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Welcome you all we are now in this course Fundamentals of Compressible Flow Module 

2. So, in the first module we discussed about the fundamental aspects of fluid mechanics 

and gas dynamics that are used to cover in undergraduate syllabus. Now at higher level, 

in this compressible flow we will make use of those equations those properties and try to 

study the fundamental behaviour for the flows that are compressible in nature. 

So, this is the first lecture on the module 1 and this title of this module is Wave 

Propagation in the Compressible Medium.  

(Refer Slide Time: 01:25) 

 

At the end of the lecture we will come to know about some brief introduction to 

compressible flow and we will talk about some important parameters that are used 

specifically for compressible flow such as speed of sound, Mach number. And we also 

talk about wave propagation in the compressible medium means that under what 

circumstances we say the fluid can be treated to be compressible in nature.  
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Now, to address the fluid flow problems we will develop some fundamental flow 

equations that are routinely used for the flows that are compressible in nature, something 

about isentropic flow which is also equally important, because this isentropic flows are 

taken as the reference or basics for subsequent analysis. Now we will start this lecture.  

(Refer Slide Time: 02:43) 

 

Now, we will revisit something what we discussed in the types of fluid flow that is 

incompressible and compressible flow, just to give some brief insight or revisit those 

concepts, I will just spell out some of the important aspects.  

So, when the fluid is moving at low velocities the variation in the pressure is usually 

small enough to justify the behaviour of incompressible flow. That means to decide so 

that the flow to be compressible or incompressible, the pressure as well as velocities is 

important and for incompressible flow these pressure changes are very small.  

Since the density does not change in the incompressible flow, the energy equations can 

be decoupled. So, that continuity and momentum equations are solved for pressure and 

velocity. Now, to address this flow phenomena, we normally encounter three major 

equations; continuity equations, momentum equations and energy equations, when the 

fluid is incompressible nature where density is a invariant quantity. So, it does not come 

as a specific parameter for calculation through these equations.  
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So, in normal circumstances the mass or continuity equation and momentum equations 

are solved simultaneously for velocity and pressure and to calculate the thermal energies 

or other types of energies or internal energy of the system we have to use the equation 

for energy equations explicitly or separately, but this is what we do in the incompressible 

flow. 

Now, when you look at the compressible flow what we see is that at higher velocities the 

variation in the density as well as temperature to the pressure changes is large. So, in that 

aspects in terms of addressing those parameters we have to take two more other 

equations in addition to continuity momentum and energy we have to bring into two 

more equations that is equation of state and the entropy equations and that is specifically 

used when there is a directionality in the flow.  

Hence the compressible flows are routinely called as variable density flows, the very first 

bottom line in this study is that for compressible flow we need the density changes to be 

a significant parameter.  

Just to give some brief insight we say liquids are incompressible and in our case in a 

commonly use situations we say water whereas, gases are compressible in nature and so 

in our normal circumstances air is one of the fundamental gas. So, just to give you a 

number one can say that air is about 20000 times more compressible than water. So, this 

is how it makes the distinction between a compressible flow and incompressible flow.  

(Refer Slide Time: 06:28) 
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Now we will not deal about incompressible flow now onwards we will specifically talk 

about compressible flows, now to address this compressible flow the first fundamental 

parameter we are going to look at the is known as compressibility. So, it what it does is. 

So, it is given by this expression κ what it says is that the variation of density with 

respect to pressure.  
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So, this is what the differential term which is used here variation of density with respect 

to pressure and this density change is taken as one of the parameter and with respect to 

its original density rho how this parameter changes. So, this is the fundamental definition 

of the compressibility term mathematically.  

Now, let us use these equations logically for the flows to occur. So, as we say that since 

our situation is such that we will only use gases as a compressible medium. So, the very 

bottom line is that we can use the ideal gas or equation of state for the gas. So, if you say 

this equation of state we write RTp  .  

