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So, next we are going to see the method of Arc length. So, there might be situations where the

Newton-Raphson algorithm will not be able to proceed further ok. So, what this means is that

it is not the convergence problem it is just that the determinant of the tangent matrix will

approach 0 which means you are approaching a point with the tangent to the curve it becomes

horizontal. 



So, they are two cases which are shown below where the Newton-Raphson algorithm will

know will not go past the so called limit points ok. So, these are 2 graphs for force external

force versus the current position and these are ofcourse hypothetical but they might be present

in certain cases.

For example, the one which is shown here is called the snap back behaviour. Here, if you can

see the load displacement curve increases up to a certain point and then it reverses its position

and finally, it again starts to increase ok. So, this called the snap back because from point B

this curves comes backward ok. 

The second curve shows the snap through behaviour ok. In this, once the force versus current

position graph reaches the maximum value it comes down and then starts to increase again

and goes something like this. So, the first case you can you will encounter when you have a

thin cylindrical shell for example, and it is compressed by 2 forces on the opposite faces.

And when you it start increasing the forces what will happen the force external force required

to cause the deflection of this cylinder will increase till a certain point you will have

wrinkling or the local buckling nodes which will come into the picture and then you will have

this snap back behaviour. 

The snap through behaviour for example, can be seen when you have say a arch and you are

applying an external force. So, initially as you start increasing this force the external force

versus the displacement say of this point here ok. So, this point displacement let us say it is x

ok. So, the force versus current position graph will increase till point A and at that position

the arch may look something like this and at this point. 

So, this might be your point A and at this point what will happen the force displacement

curve goes down which means the arch will occupy ok. So, after this point the next position

the arch will occupy will be something like this and this will be this point P here and then ok.

So, this point is A dash. So, this point is A dash and in between this part of the curve that you



see will be the force which goes from which takes this arch from position A to position A

dash ok.

So, in these 2 graphs you can see that at point A the tangent to the curve becomes horizontal

which means the tangent matrix K which is a function of x which is nothing, but del by del x

of the residual will become singular or close to singular which means the determinant of

matrix formed by the components of the tangent matrix will be equal to 0 or it will approach

0. 

So, therefore, if you are solving for u which is K inverse R minus of K inverse R and if K has

a nearly 0 determinant that you cannot take the inverse of K and therefore, you cannot get the

solution u ok.
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So, in case of limit points are encountered then as the load is increased the Newton-Raphson

algorithm experiences convergence problem and then it may jump from point A to another

equilibrium position A dash ok. So, as you can see here the force displacement curve may

directly jump from point A to point A dash which is shown here ok. So, this is your point A

dash ok.
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So, in numerical setting you may directly jump from this point to this point ok. Now, the

Newton-Raphson algorithm can be made to follow the equilibrium path beyond point A by

solving the problem as a displacement controlled problem rather than a force controlled

problem ok. 



So, rather than applying force you will apply a known displacement in a numerical simulation

and then you can go beyond point A and this is done by prescribing known displacement and

then calculating the load at the resulting reaction to the prescribed displacement.

However, this may allow the Newton-Raphson algorithm to progress beyond A to B, but then

again the Newton-Raphson algorithm may jump from B to B dash ok. So, if you see in this

part of the curve. 

So, if you apply displacement control you maybe you might be able to reach till point B, but

then again at point B the curve may jump from B to B dash and you will not be able to trace

this part of the force displacement curve ok. So, hence to tackle this issue the method of arc

length is proposed which will help us trace the entire equilibrium path. So, if you want to

trace this entire equilibrium path this is the equilibrium path.
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So, if you want to trace the entire equilibrium path like this in snap back or snap through then

you have to use a technique which is called the arc length method because the traditional

Newton-Raphson algorithm will not help you go beyond point A or in the best case will go

only till point B, but then you will go at point B dash. So, you will not be able to trace this

part of the curve for snap back or this part of the curve for snap through. 
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So, the idea of arc length method is very simple. It is that it constraints the iterative solution

to follow a certain pre defined route. So, to do this what we do is we take the discretized

equilibrium equation which is the form given by equation number 4. 

So, you have the residual as a function of a current position equal to the difference of the

internal forces minus the external forces and now what we do is we change equation 4 by

appending it with a scalar value lambda and then the external load vector which is here

becomes lambda times F bar. 

Remember the external forces as we discussed in the previous lectures is always applied in a

certain number of steps, you do not apply the external forces in one go rather you apply in



small steps of delta F l. Now, what we do is we replace this external force by a scalar times a

known equivalent nodal load vector ok. 

