M U] B0 | a0 ORI m 7l
b=V X\ L
Average chemical comp031t10n of SAE 1045 )teel tenslon 1

specimen (in % weight) 6& +K (5 ﬁ )

| ‘ SI,}Mnl S |Cr| Ni |C|1| Rest N[ x {\3\\‘ 'y ;
(0447 pA3 [0.756 ] 0.015 | 0.033 ] 0.064 | 0.001 | 0.277 |98.02(J 0.084 ek b P
\/ 0 (a) Cylindrical specimen (b) Sheet specimen
At =4 ‘f - Geometry of tensile test specimeny

First, the tensile test results for the cylindrical specimen are simulated. Only

of the sgecnnen is

considezed for the analysis because of symmetry. The finite element mesh con51sts elements
anb Next, the tensile test results for the @ are simulated. Here also, onl
of thespeemen—isconsidered for the analysis because of symmetry. The finite element mesh consists of
e

So, now we come to the validation of the formulation that we have discussed. Why is
validation needed? Any complex numerical model that you develop ok has to be first tested

for any form of error in the modelling or in the implementation step. So, how do you test

whether your formulation is working fine?

So, what you do? You take some problems for the literature either experimental or numerical
and you run those problems using your code and try to see whether the results obtained from
your code and those reported in the literature that is experimental or numerical matches well

ok. They may not match exactly, but they have to match pretty well ok; say up to 10 percent

error ok.

So, here we have validated a lot of problem we just take two of them; one is the static

problem. It is a tensile test of cylindrical and sheet specimen. So, you see here, the geometry



of the tensile stress. So, this is the cylindrical specimen. So, this has a cylindrical cross

section ok and this is a sheet specimen.

So, it has a rectangular cross section ok. So, you can see here, this is the side view and this is
a cylindrical specimen and what we do? We apply displacement at the top surface and at the
bottom, we keep this fixed in the normal direction, it can move in the tangential direction;

here also we keep fixed in the normal direction, it cannot go in the Z direction ok.

And then, because the there are no external force; therefore, I have to go for what is I have to
apply what is called the arc length method. So, here I will use arc length method because I
expect that after some time, there will be making which will happen here ok. So, because of
the necking the load displacement curve will have a negative tangent and then, I have to be

careful because usual Newton-Raphson will not converge ok.

So, these are the material properties ok; so, the Youngs modulus, Poissons ratio, the initial
value of the yield stress and the hardening coefficient and hardening exponent ok. So,
remember our hardening law is sigma equal to sigma y 0 plus K epsilon equivalent plastic

raise to power n ok.

So, that is how my yield value is changing and so, this is the chemical composition of this
SAE 1045 steel which we have taken from the literature and we first the tensile test results of
cylindrical specimen are simulated. We only take the one-eighth of the specimen ok. So, we
just take this. So, this is the half of the specimen. So, we just take the one-eighth ok. So, we

just take this much ok.

So, if you can see, it is only this much of specimen is what we take in each case and the
number of finite elements are 1890 and these are the number of nodes and then, we do the
simulation of the sheet specimen; again, we will use only the one-eighth of the specimen with
these many number of elements and nodes and this is of course, a static problem. So, here
delta t is always chosen to be 1; rho is taken to be 0; so that there is no mass matrix and the

problem turns out to be a static problem.
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Comparison of simulated engineering stress-strain Comparison of simulated ratios of current width and
graph for SAE 1045 steel cylindrical specimen with thickness to initial values versus axial elongation for
experimental results of Cabezas and Celentano SAE 1045 steel cylindrical specimen with
experimental results of Cabezas and Celentano

Now, if we have static problem, then the first thing we do is we compare the engineering
stress strain curve ok and the ratio of the current diameter of the cylindrical specimen. So, this
is for the cylindrical specimen ok; diameter of the cylindrical specimen at current value
divided by the its initial diameter and we compare our simulation result with the experimental
results of Cabezas and Celentano ok. So, if we do this, you see this is the experimental result

and this is what the simulation result that we get ok.

So, this is the experimental result and this is the simulation result that we get and although,
there are some errors at certain positions; but then, what we can say that at least our numerical

implementation is pretty much ok and you can see there is a, if you can see here there is a

necking.



At this step, you will achieve the ultimate stress and the load drops off ok. So, this is where
you will observe necking and then, you will have a rapid degradation of the value of the

diameter ok.
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Comparison of simulated engineering stress-strain Comparison of simulated ratios of current width and
graph for SAE 1045 steel.sheet specimen with thickness to initial values versus axial elongation for
experimental results of Cabezas and Celentano SAE 1045 steel sheet specimen with experimental

results of Cabezas and Celentano
< N

So, this is the result for the sheet specimen. We compare the engineering stress versus
engineering deformation and the width and thickness ratios with the engineering deformation
with those from simulation and the experimental results of Cabezas and Celentano and again,
we see we are very well able to capture the trend which has observed in the numerical

simulation ok.