So, the pressure, density and temperature are related with a characteristics parameter R, 

now looking at these equations if we want to see that how the pressure changes with 

respect to density then one must say that what happens to temperatures. So, obviously, so 

while looking at this equation differential equations and we want to make any changes in 

the density then we must do something about temperatures.  

So, this brings thermodynamics into picture under what circumstances I can change the 

density with respect to pressure. So, for that reasons one assumption thermodynamic 

sense in one assumption says that I can hold temperature is constant.  

So, this is where the T is represented as compressibility at constant temperature. So, 

these differential equations now becomes two ordinary differential equation now turns to 

be to a partial differential equation where this T  is looked at the density change at 

constant temperature or for isothermal process.  
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But having said this so, we call this as a isothermal compressibility, but having said 

these, but important issues that is very difficult to change the density although it is 

mathematically feasible or thermodynamically feasible, but it is very difficult to change 

the density with respect to pressure while maintaining temperatures to be constants.  

So, for that reason another way of looking at changing this compressibility is defining a 

term called as isentropic compressibility
s . So, here what the thermodynamic 

assumption says that instead of temperature you keep entropy to be constants. So, that is 

what the it gives you an indication that one can think of an isentropic process where the 

compressibility parameter can be addressed or in general density can change with respect 

to pressure while maintaining entropy to be constant.  

So, this basic definition tells at that the how density can change with respect to pressures.  

(Refer Slide Time: 10:39) 

 

Now moving further, let us see that how density change with respect to pressure is 

addressed through isentropic process. So, for this reason let us consider the situation of 

what we call as wave propagation in one - dimensional mediums.  

So, to bring out the simplicity we talk about a one - dimensional medium. So, for this 

one - dimensional medium the first thing what you see thermodynamically that we have 

a cylinder in which a piston is enclosed.  
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So, the entire idea is that the top part and bottom part or bottom wall of the cylinder we 

have, one side face we have the piston while the bottom surface of the cylinder is you 

think it to be a empty. So, that there is no physical wall. 

So, ideally what we can see that this can be thought of consisting of a gaseous medium 

where lot of gas molecules we can find on either side of the piston and in the cylinder. 

So, statically so, in this situation we can say that gas is hypothetically at rest and piston is 

in equilibrium.  

So, now what you do is that in the next instant you give a little bit of push to the piston 

now when you give a push to this piston what is going to happen these gases on the 

downstream side of the piston gets affected.  

So, as if what we feel is that at the first instance, we say that the first layer of gases they 

gets affected subsequently they transfer the information about the movement of the 

pistons towards this next layer, subsequently this information keeps propagating to the 

down streams. 

So, eventually what happens, the gas molecules which are just adjacent side of the piston 

gets disturbs and that disturbs the next layer of the gases. So, why it happens? To 

theoretically model this what we say is that there is a wave gets created and in the first 

instance we say let this wave be a compression wave. So, this compression wave keeps 

moving into in the stationary medium. 

So, when it moves so what we see is that behind this wave whatever gases are there now 

they have make their changes because they got the information about the piston 

movement and, but as long as the wave does not pass through the stationary gas that is 

other side of the piston. So, they do not know about the motion of this wave; that means, 

the information what changes that happens through this moving wave, we can 

differentiate the entire stationary gas now as a moving gas other is stationary gas.  

So, moving gas I mean the amount of the velocity which is given to the piston with same 

velocity the gases they try to move, while the other side of the moving wave, all the 

gases they are stationary. So, this is the philosophy how the information gets propagated 

through this movement of the piston.  
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So, now in the beginning we say that this is a moving wave, now hypothetically you say 

that had this moving wave be a weakest disturbance. So, weakest disturbance means the 

disturbance is very small and since beginning we say it is a compression waves; 

obviously, it is the pressure parameter that is going to be a concern. 

So, if this wave or the pressure pulse is happens to be very small then we call this 

moving wave as a sound wave or in other words we can say the sound wave is the 

weakest pressure disturbance. So, it travels always in the medium whenever we talk, 

disturbance is created, it moves at speed of sound. 

