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Welcome to this course, Fundamentals of Compressible Flow. We are in the first module 

that is Review Concepts of Fluid Mechanics and Thermodynamics.  
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So, this particular module has 2 lectures. In this first lecture, we discussed about the 

concepts and definition of the fluid and in general for gas. Then, we discussed about the 

properties of fluids and mostly very specific to gases which are compressible in nature. 

The last part of this lecture was classifications of fluid flow and there we analyzed 

various types of fluids that is compressible, incompressible, inviscid, viscous fluid flow, 

internal flow, external flow etc. 

And the and in this particular lecture, we will move ahead with describing two important 

concepts that is fluid as a continuum and governing equations of fluid motions and in 

particular, we will debate here about only for inviscid flow. 
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Now, going for the concept of fluid as continuum. So, when you say fluid as a continuum 

which means that the fluid has certain number of molecules which is occupied in certain 

volume and these number of molecules are sufficient enough to take the statistical 

average of any fluid properties. 

So, this is also applicable for liquids as well as gases and in general, the molecular 

motion inside the gases are loose which means that the gases move around inside the 

closed container and in their moment, they collide each other in such a way that we 

define a parameter that is called as mean free path.  

So, based on these particular concepts, we will describe under what circumstances, we 

can say fluid is a continuum. So, the first point that is fluids are aggregation of molecules 

and they are widely spread for gases and closely spaced for liquids. It is quite obvious 

that distance between the molecules are large, as compared to their molecular diameter. 

Here, we define a parameter called as molecular diameters.  

The number of molecules involved are immense and the separation between them is 

almost negligible. Now, the properties of fluids at any point can be treated as a bulk 

behaviour. Hence, the fluid can be treated as a continuum. So, to treat this medium to be 

continuum, we require sufficient number of molecules to be packed in a closed volume 

and this closed volume, if you say V and for this volume, if you want to define a 
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particular parameter, let us say density. The first we say the density as a global behaviour 

which means we can say it is mass times its volume.  

So, this means this entire volume occupies certain mass and divided by volume, we call 

this as a density and this is what we say as a average density. For instance, for gases or in 

particular, air, we say density of air is 1.2 kg/m3, which means whether you take 1 kg of 

air or 1 gram of air, its density remains same. So, now how long we can keep this 

continuum hypothesis to be valid?  

So, for example, you divide this volume in some very small elements so that each 

volume, each element will have certain volume V . So, for that case, for that volume if 

you calculate the mass, we say its mass is 
V

m




, but still this value of density remains 

same.  

Now, if we reduce this V to a very small value V  , which means that is the minimum 

volume that is V  is the minimum volume for which the average behaviour can be 

defined, which means that you do not have enough number of molecules, if the volume is 

reduced to a value below this value V  . So, for that case, we define this fluid as this 

density.  

For same situation, we define this density 









 V

m
VV 





lim  

So, the same fluid property which is density, but it is defined in three different situations. 

Hence, it is said to be the fact that density can be considered as an average behaviour or 

global behaviour of the fluid particles as long as the fluid is treated to be continuum.  
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Now, to define this continuum parameter, we quantify it in terms of a number which is 

known as Knudsen number. This Knudsen number is a very vital parameter that 

essentially says that whether a certain fluid mass can be treated as a continuum or not. 

So, what does this mean? So, Knudsen number is defined quantitatively as the ratio of 

two parameters that is the molecular mean free path and characteristics linear dimension 

of the flow field. For instance, if we have a flow domain of certain length, width and 

height; so, its overall or maximum characteristics length can be defined by a number L 

and the molecular mean free path which is nothing but the distance travelled by the 

molecule between two successive collisions.  

So, in a closed space of fluid elements in a container, the molecules in general move 

randomly and during their motion, they collide each other and during their collision, we 

characteristically define a parameter called as mean free path which is λ that is distance 

travelled between two successive collisions by the molecules; so, that is λ.  