So, this F bar is nothing, but an equivalent nodal load vector which is known. So, at the start

of the simulation you will give this nodal load vector ok. This might be 1 at a particular

position 0 at all other position and then that is what will become your equivalent nodal load

vector. 

So, now what we have done is we have these unknowns x and now we have introduced

another unknown lambda which will help us to trace the complete equilibrium path. Now, the

idea of arc length method is we have to place certain constraint on the increment in the value

of x and the increment in the value of lambda so that we are able to trace the complete path

ok. 

So, lambda here is an additional unknown which is allowed to change during the

Newton-Raphson iteration process ok. So, lambda keep continuously keeps on changing

during the Newton-Raphson iteration so that we are able to achieve the equilibrium after

every load increment and then with help of this we are able to trace the complete equilibrium

path. 
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So, now we have n equations, but now we have increased the number of unknowns from n to

n plus 1, where n is the total number of degrees of freedom which is number of node times

the degree of freedom per node ok. 

Now, we need an additional equation to solve n plus 1 unknown using n equations is not

possible. Therefore, we need one more equation and this equation we get by what is called the

constraint equation. So, we define a constraint equation which is required to be solved so that

we can get the value of lambda ok.

So, for a particular load step l the incremental load is defined over an increment in terms of

increment in the value of lambda from its value at the end of previous load increment l minus

1 as delta F l external is equal to delta F delta lambda F bar F bar is known. So, the



incremental load which is applied from going from load step l minus 1 to l is nothing, but

delta lambda times our equivalent nodal load vector F bar ok. 

So, F bar is known. So, we have this equation number 25 giving as the incremental load

where lambda is nothing but lambda l minus 1 plus delta lambda and the lambda l minus 1 is

nothing but the value of the scalar variable lambda at load step l minus 1 ok.

Now, the total change in position over the load increment is denoted by delta x. So, from l to l

l minus 1 to l the total change in the position let say is delta x and the position here is x l

minus 1. Therefore, the position here x l or written as x will be nothing but x l minus 1 plus

delta x. 

So, in the present course we discuss what is called the spherical arc length method which is

given in this book by Bonet and Wood. For any other kind of arc length method I request you

to refer to this notes on arc length method by Vasios the link for which I am giving here or

you can see the textbook by Crisfield which is Volume 2 for the implementation algorithms

for the arc length method. 
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Now, the idea of spherical arc length method is that in this arc length method the constraint

equation is given by delta x dot delta x plus a scalar constant phi delta lambda F bar dot delta

lambda F bar equal to s dot s which is equal to a constant ok. So, if you see your figure here. 

So, this is point A on the so this red curve here is your equilibrium path and you have already

solved your equilibrium path or you have traced your equilibrium path till point A. Now, you

want to trace or equilibrium path from point A to point B. 

Now, what this equation tells us so this is equation of a sphere general sphere ok. So, this

blue curve here shows that sphere and now this constant that is s dot s is nothing but this

radius ok. So, s dot s is s square. Therefore, this s is root over s dot s and this is the radius of

the sphere. 



So, there is a big sphere and then your Newton-Raphson method is constrained to move along

this. So, rather than constraining your Newton-Raphson method to move along this red path

we constrained this equation our Newton-Raphson algorithm to move along this blue path ok.
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So, Newton-Raphson algorithm has to move along this blue path and then whether you have

curved line, whether you have something like this you will be able to trace depending on the

length of this vector I mean the length of this arrow which is s. So, you can continuously keep

changing this s to trace your equilibrium path where this vector s can be thought of as a vector

of delta x and phi delta lambda F bar. 



Now, here as I said equation 28 represents a sphere hence that is the name of the method

spherical arc length method ok. Now, the Newton-Raphson iterations are constrained to move

towards the equilibrium point along this arc ok. 

So, that is what I said this is the next equilibrium point and then you have constrained the

Newton-Raphson algorithm to move along this blue path rather than constraining it to move

along this red path it is constrained now to move along this blue path so that you can reach

point B ok.

And now you have control over the say the radius of this sphere which is nothing, but small s

and phi here is called a scalar factor which will make equation 28 dimensionally consistent

dimensionally consistent means you have a force here and you have a position ok. So, you

have 2 different physical quantities. So, phi will make this dimensionally consistent and it is

usually taken as 1. 
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Now, we can again setup the Newton-Raphson algorithm by linearizing equation number 24

with respect to both current position and the unknown scalar lambda. So, just like previous

cases we have to now write our discretize equilibrium equation at k plus 1 th

Newton-Raphson iteration where the position at x k plus 1 is position at x k plus the

increment from k to k plus 1 and lambda at k plus 1 is lambda k plus delta lambda. 