Now, this is what we see that movement of the sound wave in a gaseous medium, even 

one can create a sound wave when the medium is liquid, we can have a sound wave 

when the medium is as well solid; that means, sound wave can travel in any medium that 

is gas liquid or solid, but it does not exist in the vacuum. So, it requires a medium to 

travel that is the reason in outer space we do not have a sound waves because there is no 

medium as such.  

Now, when we actually see the when this pressure moves at the speed of sound we can 

also quantify what is its speed. So, in down the line we will derive this expression, but 

for the sake of continuity I can say and estimate for a typical conditions the speed of 

sound in air is about 340 m/s and that speed of sound in water is about 1480 m/s; that 

means, speed of sound is higher in liquids.  
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Now, had this situation be a incompressible situation, the pressure disturbances would 

have felt at every locations at same time. So, there is no question of sound waves ok. 

(Refer Slide Time: 17:29) 

 

Now, we will bring about some mathematical orientation whatever I have explained 

through a analysis called moving gas analysis and stationary gas analysis and this falls 

under the domain that we are looking at a one - dimensional medium. 

So, what we see is that. So, the first instance when you talk about the moving gas 

analysis we say that there is a moving wave it is moving at certain velocity. Now how 

does moving waves gets generated? 

So, we give a small piston movement; that means, piston is given a velocity dV. So, 

when this piston is given a velocity dV the gases in one side of the piston they move at 

also velocity of dV and because of this is a moving gas, this gas this moves at speed of 

sound a. So, this moving wave or I can directly say it is a sound wave. So, it moves with 

a velocity a. Now let us see that, on this side we have stationary gas or stagnant gas, on 

this side we have moving gas.  

Now, let us see that the when this gas does not see the sound wave its conditions are 

defined as pressure p density ρ and the other side of this, the corresponding parameter on 

other side would be p+dp because it is a very weakest disturbance and density also will 

change in this process that is  d . So, if I try to plot this an xt diagram where x stands 
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for the distance along this piston and t stands for time; that means, we are looking at this 

wave at different time instance.  

At one time instance when the wave is at this location, I draw a line. So, let us see that 

what happens. So, first thing it says that this line denotes the motion of piston. So, we 

call this as piston path. So, because this dV comes from this xt diagram through this 

piston path and the movement of this wave we can represent in this manner. So, we call 

this as path of pressure wave. So, this is how we see in xt diagram. 

Similarly on pressure and distance diagram one can see that one side of the piston there 

is a pressure p+dp, but just at these vicinity of this moving gas, pressure again comes 

down to original pressure of the stagnant gas p.  

Now, same thing when you draw this velocity versus x diagram. So, we can say that 

initially this piston has this velocity and all of a sudden this velocity drops to 0. So, this 

value is we say dV, this magnitude is dp. So, this is how we do in a moving frame of 

analysis. So, it means that I am looking at the wave sitting in the laboratory.  

Now, let us see that I want to bring a stationary frame of analysis where the stationary 

gas analysis where we say we bring this wave to be stationary. So, all these plots in this 

side is the analysis for stationary wave which says that the wave is treated to be 

stationary. Now to address this how I bring the wave to be stationary so, effectively so, 

when I say this wave to be stationary I have to artificially initiate a flow that changes 

similar properties. 

So, in the beginning stage we say same pressure and density and we say this to be a very 

thin region across which the property changes and in one side the pressure is p, density is 

ρ and velocity is a and in other side we say the pressure will be p+dp density will be 

 d , now if we say this wave to be stationary then; obviously, I should get a velocity 

dVa  for the other side of the gas.  

So, this is your stagnant situation. Of course, this side also flow is stagnant. The 

conditions at one particular time instance the condition will be p+dp,  d . So, I 

should subtract dV because the piston movement is originally in these directions.  
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So, the speed that happens will be a and dVa  . So, likewise one can draw from this 

particular point; that means, here we have to draw with this wave as the starting point. 

