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Work conjugacy, Different stress tensors, Stress rates

So, in this module we are going to further discuss about Work conjugacy, we will discuss

Different stress tensors and finally, we will look into some of the Stress rate measures and

with this module we will complete our discussion on stresses, equilibrium equations that is the

whole topic of kinetics.
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So, the contents of this module are as follows. We will first look into the concept of work

conjugacy, followed by a detailed discussion on First Piola-Kirchhoff stress tensor and this we

will follow it up with discussion on Second Piola-Kirchhoff stress tensors.

And then we will look into various ways in which the different stress tensors can be

decomposed and this will be finally, followed by a detailed discussion on some of the objective

stress measures and if the time permits, in this module we will solve some examples in the end

ok.
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So, let us begin. So, recall that from our previous lectures that the spatial virtual work

equation was given by following expression ok. The internal virtual work was equal to the



external virtual work ok. So, this is the internal virtual work and this is the external virtual

work.

So, the total virtual work was the difference of the internal virtual work and the external

virtual work. So, the internal virtual work was defined as the integration of the internal energy

over the current configuration of the body. So, the internal energy is nothing but the double

contraction of the Cauchy stress with the rate of deformation tensor.

The external virtual work can be thought of has having two contribution as we discussed in

the previous lectures and this I am here just recapitulating what we already discussed so, that

we have a flow for today’s lecture. So, the external virtual work is the sum of external virtual

work because of the externally applied traction and the virtual work because of the body

forces. 

Now, the external traction virtual work is given by the summation over the current surface of

the work done by the externally applied tractions on the physical surfaces of the body and the

external body virtual work expression is nothing, but the work done by the body forces over

the current volume of the body.

So, now, let us now concentrate on the internal virtual work expression which is given by

following expression.
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So, this pair of second order tensors which is the Cauchy stress and the rate of deformation

tensor d, they are said to be work conjugate with respect to the current volume B. So, if you

notice this expression of internal virtual work that was nothing, but integration over the

current volume sigma d dV. 

So, this pair of second order tensors sigma and d are said to be work conjugate with respect to

the current volume because the integration is being carried out over the current volume ok.

So, what does work conjugate mean? Work conjugate means that the product of the two

tensors ok, in our case the Cauchy stress tensor sigma and the rate of deformation tensor d

gives us the work per unit current volume.

So, if you have two tensors and the double contraction of the two tensors give you the work

per unit current volume of reference volume, it is called these pair of second order tensors will



be called the work conjugate tensors ok. From this internal virtual work expression let us see

how we can get some other measures of stresses.

So, this equation 105 is expressed in the reference configuration ok. So, now, this expression

105, see this is expressed in the current configuration. So, this is the current configuration.

Now, if you express this expression in the reference configuration, then we can get alternative

work conjugate pair of stresses and strain rates. So, now, if we just change the domain of

integration from the current configuration to the reference configuration, we will get some

other measures of work conjugate stresses and strain rates. So, our objective is to see what are

these different stress and strain rates.

So, recall that the spatial volume element is related to the material volume element by

following relation; dV equal to Jacobean times dV 0. So, now, if we substitute this expression

in equation 105, 7 or 8 then what we will get? We will get the internal virtual work as so, this

was the expression and if dV becomes JdV 0 then the domain of integration changes from the

current configuration to the reference configuration which is B 0 ok. So, we get integration

over B 0 J sigma double contracted with the rate of deformation tensor times dV 0.

Now, we can define J sigma as another tensor called the Kirchhoff stress tensor. So, this tau is

defined as the Kirchhoff stress tensor why we have doing this is because if you look closely

this expression let see we had only stress contracted with a strain measure.

So, here in the next expression what we are getting there is a Jacobian which also comes. So,

what we do? To make it consistent with this expression, we define what is called Kirchhoff

stress tensor. So, Kirchhoff stress tensor is given by J times sigma.