So, here the width and the thickness ok, the current width by original width and current

thickness by original thickness matches well with the those results reported by Cabezas and



Celentano ok; so, with this static result, we are sure that at least the static part of the code is

working fine.
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+ (Taylor Rod Impact

’) //'O L T

Ro=11 fum

A coupled thermomechanical simulation pact test is carried out by

considering the impacfof aftat-ended cylindrftal rod against a rigid surface (see figure) +

several impact velocities. The geometric details of the rod are shown in Figure.

o The reference temperature of the rod, T, is taken as 25°C.

o The results are validated by comparing them with the numerical and experimental === | | | /™y
results of Celentano [2002]. .

o Frictionless contact is assumed at the impact face. Since the heat transfer to the & tapettne
surrounding environment during a short impact span can be considered as = 1

B - - ) p\\\g&\\‘w Rigi sutce

negligible, adiabatic conditions are assumed at the rod boundaries. AN

o Due to symmetry, only one fourth of the rod is considered for the analysis. Aflat ended cylindrical rod

impacting against a rigid surface
o The finite element mesh consists of 3000 elements and 3731 nodes. The time step

chosen is 0.05 pis.

So, next what we do we try to validate the dynamic part and the dynamic part, we do using
the Taylor rod impact tests for which results are already available numerically and we do a
coupled thermo mechanical analysis. There is no damage here; damage is equal to 0 ok and

we take the Celentano’s numerical and experimental results.

So, this Taylor rod impact problem is you have a cylindrical rod which impacts a rigid surface
at a very high impact velocity and we observe the growth of equivalent plastic strain

temperature at this impact phase at point p at different time step ok.
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The following values of theWﬂe chosen: (i) & = 0.50 (ii) 0 = 0.9412.

The dependence of the yield stress (‘oy) on the equivalent plastic strain (‘e?}) is assumed to be of

a power law type Fur ther, the dependence of the yield stress (‘oy) on the equivalent plastic strain rate (téﬂj )
and the temperature (‘) is assumed to be governed by the Johnson-Cook model
\_‘——-

Thus, Bt

e EPL’/#) (1 - (%f?)mp) (1 + Bln gj %

Material properties of mild steel

E(GPa)| v |p(ke/m’) | oy (MPa)| A” (MPa) ) n
200 | 030 | 7800 333 3L 0.015 0.187
m [T, (0| B 2 |k (W/meC) [ ¢ (J]kg°C) [ @ ((C7Y)
10 | 1525 | 000 10 52 450 [ 1x107°

The results obtained from the present formulation are validated with experimental and numerical results of
Celentanc [2002]

And we use the Newmark’s time integration algorithm and the Johnson-Cook model is used

to take into account the effect of plastic strain temperature and strain rate on the yield value
ok.
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And these are the material properties and we compare the ratio of the final length to initial
length of the rod with the different impact velocity and we compare our work with the
experimental and numerical work of Celentano, we see that for 122, 163 and 244 metre per
second the our results matches well with the experimental results and the numerical results of

Celentano.

So, we have a very nice result that we have and this is a ratio of the radius at of the rod at the
impact phase divided by the initial radius ok. So, at the rod impacts, it will expand and the
initial value which is 1 ok. So, initially R f equal to RO. So, you have one and it will expand

and then, you will see we have the results matching with the results of Celentano ok.
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Growth of equivalent plastic strain at three points on the impact face

So, these are some of the results for the equivalent plastic strain growth at three points on the
impact surface and for three different impact velocities 122, 183 and 244and we see our
results which are in solid line and the results of Celentano and we see that our results also

match well with the results reported in the literature ok.
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So, these are the growth of plastic strain at four points along the impacts axis and these are

temperature rise ok.
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So, the initial temperature is 25 degree and you see that for lower velocities at the raise of the
temperature is only around 108 degrees; while for 244, it can go up to 400 degree centigrade
ok. From 25 it goes up to that level and for three impact points our results match well with

the results reported by Celentano ok.
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8. Some Results and Discussion

9%

+ Simulation of Damage and Ductile Fracture in Tensile Specimens

First, the static damage growth and ductjle

properties are given in Table 2, the damage constants in Table 3.

Table 1: Chemical composition of steels used for tensile testing

Magerial [ C (wi%%) | M (wi%%) [ P (wida)) | S (wi%) | 51 (wiVh) | Fe(wi%h)
072 | 0009 | 002 | 020 | rew
072 | 0011 | 0018 | 028 | ret

SR | 0.92
WSII043] 0.46

Table 2: Material properties of steels used for tensile testing

£
/ AISI1090

Material | E (GPa) | v |%oy (MPa) | K (MPa) | n
2100 {0.30 464 816 |0.73
AISIIO45 | 2100 1 0.30 302 796 | 0.59

of cylindrical and pre-notched specimens are

oy

simulated. Two spheroidized steels viz{ AISI1090 and AlSI1045-{9)4re considered for the numerical simulation.