So, from there I can draw this piston path, I can also draw the moving fluid and path of 

wave. The pressure plot will remain same but velocity will be something different. 

So, we have to bring a reference line which is much below this because the directions are 

opposite where we say it is  dVa  and from there it will start, finally it will end with 

a, because directions are taken in the opposite directions when you look at in this frame 

of reference. So, I hope I make you understand about this concept and in the subsequent 

analysis we will now recall only this particular figure which will come into our equation.  

(Refer Slide Time: 26:32) 

 

So, whatever I told I will just brief about it, say in moving gas analysis and stationary gas 

analysis, what is we looked at an infinitesimal disturbance created by the piston induces 

a compression wave that moves at speed of sound into the stationary gas. 

Now, at one particular instant of time the piston attains a steady velocity and becomes 

equilibriums. So, when it happens the pressure and density next to the piston space face 

are infinitesimally greater than that of wave; that means, there is a slight increase in the 

pressure and density. So, in this process we can make a dynamic transformation when 

the motion of the wave can be studied by keeping wave to be stationary.  
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Now, to do the mathematical treatment we have to create a differential control volume 

across which the basic equation of motions can be addressed through one - dimensional 

framework. 

(Refer Slide Time: 27:46) 

 

Now let us see how we are going to address. So, first thing we are going to address is the 

continuity equations so; obviously, when you talk about the continuity equations, we 

have to say is say this is how you have this control volume.  

So, here are the parameters of interest are a, ρ in one side and in other side of the wave 

we have dVa  and  d and this thin region of control volume, we are going to see 

medium is one - dimensional, we assume that there is no mass or there is no heat and 

there is no work interaction. Having said this, the first equation that is going to be written 

is the continuity equations. 

So, we can write   AdVadaAm   and we are saying this entire area to be A 

on both sides of the wave. So, if you simplify these equations what we are going to get is 

that you get a term dVd which can be neglected and this aA  will get cancels and 

finally, what we get is  aAdAdV   

And the end expression is which you are going to get is 


d
a

dV  . So, this is nothing 

but this equation. So, this is the equation, which we get from the continuity equations.  
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Moving back to the momentum equations here the parameter of interest will be p and a; 

here will be dVadpp  , . So, the momentum equations can be written as by 

considering the Newton’s law for this one - dimensional medium. So, we say  

   dVamampAAdpp    

So, one can simplify these equations. Also one can write aAm  which is we get from 

the continuity equations.  

After expanding these equations will get cancelled so many terms. So, there will be term 

that is going to cancelled is pA, pA will get cancelled; amam  , cancelled. So, ultimately 

what we get dp
aAa
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m

Adp
dV 












1


. So, this is what we get from this momentum 

equations.  
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Now, moving further when you talk about energy equations, here I like to emphasize 

there is no work interaction, there is no heat interactions, the parameters of interest are 

dhh  and h and where velocities are a and dVa and one thing we need to emphasize 

that we do not consider the elevation that is what we say the change in the elevation is 

negligible.  

There is no change in the elevation. So, for that potential energy term we will not come 

into account. So, for this reason we can write this energy equation beginning as  

 
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2

2
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 that is one side of the gas, other side will be 
2

2a
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equation can be simplified 
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22

2

22

222 a
h

adVdVa
dhh  . Finally, simplifying 

we get adVdh  and finally, we arrive at this relation.  
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So, having said this we say that this we will now revisit the entropic equations to recall 

this entropy equation first thing what we see is that we recall this Tds relation, one of the 

Tds relation says that 


dp
dhTds  .  

Now, for this particular problem from the energy equation we get adVdh  and from 

momentum equation we get adV
dp




. So; obviously, when you put this equation we 

say 0Tds which means ds =0. 