Now, our objective is to find out this u and this delta lambda and we assume that we have

solved the previous Newton-Raphson step so that we already have in hand x k and lambda k

ok.



So, now the equilibrium equation return at x k plus 1 and lambda x k plus 1 is the internal

forces evaluated at x k plus 1 and that is the position at Newton-Raphson step k plus 1 minus

lambda k plus 1 F bar. 

Now, I can do linearization with respect to both k plus 1 and lambda k plus 1 I can substitute

x k plus 1 is x k plus u and lambda k plus 1 as lambda k plus delta lambda and I do the Taylor

series expansion. I can write the residual as R x k lambda k plus del R by del x evaluated at x

k into u plus del R by del lambda evaluated at lambda k into delta lambda plus we will have

higher order terms.

Now, if we neglect these higher order terms we will have the left hand side approximately

equal to this right hand side. And now if I make the left hand side go to 0. So, if I make left

hand side go to 0, then my right hand side that is residual evaluated at x k lambda x k lambda

k plus del R by del x evaluated at x k into u plus del R by del lambda evaluated at lambda k

del lambda should be equal to 0. 
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And now I know that del R by del x is nothing but my tangent matrix at position x k and the

tangent matrix times u equal to minus of the residual evaluated at x k and del R by del lambda

is nothing but minus F bar. So, now if I substitute 34 and 35 in equation 33 I will get my

residual at x k comma lambda k plus k x k u minus del lambda F bar equal to 0. 

Now, here u represents the change in position that is it is the iterative displacement and delta

lambda denotes the iterative change in lambda and they are given by x k plus 1 equal to x k

plus u and delta x k plus 1 is delta x k plus u lambda k plus 1 is lambda k plus delta lambda

and delta lambda k plus 1 is delta lambda k plus delta lambda. 
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Now, the solution of equation number 36 that is this one. So, the solution of equation 36

gives you the iterative displacement u in terms of an unknown parameter lambda ok. Now, we

decompose the displacement u into 2 parts u 1 and u 2 and we write u as composed of one

part u 1 plus delta lambda into u 2. 

Remember our iterative displacement comes in terms of delta lambda here ok. So, I can

decompose my iterative displacement as composed of 2 parts one which is independent of

delta lambda and one which is linearly dependent on delta lambda. 

Now, here u 1 is found out from the following equation ok. So, u 1 is k inverse evaluated at

ok. So, this is u 1 which is nothing but k inverse evaluated at x k into R x k lambda k. So, I

already know my position and lambdas from the previous Newton-Raphson iteration. So, I



can find out the tangent matrix. I can find out the residual and solve to get u I ok. So, u I will

be known and now u 2 is nothing but minus of k x inverse F bar. 

So, now F bar is initialize at the start of the simulation and k is known. Therefore, I can get u

2 ok. So, from equation 39 I know u 1 and I also know u 2 the only thing left to determined is

this term delta lambda. So, how to determine this term delta lambda that is what we are going

to see next. 

So, we first what we do is we write the constraint equation which is given by equation 28 and

we write this at Newton-Raphson step k plus 1 ok. So, we have delta x k x k plus 1 dot delta x

k plus 1 plus phi delta lambda k plus 1 F bar dot phi lambda k plus 1 F bar equal to s dot s

which will be nothing but equal to a constant. This constant is specified at the start of the

simulation ok.
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So, now here I substitute x delta x k plus 1 as delta x k plus u ok. So, now, I get delta x k plus

u dot delta x k plus u plus phi square delta lambda k plus delta lambda the whole square F bar

dot F bar equal to a constant ok. Now, u I can substitute as u 1 plus delta lambda u 2 ok. So,

in this equation 43 the only unknown is u and now u is a unknown in delta lambda. So, I can

substitute this and I get following expression. 

Now, I can open up the brackets and I can simplify and I can collect the terms of delta lambda

square delta lambda and constant. In doing so what I get is a quadratic equation in delta

lambda square and c 1, c 2, c 3 are the coefficients of this quadratic equation where c 1 is u 2

dot u 2 plus phi square F bar dot F bar. 

Now, remember phi is given to us, F bar is given to us, u 2 we have already found out ok.

Similarly, here all the terms on the right hand side are given. So, c 2 is known similarly c 3

given by the following expression is also known ok. So, these constants c 1, c 2 are the

coefficients of the quadratic equations in 45 c 1, c 2, c 3 are known. Therefore, I can solve for

the 2 roots of this quadratic equation ok.
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Let us say these 2 roots are delta lambda 1 and delta lambda 2 ok. So, there are 2 roots delta

lambda 1 and delta lambda 2 and once I get this delta lambda 1 and delta lambda 2 what I can

do is I know ok. So, I will right here I know s as nothing but delta x phi delta lambda F bar.