So, therefore, if you see Kirchhoff stress tensor is work conjugate with the rate of deformation

tensor, but over the reference volume ok. So, Kirchhoff stress tensor is work conjugate to the

rate of deformation tensor d with respect to the initial volume or the reference volume ok.



So, sigma or the Cauchy stress were work conjugate with the rate of deformation tensor with

respect to the current volume and the Kirchhoff stress tensor is work conjugate with the rate

of deformation tensor in the reference configuration ok. So, that is the difference. Although

body stress measures the Cauchy stress and the Kirchhoff stress they are both work conjugate

with the rate of deformation tensor but one is work conjugate with respect to the current

configuration while the other is work conjugate with respect to the reference configuration ok.

So, that is what we need to remember.
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Now, similarly we can express the external virtual work corresponding to the body forces in

terms of the reference configuration. So, now, we know that the external virtual work because

of the body forces is given by following expression.



And in this if we substitute dV as Jd V 0, we get J b dot with virtual velocities integrated over

the reference configuration. So, we can define jB as b 0 ok to be consistent so that this

equation is consistent with this expression ok. So, you have one vector dot with another

vector ok. So, that b 0 is Jb ok.

Now, the external virtual work also we can express in terms of reference configuration. So,

this is the external virtual work because of the surface forces and is given by integration of the

work done by the tractions over the current surface.

Now, I can transform this to integration of the what we say as the reference tractions doing

work over the reference configuration dA. So, how did we get this? This we got by using

what is called the this formula that we derive. Remember from Nanson’s formula da equals JF

inverse transpose d capital A or nda was JF inverse transpose N dA.

So, if you remember when we are discussing kinematics this was one of the examples that we

did. So, this reference traction is nothing, but the actual traction times the ratio of the areas

ok. So, this you can very well show now. So, this if you substitute here, if you substitute it

here you will be able to obtain this particular expression. So, this da can be obtained by

following relation and this we derived earlier when doing kinematics.
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So, we note that the work done per unit current volume is not equal to the work per unit

initial volume that we will see ok. However, from the continuity equation that we discussed in

the previous lectures, the reference density is connected to the current density by this relation.

So, and the Kirchhoff stress is related to the Cauchy stress using following relation therefore,

Kirchhoff stress. So, from here J is rho 0 by rho ok. So, that is what we substitute here and we

get Kirchhoff stress in terms of the densities in the reference and the current configuration and

in terms of the Cauchy stress ok.

So, the ratio of the Kirchhoff stress tensor and the current density is same as the ratio of the

Cauchy stress with respect with the current density.



So, now if you double take the double contraction with respect to the virtual variation of the

rate of deformation tensor, you will get tau rho 0 double contracted with del d is sigma by rho

double contracted with del d ok. Now if you use this in the internal virtual work expression

remember del w ok. So, internal virtual work was B sigma contracted with del d dV.

Now, if I divide by rho and I multiply by rho then rho dV is nothing, but the mass that is what

we have here you have the mass ok. Similarly we had shown that the internal virtual work is

tau del d into dV 0. So, if I take multiply and divide by rho 0. So, I have this and this relation

over here nothing, but the reference mass which is here.

So, now you can see because both the integrals are same therefore, the integrants. So, are

same therefore, this shows that work per unit mass remains invariant because mass dM is same

as d capital M. So, therefore, you will have work per unit mass which will remain invariant.

So, remember work per unit volume is not equal to the work per unit current volume is not

equal to the work per unit initial volume ok. However, work per unit mass will always remain

invariant because mass is neither created nor destroyed. So, this is how we have show.
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Now, this relation over here ok. So, 109 if we go back to this equation, if you see this

expression over here you see that these quantities ok. So, this integrand is in the spatial

configuration while the integration is being carried out in the reference configuration ok. So,

you have to integrate the spatial quantity in the reference configuration and this is a little

inconsistent.

So, what we will try to do now is, we will try to remove this inconsistency. So, what we do is

to alleviate this inconsistency, we start with the internal virtual work expression which is given

by this and then we note that dV is J dV 0. So, this I can substitute here and then I can get

integral over the reference configuration called double contraction of Cauchy stress with the

rate of deformation tensor times J dV 0.