So, this gives a very important inference, what says that entropy change for the whatever 

problem we say is there is no entropy change. Hence we say that when a weakest 

disturbance is created in the medium through a sound wave, the entire process can be 

treated to be isentropic. So, that is the emphasis what we are going to get from this 

analysis.  
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Now, we will again see that when we say that this process is isotropic process then we 

will see that what speed the wave moves. So, when these particular speed we call this as 

a speed of sound or many books also talk about this as a acoustic speed almost both are 

of same nature so, but most routinely used term is we say it is a speed of sound.  

Now, let us derive the speed of sound which is a, we can relate this to term as 


p
or we 

say that RTa  . Now to do this what we have to recall now from continuity, we get 




d
a

dV  and from momentum equation we also get dp
a

dV


1
 .  

So, when we recreate these two equation, what we get dp
a

d
a


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

1
 then we can get a 

term as 
d

dp
a 2 and we also proved that although it is a differential equations. So, we 

also prove that when we define the speed of sound the process happens to be isentropic. 

So, these differential equations, a more appropriate way of representation would be in 

representing in a partial differential equation 
s

p
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Now let us evaluate what is this 
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Now, this equation we can write in terms of logarithmic that is Cp   lnln . Now 

you differentiate, we say 0
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So, this becomes when we represent in terms of isentropic way, we can find out is 
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

p
a 2 . So, this is how we get for an isentropic process, we 

say that is the square of speed of sound is function of pressure and density.  

Next thing comes that for this equation can be further simplified by recalling equation of 

state. So, we say equation of state RTp  . So, from this equation we can find 

RT
p



.  

So, when I say this and we can put it here and finally, we will end up with this important 

expressions speed of sound in two forms, one is 


p
and other is RT and under 

atmospheric conditions when you put gamma for air and temperature to be 298K or 

25ºC.  

Then this we can evaluate the speed of sound and in most appropriate term we say the 

speed of sound is in the order of around 340 m/s under normal circumstances.  
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Now we will move further to define another properties that is called Mach number. So, 

when I define the speed of sound that is the disturbance that moves in a medium, but 

why that disturbance moves, but at the same time we say that your body is moving with 

certain velocity; that means, your moving gas also has certain velocity.  

So, considering that when there is a relative velocity between the body and the 

compressible fluid, the variation of density influences the properties in the fluid. So, for 

which we define a non - dimensional number known as Mach number that relates the 

velocity of the body to the velocity of the sound. So,
a

V
M  . 

Now interestingly this Mach number relates the direct measure of the directed motion. 

This directed motion is nothing, but that relates to the kinetic energy 
2

2V
and also to the 

random thermal motion. So, this random thermal motion is with respect to internal 

energy. So, interestingly one can find out that ratio 
2

2V
that is the kinetic energy to the 

internal energy. If you can calculate or simplify based on for a common calculations, this 

ratio happens to be 
  2

2

1
M


. So, essentially what I am trying to say here is that the 

ratio of kinetic energy to the ratio of internal energy is a function of Mach number. So, 

one can say the Mach number is also a indirect measure.  
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Now, moving further what we see in this for the gases, we say that the gases normally 

behave as a dual nature. Dual nature means under some situations, gases behave as a 

incompressible medium or gases can be considered as a compressible medium. So, what 

is that circumstances.  

So, that essentially we see that these all depends on the pressure and velocity; that 

means, if the gas is moving at low velocity it may be treated as a incompressible medium 

because the pressure changes is small, but if the gas moves at very high velocity the 

pressure changes are very significant one cannot assume to be a incompressible medium.  

So, for which we define this Mach number as a limiting case. So, a non - dimensional 

number that comes into picture is the Mach number which is the ratio of 
a

V
 and it has 

been shown that if the Mach number is greater than 0.3, so, we can say the 

compressibility effect is predominant in the medium.  

So, based on this the all high speed flows are decided in terms of Mach number. When 

the Mach number is less than 1 it is a subsonic flow, when the Mach number is equal to 1 

it is a sonic flow, when Mach number is greater than 1 it is a supersonic flow. We will 

discuss about in this course in the subsequent lectures, but the most important point to be 

addressed here is that under what circumstances the compressibility effect comes into 

picture.  