Now, delta lambda ok. 

So, at k plus 1 this will be x k plus 1 and this is delta lambda k plus 1 and delta lambda k plus

1 is delta lambda k plus del lambda. Now, I have 2 roots delta lambda 1 and delta lambda 2.

So, if I substitute here delta lambda 1 and delta lambda 2 I will get 2 values of this vector s at

Newton-Raphson iteration step k plus 1. So, one is s k superscript 1 and another is s k

superscript 2.



So, the first one corresponds to the first root delta lambda 1 and the second one corresponds

to the second root delta lambda 2. Now, I have to choose one value of delta lambda. I cannot

choose both the values of delta lambda. 

So, how to choose the correct value of delta lambda for this what you have to take is I have to

take that value of delta lambda which will give me the minimum angle theta between the

vectors s k plus 1 superscript 1 and s k plus 1 superscript 2. And this angle theta is obtained

from this equation cos theta j equal to s k dot s k plus 1 j divided by s square. s square is a

constant s k is known from the previous Newton-Raphson step and therefore, and this j is

equal to 1 and 2.

So, from equation 49 I have these 2 terms and I can find 2 values of theta and now the value

of theta which is minimum is what will be my solution delta lambda ok. So, now here s k is

delta x k delta lambda k phi F bar and s k plus 1 j is given by following equation ok. So, this

is your vector ok. 

So, once you have found out the minimum value of theta and then you can recognize which

one is the your correct solution delta lambda. You will go back and update your value of delta

lambda and then you will check for the Newton-Raphson convergence criteria.

If your Newton-Raphson has not converge when you move to the next Newton-Raphson step

and again you go on to find out the new values of delta lambda 1 and delta lambda 2 and this

you keep on going till your point B as shown in the graph for the arc length method is reach

to a certain degree of accuracy. 

So, this completes our arc length method to deal with the failure of Newton-Raphson

algorithm. We have already covered the line search method which deals with the slowness of

the convergence rate of the Newton-Raphson algorithm.

So, we have dealt with 2 methods one which deal with the flow convergence of

Newton-Raphson method that is line search method and we have covered arc length method



we deals with the failure of the Newton-Raphson method to get pass the limit points at the

point at which the tangent becomes horizontal or it is becomes vertical as the case may be.

So, now with this we next see 2 examples of Newton-Raphson method applied to system of

equation. 
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Now, the first equation that we consider is this given by f 1 equal to x 1 square plus x 2

square minus 4 and f 2 is x 1 square minus x 2 plus 1 equal to 0 ok. So, now, you have 1 if

you look closely this is equation of a circle and this is equation of a parabola ok. So, what you

need to find out is where does the circle and the parabola intersect ok. Now, but you have to

find out using Newton-Raphson algorithm let us say your initial guess is given as x 0 equal to

1, 2 ok. So, this 1 correspond to x 1 and this 2 corresponds to x 2 ok.



So, now, first thing we need to find out is our tangent matrix. So, the tangent matrix evaluated

at initial point x 0 will be nothing but del f 1 by del x 1 del f 1 by del x 2 del f 2 by del x 1 del

f 2 by del x 2 and if you see f 1 here f 1 is x 1 square plus x 2 square minus 4. So, del f 1 by

del x 1 will be nothing but twice of x 1 del f 1 by del x 2 is nothing but twice of x 2 del f 2 by

del x 1 is nothing but twice of x 1 and del f 2 by del x 2 is nothing but minus of 1 ok.

So, that is your tangent matrix and then when is substitute x equal to x 0 that is 1, 2 you will

get your tangent matrix at x 0 ok. Say your when you substitute it here for example, 1, 2 you

will get 2 4 2 minus 1 as your tangent matrix. Now, to setup the Newton-Raphson algorithm

what we need to do is the tangent matrix evaluated at the Newton-Raphson step x k times the

increment in the vector x equal to minus of f and f here the vector f here is nothing but f 1 f 2

ok. 

And then once you have found out u you update your vector x as x k plus u. Now, let us do

few iterations of Newton-Raphson algorithm to see how we approach. 
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So, iteration 1 let us say k equal to 1. Your tangent at x 0 is 2 4 2 minus 1 in your function at

x 0 is 1 0 ok. Now, you solve k u equal to minus f and we get the solution u as minus 0.1

point minus 0.2. So, my new estimate for the solution x 1 is x 0 plus u x 0 is 1 by 2.