Now, another point to notice the double contraction of sigma with respect to the variation of

the velocity gradient tensor can be written as sigma double contraction with virtual variation

of rate of deformation tensor plus the virtual variation of the spin tensor.

Now, remember d is a symmetric tensor and w is a anti symmetric tensor and also we have

shown from law of conservation of angular momentum that in the absence of body couples

sigma is also symmetry which means sigma is equal to sigma transpose.

So, we can show that the double contraction of a symmetric tensor with a symmetric tensor is

not zero; however, the double contraction of a symmetric tensor sigma with the

anti-symmetric tensor del w will be equal to 0. So, del sigma del w will be equal to 0 ok.

Therefore, this when you open up this bracket we get that the double contraction of Cauchy

stress with the variation of rate of deformation tensor is same as the double contraction of the

Cauchy stress with the velocity variation of the velocity gradient tensor. So, this is same as this

and this is what we substitute here and this is what we get. So, we now have this particular

expression.

Now, further we note that the material time derivative of the rate of the deformation gradient

tensor ok. F dot is say is equal to lF, this we had already derived. From here I can say that the

velocity gradient tensor l is equal to F dot F inverse. So, therefore, del l will be same as del F

dot F inverse.

See variation will not be over F, variation will be over F dot because it is the F dot which is

changing with time it is not F which is changing with time ok. So, F you know at time t. Now

when you apply a small displacement F is not going to change, but F dot is going to change

ok. Therefore, del l is del F dot F inverse and this is what we have it here ok. So, J sigma

double contraction with del F dot F inverse and this integrated over the reference

configuration.



Now, we recall the property of double contraction of two tensors A and B ok. What it says is

that the double contraction of two tensors A and B is nothing, but trace of A into B transpose

and it is also same as trace of A transpose B we are going to use this property in our integrand

ok.

Now, let us identify. So, if you see we have double contraction between two tensors ok. So,

one second order tensor is J sigma, the other second order tensor is del F dot F inverse. So,

now, if I take A as J sigma and B as del F dot F inverse therefore, I can write j sigma

contracted with del F dot F inverse as trace of AB transpose or trace of this is our A and this

is B transpose ok. So, I have written trace of AB transpose.

Now, trace of AB transpose is same as trace of A transpose B ok. So, now, I can write this as

trace of I can open up this transpose and I can write J sigma F inverse transpose del F dot

transpose ok. Now I can say A now is J sigma F inverse transpose and if I say B transpose is

now del F dot transpose therefore, what we have here in the bracket is nothing, but trace of

AB transpose and trace of AB transpose is same as see this is trace of AB transpose is same as

A contraction with B where A is J sigma F inverse transpose and B is nothing, but del F dot.

So, using this here I can write that the internal virtual work when integrated over the reference

volume can be written as J sigma F inverse transpose double contracted with del F dot.
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Now, I can write this expression as P. I can denote this J sigma F inverse transpose as another

tensor P and then the internal virtual work becomes P double contracted with del F dot dV 0

where P is given by this particular expression.

So, in equation 119 this tensor P is work conjugate with the rate of deformation gradient

tensor ok. So, it is P is work conjugate with the rate of deformation gradient tensor with

respect to the reference volume. So, P is what we call as the first Piola-Kirchhoff stress tensor

some type people also write it as first PK stress ok. Sometimes people also referred to as PK

stress or explicitly we can call first Piola-Kirchhoff stress tensor.



Now, you can easily verify that P is a unsymmetric two-point tensor ok. So, first of all if you

take a transpose P transpose, it will be J sigma F inverse transpose. So, if you open this J is the

scalar. So, there is no transpose, F inverse transpose sigma transpose.

And then you what you get is J F inverse sigma ok. Sigma transpose is same as sigma and this

is not same as first Piola-Kirchhoff stress tensor. So, P transpose is not equal to P therefore, P

is a unsymmetric two-point tensor ok. So, it is a two-point tensor that therefore, P in terms of

it basis will be P i I E i tensor product EI.