So, it is quite obvious that if you have enough number of molecules or sufficient 

molecules or the medium is very closely packed, then the mean free path is much much 

smaller than the global length that is L. So, such a situation, the Knudsen number 

happens to be less than 0.01 and such a flow, we call this as a continuum flow. And now, 

the other extreme that comes in that if the mean free path length is very large. So, this 
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happens when we see this in particular, this happens in vacuum. So, when the medium is 

vacuum will hardly find any molecules in certain domains. 

So, for instance, when you view these a deep space atmosphere, there are hardly any 

molecules. So obviously, the characteristics linear dimensions is much much less than 

the mean free path. So, such a case, we call this as pre molecular flow for which 

Knudsen number is greater than 1.  

Now, sandwiched between these two that is continuum flow and free molecular flow, we 

also defined another types of flow, Slip flow; means that under certain circumstances, we 

can treat this behaviour of the fluid as a continuum flow and in some other 

circumstances, we can with the fluids behave as a free molecular flow.  

(Refer Slide Time: 11:13) 

 

But as far as this particular course is concerned, we will be mostly talking about the fluid 

to be a continuum. To describe this continuum behaviour, there are two approaches that 

has been followed so far; one is Lagrangian approach, other is Eulerian approach.  

Now, what are they? So, in general, the properties of a fluid particles in a flow field, the 

in a flow field, the properties of the fluid particles change from point to point or from 

time to time. Now, when you say it is a point to point, so that means, you are talking 

about space. When you are talking about time to time that means, you are talking about 

the different time instances.  
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So, at any situations, so we can describe this fluid as a continuum medium by these two 

descriptions; Lagrangian description and Eulerian descriptions. So, in the first category 

are like that is Lagrangian descriptions, we say that the motion of the fluid particle needs 

to be studied from time to time.  

So, with respect to time we have to see that how this fluid particle changes its positions. 

Now, the other approach is Eulerian approach. So, here the attention is focused to the 

fixed point in the space that is fixed domain in the space and the variation of that domain 

that we will look with respect to the fact that when certain fluid element passes through 

it, how that medium changes.  

Now, this is what the way we represent the continuum medium in Lagrangian Eulerian 

approach. Now, corollary to this or analogous to this, we have closed system and open 

systems. So, this is something similar to thermodynamically the way we view it as a 

closed systems that is which is a Lagrangian approach and open system when it is 

viewed as a Eulerian description. So, open system in general as a control volume 

medium.  

(Refer Slide Time: 13:56) 

 

Now, once you say this continuum, now let us go by one by one that how we can say 

quantitatively in a Lagrangian approach. So, now, we are dealing with Lagrangian 

descriptions. So, in this Lagrangian descriptions what we want to study is the fact that we 
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define a fluid element at certain locations. Let us say this if in our situation referring to 

this figure, we have a fluid element located at point A.  

Now, with respect to cartesian coordinates x, y, z; we represent this position vector pr


for 

the point A. So, )0(pr


 means we are defining the position of the fluid particle at point A 

as its coordinate xA, yA, and zA and which is defined at the time instance t = 0. Now, we 

allow some time to pass. So, by that time, the position of the particle has changed from A 

to B. So, when it goes from A to B, the new position vector is defined as )(trp


. So, the 

coordinates of the point B has change to xB, yB, and zB. 

So, in this process of changing the position of the fluid particle, it would have undergone 

at certain velocity which is pV


and it would have this pV


and pr


is related by this 

differential equations; that is velocity of the particle p can be defined as the 

differentiation of the position vector with respect to time. 

k
dt

dz
j

dt

dy
i

dt

dx

dt

rd
tV

pppp

p
ˆˆˆ)( 




 

So, in this way, we describe this position and when we talk about the position A and B, 

we also say that at that particular point, the pressure might be pp as a function of px , 

py , pz and t and also, we can have temperature at point p can be defined in a similar 

manner.  
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Now, the same situation, when you view as a Eulerian approach; although event is same, 

but the way of representation of the description changes. So, here the velocity vector is 

defined with respect to space as well as time; globally, with respect to space and time.  