S
The chemical compositions of the steels as menfioned in e Roy et al. [1984] Are given in Table 1. The material

So, with this validation, what we can do now is we can discuss some of the results. So, the
first thing is we simulate the damage and ductile fracture in tensile specimen. So, again the
geometry remains as we use for the validation problem. However, the material now is chosen
as AISI1090 and 1045 for which we have the experimental results reported in the literature.

So, this is the chemical composition of the two steels and these are the material properties

which you have taken from Le Roy’s 1981. So, this is 1981 results.




(Refer Slide Time: 52:20)
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Table 3: Coefficient values in the damage growth law and the critical
damage values of steels used for tensile testing

VTN .
Material [ a ay/ /| Do
(MPa!) | (MPa~!

ATSTI000 [ 380 x 10 [980x 10 | 3.0 | | 0.60
| AII045 | 5.83 x 107 [ 404 x 107 | 260 (150)

UM o

): 1
/ Dicnpi et i
e inemmdanm
FETFTTE TR TR EERTEIAAEY

\ g;,.. it = ‘
Domain of the problem for (a) c@@en (b) @

And the damage constants in our damage growth law which we discussed in the initial slides
are obtained as follows ok. So, these are used during curve fitting and these again, we use this
cylindrical specimen and the pre notched specimen. So, this is the pre notched specimens
cylindrical in nature and this is completely cylindrical and for cylindrical specimen, this is the

result for 1090 and 1045.

You can clearly see there is a necking involved and these black coloured elements here show
the fracture. So, these are the elements, where the damage has reached this critical value ok.
So, this critical value or damage means when value of D reaches 0.6 for 1090 and 0.5 for
1045, 1 say that that particular element has lost its stress carrying capacity and then, the

stiffness is set to a very small value and that is blackened.



So, this is the fracture. So, clearly for 1045 which is more ductile, you can see the cup cone

kind of fracture; while 1090 is a much more brittle kind of thing, you have a flat surface ok.
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Cylindrical Specimen: damage growth curves for (a) AISI1090 and (b) AISI1045 steels

And from the experimental results reported by LeRoy, I compute the numerical result for
damage and versus the equivalent plastic strain at the centre and at the outer surface and
match with the experimental result and you can see the our numerical results match well with

the trend for the numerical results of experimental results of Celentano for both 1090 and

1045 ok.

So, you see that at the outer surface, the damage growth is very slow; while at the centre, it is
much more faster. So, this is also observed in the literature that the crack will initially start at
the centre and propagate towards the outer surfaces and you can see for 1090, its more or less

the crack will occur all throughout the in centre surface; but, for 1045 which is much more



ducktail, it will first it will occur at the centre much more earlier than at the outer surface, that

is why it leads to the cup cone fracture ok.
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Cylindrical Specimen: load displacement curves for (a) AISI1090 and (b) AISI1045 steels

Again, this is a load displacement graph for the 1090 and 1045 and you can see you have a
sharp drop in the load, once the necking starts and the damage reaches a very high value
there. Therefore, you need arc length method. Here, to solve these kind of load displacement
curve here because your tangent ok; if the tangent matrix will become singular ok. So, you

need some arc length method ok.
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So, this is the growth of damage versus plastic strain at the centre and outer surface for

different values of plastic strain ok.
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+ Simulation of Damage and/Ductile Fracture in Taylor Impact@

o Taylor rod impact tests are used as experimental and numerical tests for determining the

mechanical behaviour of materials subjected to high strain rates.
o Atsufficiently high impact velocities, a significant plastic deformation leading to fracture is
observed, In this section, the damage growth and subsequent fracture in Taylor rod made of

&

values of the coefficients ¢;, a; and a, in the damage growth law are given in Table 3 (slide

teel are simulated.

9).
o The dependence of yield stress on the equivalent plastic strain , the equivalent plastic strain rate

and the temperature is assumed to be governed by the following Johnson and Cook mode! :

) " T =Ty \" éy
y/)y = (oy + K (22 (1 . (T,,,——Tf,) ) (1 n Bun(?m

So, let me just skip. Now, we simulate the damage and ductile fracture in the Taylor rod
impact tests ok. So, we take the geometry as we discussed in the validation; but now, we take
a material which is 1045 and for that we use following Johnson-cook formula for which the

material properties are given here.
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Table 4: Material properties of steels used for

E v P gy K n | m| B
|GPa) (kg/m®) | (MPa) (MPa)
/ 210 1 0.30 ) 7800 302 796 059 1.0 | 1.0
éfff i, 1 ¢ o Tes| 6| 0
(‘C) (Wjm°C) | (J/kg“C) | (°C) | (*C)
10 | 1460 [ 52 432,60 | 110107 | 25 | 0.90 [ 0.10

o Thegeaq

&

etry of the TaylorreeHs-shown in figure on slide 89,/The finite element mesh consists
elements anfl 12120 nodes) The time-step chosen is 0.05 ps.