83



And this condition turns out to be fact that for this condition mach number your velocity 

is the hardly in the range of 100 m/s; that means, when your body is moving at more than 

100 meter per second we expect a change in the density that is 



to be higher than 5%. 

So, this is how the standard typical definition normal layman sense one can give that 

when the density changes are higher more than 5 percent the medium can be treated to be 

incompressible.  

(Refer Slide Time: 45:06) 

 

Now, moving further we will now move on to the next topic that is isentropic flow, since 

we say the medium to be isentropic when there is a disturbance occurs. So, based on the 

isentropic flow we will now define some properties which is known as stagnation 

properties.  

And to define this stagnation conditions in a compressible medium we say that these are 

kind of hypothetical properties. So, before I explain further just to give some insight that 

in an isentropic process gives a useful standard for comparing various flow conditions 

with respect to an idealized flow and this isentropic process we call this as to be 

reversible and adiabatic process.  

So, when you say the process to be reversible adiabatic flow and we get this information 

from the second law. So, considering this as one of the input and consequence of the 
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second law, in our compressible flow situations we defined some states which is called 

as “stagnation states”. So, the stagnation state is a state where the fluid is treated to be a 

reservoir. So, fluid happens to be in a state where as if it is lying in a reservoir, but there 

is a thermodynamic meaning to the state. 

So, here we will now give some these thermodynamic meanings to the state as a 

stagnation state for the fluid; that means, any fluid might be moving, but it will have a 

hypothetical state which is known as stagnation state. How this hypothetical state will 

achieve, when the fluid is isentropically slowed down to 0 velocity.  

So, this is how the thermodynamic definition of a stagnation state is all about. So, the 

fluid can be accelerated isentropically to axial states from a thermodynamic stagnation 

state having 0 speed. There is another angle one can interpret that one can accelerate a 

fluid from a stagnation state. Either a moving fluid can be brought to rest or stagnantal 

fluid can move to a active state.  

(Refer Slide Time: 47:57) 

 

To define these things what I am trying to say here that we now say that as if we have a 

reservoir having certain conditions of pressure 0p temperature 0T density 0 these are the 

properties. So, to study the stagnation conditions, we define these things in a standard 

way as 0p , 0T , 0 , but it happens to be at 0 velocity.  
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Now, we want to create a flow from this reservoir. So, we say it is a reservoir. So, one 

can imagine that this fluid is at very high pressure high temperature and density such that 

it can induce a flow to happen in certain passage. So, we are allowing this flow to happen 

in one of the passage by creating a hole into this reservoir and we allowed it to go to a 

state.  

So, this is how we defined this active state; that means, p, ρ, T all these parameters we 

say as active state. So, active state means as if this flow gets generated from this 

reservoir.  

So, hypothetically what it says is that the fluid can accelerate from reservoir to arbitrary 

state or fluid can decelerate from its active state to the stagnation state. So, if this is your 

initial stage, one can accelerate this fluid to final state. We can accelerate the fluid and 

this process is isentropic, other angle is that if we assume this to be an initial state and we 

come to the final state. So, here we have to decelerate the fluid and the process is also 

isentropic.  

So, in other words what we are saying any arbitrary fluid state has a thermodynamic 

situation which is known to be a stagnation state and that condition is reached through an 

isentropic process and the corresponding notations what we give we for pressure 

arbitrary state is denoted as p corresponding stagnation state is denoted as a 
0p similarly, 

0T  and 0 . This is how we view this. 

Now let us see that how it means to us in terms of a fundamental diagram which we 

normally represent for an isentropic flow what we call as Mollier diagram. This Mollier 

diagram has x axis as entropy and y axis as enthalpy and on this Mollier diagram 

thermodynamically one can represent constant pressure lines. So, this constant pressure 

lines for our case we can say because in our case our two constant pressure lines one is p, 

other is 0p .  