Now, in the event of this fluid particle the change in the fluid particles, there would have 

a some global change in the medium that we are looking at. So, for that situations the 

representation has changed as a velocity vector pressure or temperatures and these we 

see as the global picture with respect to velocity vector with respect to space and time.  

(Refer Slide Time: 17:40) 
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So, once having said this, now we are going to discuss about a very important theorem 

which is called as Reynolds transport theorem. So, till this point of time, we are 

essentially focusing that how you want to describes the medium in terms of Lagrangian 

description or in terms of Eulerian descriptions. But the global effect remains same 

because we are representing the same event, but in two different forms. 

So, to link between these two events or these two forms, a famous theorem that comes 

into picture that is Reynolds Transport Theorem. So, it is an essentially linkage between 

the change in a property of the fluid with respect to a control volume. So, control volume 

is essentially a Eulerian descriptions, but if you very specific to the fluid property of an 

element that element has certain properties.  

So, the particle approach and the control volume approach can be linked together in 

terms of defining the properties in two different domains. So, this particular figure says 

that first thing is let us take the first elliptical space which typically we call this as a fixed 

volume, fixed control volume with this control surface. So, this is nothing but your 

control surface and this control volume is defined as a system at time t. 

Now, what has happened is that there are certain stream of flow which is entering to this 

control volume. Through this entering process, it would have done some changes in the 

mass, changes in the energy and in this process, the system is now changed to a another 

location; but with same fixed volume and that is defined as system at time t+dt. So, 

eventually, what has happened? System has changed from one time instant to other and 

through this change, if there is a property N which is defined at particular time t, that 

property, how it changes when the system has gone to another time instance? 

So, in this particular say if N is your any extensive properties for which the 

corresponding intensive properties is η. So, this can be related in an integral form 


sm

sdm . So, s stands for system and in terms of volume, we can write it as 
sV

sVd . So, 

this is how the extensive properties is defined.  

Now, we see that when this extensive property is going to change based on this Reynolds 

transport theorem, we defined this as 
Dt

DN
. This particular term, we call this as a total 

derivative and through Reynolds transport theorem, we say that this is equal to the 
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properties that same properties when you when it changes with respect to time and same 

property, how it changes with respect to space.  

 dAnVVd
t

Vd
dt

d

Dt

DN

sV

s

V

s

ss

 






.  

The first term of this right hand side equation is the rate of change of the arbitrary 

extensive properties with respect to control volume and the second term represent the net 

rate of efflux of extensive properties through this control surface. We will not derive this 

Reynolds transport theorem, but we will only talk about how it is relates a given property 

of a fluid system.  
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Now, the Reynolds theorem introduce a parameter which is called as 
Dt

DN
and it happens 

to be a mathematical term which we called is as a Total Derivatives. So, to solve this 

mathematical term, we have a tool which is mathematically which is represent this DN in 

terms of dx, dy, dz and dt. So, this is a mathematical expression that comes for a given 

properties.  

dt
t

N
dz

z

N
dy

y

N
dx

x

N
DN



















  
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Now, here this total derivative 
Dt

DN
we call this as a substantial derivative or particle 

derivative or material derivatives and first term that is 
Dt

DN
 is nothing but the local 

derivative that is with respect to time; the other three terms 
x

N
u



, 

y

N




 and 

z

N
w




is 

nothing but your convective derivative and these two are very important parameters that 

essentially talks about the changes in a fluid system and when we deal with the space as 

well as time, such a time such a concept, we call this as a field concepts. So, which will 

come in the subsequent slides.  

Now, since these expressions when we represent in this form that is derivative form, the 

other way of representing the same expressions in vectorial form or that is  

 NV
dt

dN

Dt

DN
 .


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Now, when you say it is a field concept, so we will now introduce that these properties N 

whether it is a scalar property or vector properties. Now, if it is a scalar property, we can 

represent either as a pressure or temperature by using the same expressions and if it is a 
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vector properties, then we have to again orient these properties with respect to cartesian 

coordinates x, y and z and unit vector for each orthogonal directions, we say î , ĵ and k̂ .  