So, equation number 120 can be written in indicial notation as follows ok. P iI equal to J

sigma ij F inverse capital I j and you see P has one lowercase index and has a uppercase index.

So, it has two indexes therefore, it is a second order tensor and also it has one index which is

lower case and one index which is in the upper case.

Therefore, it is a two point tensor you can see from its basis also that one basis vector is from

the reference configuration EI and the other basis vector small e i is in the deform

configuration ok. So, it has it connects two different configuration therefore, it is a two point

tensor.

And its, but natural that a two-point tensor is work conjugate with another two-point tensor

which is nothing, but the rate of deformation gradient tensor because deformation gradient

tensor itself is a two-point tensor.
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Now, let us see now the virtual work expression can be expressed in terms of the first

Piola-Kirchhoff stress tensor as following expression. Remember initially we had del B sigma

del d d V and now we have proved that this expression is same as this expression over here.

So, therefore the virtual work expression takes the following form and then the governing

equation that we had over here ok. The divergence of sigma plus b equal to the residual force

for all points inside the current configuration of the body will be changed to following

expression ok.

It will be change to the following expression in the reference configuration ok. So, so this is

divergence which means this is divergence with respect to the spatial coordinates and this

capital DIV means this is divergence with respect to the reference coordinates ok.



So, divergence of P plus b 0 equal to r where it is X belongs to ok. So, it is valid for reference

configuration where divergences P is del 0 P double contracted with I and del 0 P is nothing,

but del P by del X ok.
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So, now remember that the first Piola-Kirchhoff stress tensor was defined such that the

internal virtual work expression in the reference as well as the deformed configuration they

both had similar analogous form which means there was stress in the deformed configuration

and there is stress in the reference configuration there is a measure of strain in the deformed

configuration and there is a measure of strain here.

So, we defined our first Piola-Kirchhoff such that we had a analogous form of internal virtual

work expression in the reference or the deformed configuration. So, what it means is that the



first Piola-Kirchhoff is just another mathematical representation of the Cauchy stress tensor

and P has been defined just for our convenience.

So, there is nothing physical about P ok. The only physical stress tensor is the Cauchy stress

tensor, but we have defined P for our own convenience and just purely a mathematical

representation; that means, P is not any new physical quantity.

Now, let us re examine the physical meaning of the Cauchy stress tensor and the first

Piola-Kirchhoff stress tensor. So, what does Cauchy stress tensor actually mean physically and

what does first Piola-Kirchhoff stress tensor actually mean and we will try to connect this to

our undergraduate definitions of true stress and engineering stress that is what our objective is.
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So, let us say you have a body in the reference configuration and you have cut it open. So, you

had a body like this and you had cut it open across a certain plane and the normal to that plane

is N capital N and the traction vector is T and the force along that traction vector direction is

del P. So, del P del capital P is the force.

So, the area infinitesimal wall area reference area is da and when the deformation happens the

body occupies this configuration B ok. So, this is B 0. So, the area is da, the normal to the

area is n and the traction vector is t and the force vector along t is dp.

So, now we consider an element of force dp, in the spatial configuration acting on the current

area d a and the current area vector da is nothing, but the normal to the area times the

magnitude of the area ok; so, n da. So, now, the force dp is nothing, but the stress factor times

the area on which it acts. So, t times da.

Now, from the Cauchy stress principle we know that t is equal to sigma n because we know t

is equal to sigma n. So, because of Cauchy stress principle I can relate the traction vector at a

point on a plane whose normal is n using Cauchy stress principle ok. So, sigma n d a. Now,

nda is nothing, but the area vector. So, the force is Cauchy stress times the current area what

it means is loosely we can say ok.

So, if you see here dp is sigma d a ok. So, loosely we can say that the Cauchy stress is

equivalent to the current force, this is the current force per unit current area. So, d is current

area. So, if you can loosely say that sigma is like dp by d a loosely because they are both

vectors I cannot take this ratio.