And they are obtained using the tensile testing and then, this geometry of the Taylor rod is
shown in slide 89 and the finite element mesh consists of 12,000 elements and 12,120 nodes
and the time-step that we have chosen is 0.05 microsecond. So, this is a very high impact

velocity problem. Therefore, we choose a very small time step.
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ensile splitting in steel cylindeyafter
impact (V = 300 m/s)

(a) TersieSpitimg (simu-

(b) Tensile splitting observed experimentally

lated at t = 7.5 ps) by Woodward et al. (1992)

So, there are two kind of failures that are observed in Taylor impact tests; one is called the
tensile splitting. So, at 300 metre per second impact, you can see that at the impact phase, you

have a mushrooming and also you have fracture which occurs at the 4 corners ok.

And if you measure this kind of result with the experimental result, you will see in the
experimental results of Woodward et al also, there is tensile splitting which occurs at the
outer surface while the inner surface is more or less outside of that there is no visible fracture
ok. So, we observe tensile splitting for lower impact velocities which is also observed in the

literature.
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+ Confined Fracture, Fragmentation and Separation of Conical Region

i

—_—

Fragmentaticn of a steel cylinder observed
experimentally by Woodward el al (1992)
it e R

And for higher impact velocities say 400 or 500 metre per second, experimentally people are
observed that you have fragmentation ok. So, you have some small parts at the outside
surface which come out and at the middle, there is a huge chunk of a material that comes out

ok.

So, here also for lower impact velocities, you can see at the centre there is some damage and
also, at the outer surface there is some damage ok. So, they are same view. So, this is actually

at the other side ok.

And for higher impact velocity, you can see there at the middle, there is a huge chunk like this
here ok; there is a chunk like this here and in the outer surface, you will have chunk like this

here ok. So, again the numerical simulation is able to capture what is called the confined



fracture, fragmentation and separation of conical zone ok. So, this conical zone and this is

fragmentation which are coming out ok.
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9. Closure Remarks on The Course

To summarize the course

N\
o We discussed in detail Tensor @ , Tensor analysis{ Kinematics and Kinetics,

o Adetailed derivation of the constitutive relation for a cémpressible Neo-Hookean gaterial

o Brief discussion of application m simulation qf dynamlc duct|lefractu
+ What more -

o Non-Carfesian tensor analysis, Gontinuum Thermodynamiés

| I ULEE#anulalLQn,
o W Ne-Hookean nw_mgdﬂs and the

onstltutlve relauo env ion

So, with these numerical results, we come to the end of this course and we have some closure
remarks on this course. So, to summarise this course, we have discussed in detail tensor and
tensor analysis. We did this only for the Cartesian ok; but for non-Cartesian, we did not do it

because it was not possible.

But with kinematics and kinetics that we discussed was very general that you will find in a
course on continuum mechanics. Also, we did a detailed derivation of the constitutive relation
for compressible Neo-Hookean material ok. We did very detailed derivation so that you could

understand.



We also did a very detailed derivation of the Finite Element formulation and various solution
strategies ok. What we also discussed the application of computational continuum mechanics
to the dynamic ductile fracture ok; although, we did very detail in new this hyper elastic

material.

But for the sake of completeness, we also discussed in detail the a little detail about the
dynamic ductile fracture, where elastoplastic effect, thermal effects, strain rate effect and the
damage everything comes into one particular simulation. So, we did one kind of multi physics

problem.

So, what more you can do? Non-cartesian tensor analysis, you can study by yourself if you
want, we can refer you can refer to some books. I can give you reference to some books, if
you are interested. Continuum thermodynamics is not what we discussed. This 1s discussed
mostly in the course on continuum mechanics, not in this applied course and also, the

constitutive relation derivations ok.

For example, the from the given Helmholtz free energy or the Gibb’s free energy, potential
how to derive the constitutive relations that we did not discuss. We directly took a material
model which is Neo-Hookean material model. So, this also can be done in a course on
continuum mechanics ok; and additionally, we can do incompressible Ne-Hookean material

modelsand their finite element formulation.

So, incompressible means there will be no volume change and there is a condition J should be
equal to 1 and so, all the deformation should be such that J should come out to be 1. This kind
of constraint, we did not study in this course. But obviously, if you are interested, you can go

into the references and look into this ok. So, with this, we will come to end of this course.

Thank you very much.