So, the velocity vector has three components u which is again a function of x, y, z and t, 

v and w. Both u, all the terms u, v and w they are all functions of x, y, z and again, this 

velocity vector and in our case, when this velocity vector is differentiated in terms of a 

total volume derivatives, we represent we call this as a acceleration vectors. So, this is 

how the importance of this total derivative is all about that it captures different or it 

expresses different flow field nature.  

     ktzyxwjtzyxitzyxuV ˆ,,,ˆ,,,ˆ,,,  

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V
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V
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y

V

x

V
u

t

V
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VD
a








































 .  
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See once you know these velocities, then another important parameter fluid as a 

continuum is the force. Typically, in a fluid domain, there are two types of forces; one is 

external forces, other is internal forces. So, and in general and we are looking at the 

external forces; because we are talking about the global behaviour. These external forces 

has two components; one is the body forces, other is the surface forces. Body forces are 

generally by virtue of its own weight or volume; whereas, surface forces are the forces 

that acts on the boundaries of the fluid domain.  
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So, in general, if you say there are in a domain, they are many arbitrary forces acting on 

it. So, we say F1, F2, F3 likewise and we can say there are n number of forces acting on it 

and this n number of forces has a resultant force vector F


 and these resultant force 

vectors acts at some points which you typically call as centroid. So, with this point, if 

you just take an certain small area and draw a normal to it, we say area vector normal to 

the surface.  

Now, perpendicular to it, if you draw another vector t


, we say the tangential to it. So, 

irrespective of the fact what directions force comes, whether x, y, z, we now represent in 

terms of the normal forces and tangential forces. So, this is how we say Fn and Ft.  

tFnFF tn
ˆˆ 


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Now, if you represent same behaviour Fn and Ft, we can say that we can define these 

normal forces and this tangential forces in this following manner that we call these 

normal forces. The net effect of normal forces is nothing but it induces an internal force 

which is expressed as a stress and even for tangential force, we can also represent 

another term which is called as shear stress. So, the stress is nothing but the force per 

unit area. So, the stress is defined as the internal force acting per unit area of the body. 

So, based on the definition of forces acting on the fluid, we call this as a normal stress or 

shear stress.  
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So, by virtue of the definition of normal forces and shear stress, we say that this normal 

stress which is the average behaviour. And if we talk in terms of small elemental force, 

then we represent this normal stress as 









 A

Fn
AA 





lim and the shear stress 











 A

Ft
AA 





lim . So, this is how the continuum hypothesis needs to be satisfied to define 

this normal stress and shear stress and this contribution comes from the force acting per 

unit area and in this case, this force is the internal force. Analogous to this, we also come 

across the term pressure. This pressure also P also represented by normal force per unit 

area; but the basic difference between pressure and stress is that for pressure 

calculations, we take this Fn which is external. So, but while stress calculations, we say 

the force acting is the internal force acting per unit area. So, this is how the definition is 

slightly different.  
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Now, moving further, these pressure concept, force concept gives us and stress concept 

and with respect to a continuum medium, we behave this stress or we represent the stress 

in a more global manner that is called as stress field. So, for to define a stress field, what 

we look at is that for a given surface, we see that there is a force perpendicular to it and 

there is a force tangential to it. So, essentially, this normal force which is perpendicular 

to the surface gives rise to normal stress and the tangential force which is perpendicular 

to this normal force gives rise to shear stress.  
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So, for a given surface or a given domain like this as shown in the figure, if you take an 

elemental area dA and for that elemental area the force vectors F


 and along this normal 

and along the tangential directions, we say nF


 and tF


 and once you say this, so 

essentially this is a unit vector which is normal to this is n


 and tangential to this is t


 and 

now, let us see that same representation of the force as shown in (b), we now bring it to 

orthogonal coordinates x, y, z.  

So, for that given space, we can see that for this for the same point P will have three 

different forces; xF , yF and zF . But these net three forces actually gives rise to three 

stresses on this particular plane.  