Therefore, if I tell if I add minus 0.1 and minus 0.2 I will get 1 minus 0.1 is 0.9 and 2 minus

0.2 I get 1.8. And then I do the next Newton-Raphson step. 

In the next Newton-Raphson step, I recalculate my tangent at points x 1 ok. So, I will

calculate my new tangent at point x 1 equal to 0.9 and x 2 equal to 1.8 and I get this as my

tangent matrix and this is my external force vector or my given function values ok. This is the

value of the function f 1 and this is value of the function f 2 at x 1 ok. Now, I solve for u

again and I get my u as minus 0.0104 and minus 0.0087. Now, you can see clearly that u is

decreasing already ok. Initially the 0s were after decimal place.



Now, there are zeros at the first decimal place after first decimal place ok. Now, I get my new

estimate of the solution by adding the solution u to the previous estimate and my new

estimate comes out to be 0.8896 1.7913 (Refer time: 34:29) you can compare here ok. So, we

have drastically come down to 0.8896 1.79 with respect to initial solution, but with respect to

the previous solution it has there is some marginal improvement ok.

(Refer Slide Time: 34:45)

So, now, I do the third iteration ok. So, I again find a tangent matrix at x 2 and my function at

x 2. Now, it see the value of the function has become very small ok. It has started to approach

a very small value which means we are starting to approach the solution ok. Now, again I

solve for u and I get my u as this value. 

Now, I see now I am in the range of 10 is to power minus 4 this is very small value. Now, if I

add this u to previous estimate of the solution. The new estimate of the solution will be



0.8895 0.7913. If you compare this with the previous solution you see there is a change only

at the last decimal place while there is no change estimate for x 2 there is a change in the

value of x 1 only at the fourth decimal place.

So, let us to one more iteration and after this I find that my solution u is now 10 is power

minus 8 of the order of 10 is power minus 8. So, my new solution x 4 is 0.8895 1.7913 and if

I compare till fourth decimal place my solution now does not seems to change. 

Therefore, after 4 Newton-Raphson steps I have got my solution ok. So, if you fix your

convergence tolerance to a much higher value you may need to do some more extra

Newton-Raphson iteration steps ok. But, you can see already the error here ok.

So, you can write this as 1 into 10 to power minus 1 and 2 into 10 is to power minus 1. So, it

was 10 is to power minus 1 if you see you can write here is 1 into 10 is to power minus 2 and

8 into 10 is to power minus 3. 

So, you have jumped from minus 1 to minus 2. Now, from minus 1 minus 2 you have jump to

10 is to power minus 4 and then you have jumps to 10 is to power minus 8. So, 10 is to power

minus 1 10 is to power minus 2 10 is to power minus 4 10 is to power minus 8.

So, if you see here if the error here is was of the order of 10 is to power minus 4 in the next

Newton-Raphson step when you have got your solution you get the order of the order of

epsilon square ok. So, 10 is to power minus 4 square 10 is to power minus 8 ok. So, this is

what we call the quadratic convergence ok. 

So, when your Newton-Raphson algorithm reaches the solution the error goes down

quadratically ok. If you do one more step yours error would be of the order of 10 is to power

minus 16 ok. So, you will already be near to the machine precision level ok.
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Second example that we do is now we have instead of 2 functions we take 3 functions and

these are these highly non-linear functions ok. So, instead of solving this I will just show you

that the tangent matrix is given by this 3 by 3 matrix. So, if you take the derivative of these

functions here you will get the following expression for the tangent matrix and this you have

to evaluate for any given Newton-Raphson step.
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So, again we set up the Newton-Raphson algorithm like this and when we carry out the

Newton-Raphson iterations we carry out 5 Newton-Raphson iteration. My initial estimate of

the solution is 0.1 0.1 minus 0.1 and my measure of the error is the infinity now ok. 

Now, if I do this I see that after 5 Newton-Raphson iterations my error has gone down to

8.654 into 10 is to power minus 10 and you can see already at the first solution has converged

till 9 th decimal place my second solution is converged till 10 decimal place and even my

third solution has converged at least 12 9 th decimal place and only there is small change at

the 10 decimal place.

You have 5 here and you have 6 here. For all practical purpose you have got the solution in

the fifth Newton-Raphson step and you can already see as you went towards the solution your

error. So, this is the error and approximately if the error here is epsilon 4 and here is epsilon



5. So, epsilon 5 is nothing but epsilon 4 square that is from step 4 to step 5 your error has

gone down quadratically ok. 

So, this is what we mean when we say that Newton-Raphson algorithm converges

quadratically near the solution. So, near the solution you will have this kind of quadratics

convergence, but away from the solution you will see it is more or less a linear convergence. 

So, with this example we end this particular module ok.

Thank you. 