So obviously stagnation state will have higher pressure. So, it is denoted as a 0p and 

what we say is that when we are going from either static state to stagnation state or from 

stagnation state to the static state. So, in this case we get the first case we either you can 

come this way or you can go this way. So, on this process we say entropy remains 

constant. 
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So, for this process one can also draw the temperature entropy diagram here the curves 

will be little bit steeper this is also 
0ss  and the temperature terms we can say 

0T line, 

this is T line. So, this is how one can say we call this as a static temperature and we call 

this as a stagnation temperature, here we call it as a static enthalpy and here we call it as 

a stagnation enthalpy and this is how the concept behind the static temperature, static 

pressure and static enthalpy.  

(Refer Slide Time: 53:47) 

  

So, whatever I told if we want to just summarize what we can say that the associated 

fluid parameters of the fluid in a hypothetical stagnation state are called as “stagnation 

properties.” So, one can have stagnation pressure, stagnation temperature and stagnation 

density. All these stagnation properties can be assigned to the fluid when it is actually 

moving with a finite velocity at certain conditions of pressure and temperatures. Many a 

times the “total properties” are also used similar to “stagnation properties.” 
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One other important inferences that we get from this stagnation enthalpy and stagnation 

temperature is that the term associated with velocity. For stagnation enthalpy we say 

2

2V
and for stagnation temperature we say 

pC

V 2

what we see is a dynamic term. So, if I 

say stagnant enthalpy or stagnation temperature implicitly this dynamic term is already 

taken into account.  

So, this is how, what is the advantage of talking about stagnation temperature or 

stagnation enthalpy or stagnation pressure in addition to its static value, because the 

velocity components are already incorporated in these equations.  
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Just to moving further whatever analysis we do we did it for the last case. Now, we can 

just revisit that analysis just to say that just to analyze the energy equations in terms of 

stagnation temperatures.  

So, the first thing what we are going to study that if the flow is steady, for an adiabatic 

compression system if the flow is steady without work transfer. In all our analysis we 

never consider work transfer and heat transfer, just to say for the sake of work transfer 

and heat transfer and we defined this stagnation properties how these equations we can 

address.  

So, for that we talk about a process one which goes from 1 to 2, now when it is when 

some system goes from 1 to 2 we can write the energy equations in this form.  






















 1

2

1
12

2

2
2

22
gz

u
hgz

u
hwq  

Now in this equation if both 1 state and 2 states are at same elevations, we can neglect 

021  gzgz  and all the analysis we consider for unit mass of the fluid and when it goes 

from 1 to 2, the heat transfer and work transfer are related through these energy 

equations that is q - w.  
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Now, from the first case when the flow is steady, but it is a adiabatic compression 

systems, so, we get q to be 0 and this will turn out to be  0201 TTCw p  where we say 

0101 hTC p  and 0202 hTC p  and in other situation, the second case when it is without 

work transfer so, we say w to be 0. So, the heat added  0201 TTCq p  . 

(Refer Slide Time: 58:28) 

 

Now, the last part of this topic is the isentropic relations which is a very commonly 

written as for an isentropic process where C
p




. So, for that process a commonly 

used relations we can write 





























0

1
00

T

T

p

p
 

So, here the thermodynamic process which goes from 1 to 2. Here we consider 1 as 

arbitrary state, 2 as stagnation state. So, when you say arbitrary state we say p, T and ρ 

and when you say stagnation state we say p0, T0, ρ0. 

So, by recalling this ds to be 0 and this equation as this entropy equation as this, one can 

find out these relations with respect to ds by 0 and using these equations one can write 

and also we have to use the relations like 
1






R

C p
and we say

1

1







R

C
.  
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And once we simplify the entropy equations we can frame these most important relations 

what we call as the static versus stagnation relation. So, with this I conclude for this 

lecture for today. 

Thank you.  
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