But I can loosely say that Cauchy stress is ratio of current force to current area and this is

synonymous with our definition of true stress that is how in our undergraduate we define true

stress. It is the current force divided by current area therefore, Cauchy stress is also called the

true stress Cauchy stress would be true stress.



Now, I can use the Nanson’s formula in equation 127 I can write the spatial area element da in

terms of the material area element d capital A by this Nanson’s formula. If I substitute this

expression in expression number 127 then what I get?

I get dp is tda equal to J sigma F inverse transpose d A. Now from a previous slide we know

that J sigma F inverse transpose is nothing, but the first Piola-Kirchhoff stress tensor P. So,

the current force is equal to the first Piola-Kirchhoff stress tensor P times the reference area d

A.
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So, loosely I can say that P indeed is a two-point tensor. So, now the two-point tensor which

might not be clear when I said it in the previous slide to you will now become clear. You can



clearly see that P maps the area vector in the reference configuration to the force vector in the

deformed configuration.

So, that is what a two-point tensor rates. It maps one vector in the one configuration to

another vector in the another configuration. So, P that is the first Piola-Kirchhoff stress tensor

is mapping the reference area element to the force in the current configuration.

So, that shows the two-point nature of the first Piola-Kirchhoff stress tensor and this relates

the area vector in the initial configuration to the force vector in the current configuration ok.

Therefore, loosely I can say P is nothing, but current force divided by reference area or the

undeformed area and which is our usual definition of the engineering stress or the nominal

stress. So, P can be interpreted as equivalent to the engineering stress or the nominal stress

that is current force per unit undeformed area.

Now, we know that the area vector in the reference configuration is given by the normal to the

area dA times the magnitude of the area d A ok. Now I can write in expression 128 I can

substitute da as N dA and then the current force is equal to PN times d capital A.

So, if I divide both sides by dA then I get dp by dA is equal to PN and I have define dp by dA

as the nominal traction T ok. I can define dp by dA as a nominal traction T, then I can get dp

by dA is equal to T equal to PN and this is nothing, but the material form of the Cauchy stress

principle.

So, this was t equal to sigma n was the spatial form of the Cauchy stress principle and capital

T equal to PN is nothing, but the material form of the Cauchy stress principle ok.
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Now, we can get the material form of the balance of angular momentum.

So, we know that the first Piola-Kirchhoff stress tensor is not symmetric, but from our

discussion on the balance of angular momentum we had shown that the balance of angular

momentum in the spatial configuration resultant in the statement that Cauchy stress tensor is

symmetry. However, now let us say what happens when we take the balance of angular

momentum in the material form.

So, we start by looking into the implication of the balance of linear momentum in the current

configuration and following was the expression if you remember that we derived. So, epsilon ij

k sigma kj integrated over the current volume is should be equal to 0 or this integrand can be

written as the alternator symbol contracted with Cauchy stress tensor ok.



So, if I just substitute I have this particular expression ok. Now I know that P is J sigma F

inverse transpose. So, from here sigma F inverse transpose will be 1 by J P. So, if I multiply

both side by F transpose I will get sigma is 1 by J P F transpose.

Now, if I substitute for sigma in this expression over here I will get what is written over here

and now I can substitute dV as JdV 0. So, this becomes integral over the reference

configuration epsilon contracted with PF transpose dV 0 ok.

So, therefore, in a similar way as we did for the Cauchy stress tensor I can show and this I

leave it for you as an exercise that to show that PF transpose will be equal to PF transpose

which means that PF transpose will be symmetric ok.

So, PF transpose is FP transpose. So, this is the implication of the balance of angular

momentum in the material configuration. Remember in the spatial configuration the

implication of the balance of linear momentum was that the Cauchy stress tensor came out to

be symmetry.

However, our first Piola-Kirchhoff stress tensor is not symmetric, but in the material form of

the balance of angular momentum the derivation that we did just now shows that PF transpose

is same as FP transpose therefore, PF transpose is symmetry although P itself is not symmetry.