So, out of these three stress; one is normal to this that is xx and other is the tangential to 

this. So, one may be one is due to yF that is xy and other is xz . So, likewise, we can 

imagine this size of this element x , y and z for a particular q for which we have six 

surfaces. For these six surfaces, one can define these normal stresses and shear stresses 

for each particular face. 
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And finally, it turns out to be in a matrix form which is 
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   


















zzzyzx

yzyyyx

xzxyxx

zyxzyx nnn







 ,,,,  

 xn , yn and zn that is unit vector in respective coordinate directions and this matrix is very 

important that is it contains all the nine stresses. So, out of which there is only the 

diagonal vector or diagonal part of this matrix is the normal component and rest are shear 

component.  

So, this is how we define these stress. Although we initially call it as a vector, it has a 

particular directions, but since it has lot of there are nine components that drops in all the 

six surfaces. So, it is referred to as a tensor quantity and this complete descriptions, we 

call this as a stress field.  
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Now, moving further, we are now going to discuss about the governing equations of 

fluid motions and in particular, it is inviscid flow. Till this point of time, we know that 

the governing equations are based on Continuity that is Conservation of mass, 

Momentum equation that is Newtons law of motion, Energy equation which is the First 

law of thermodynamics and in particular for incompressible, the first three equations are 

mostly important and this are called as decoupled equation which means this energy 

equations can be treated separately from the continuity and momentum equations. 
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So, essentially in most of the situations, we solve continuity and momentum equations 

simultaneously and energy equation is treated as a separately, that is what we call this as 

a decoupled equations.  

Now, when you when you move to compressible flow, we will bring two more equations 

into system that is entropy equations, where we bring the Second law of thermodynamics 

and that is equation of state that is Perfect gas equations. It is quite obvious that when 

you deal with the compressible flow, we mostly deal with gases and all five equations 

needs to be solved in such a way that it gives the complete description of the systems. 

This is one aspect. 

The second important aspects that while dealing with these equations, we treat a 

particular parameter to be importance. Like in the continuity equation, we say this mass 

flow rate remains constants. So, in the Newton’s law of motion that is a momentum 

equation, we say it is a momentum is the main parameter; in the energy equation, we say 

it is a the total energy contained in the system is the main parameter and in the entropy 

equation, it is the entropy and from the second law, the important property is entropy 

gives the direction of the certain process to happen.  

Now, while talking about these equations and we will not derive those equations, we will 

I will just give you the end results of those equations with some important remarks. So, 

for deriving those equations which is based on these fundamental theorem that is 

Reynolds transport theorem which is analysed in two approaches; one is as a control 

volume approach. When you say control volume approach, we say it is a integral from 

integral form of equation. Now, when you say the system approach, it is a differential 

form of equations. However, both the form of equations are equally importance; but it all 

depends how you deal with a particular flow problem.  

Now, for all the cases, we say there is a control volume V . It is bounded by a control 

surface. Now, we say some fluid element or we take some elemental area for which these 

velocity vector is V


and this velocity vector is normal to this area vector. We say that 

velocity vector is the resultant vector in which fluid is moving, we also define ρ to be 

density and we say this V


to be velocity. 
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And this continuity equation will bring about this mass flow rate; momentum equation, 

will talk about Vm


; energy equation will talk about the energy total energy that is consist 

of internal energy plus per unit mass. Its energy per unit mass consists of internal energy 

plus kinetic energy plus potential energy that is gz
V

u 
2

2

int and for entropy equation, 

we say s and for equation of state, we say RTp  . So, essentially, while using these 

equations the Reynolds transport theorem that talks about the extensive property ‘n’ is 

now replaced with these parameters that is first case, it is mass; second case, it is 

momentum; third case, it is energy.  
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Now, when you deal with this, when you do this and apply this equation; then, the 

integral form of conservation equation that is conservation of mass as two terms; left 

hand side and right hand side. The left hand side term represents a surface integral which 

is the net mass flow rate into the control volume through the entire control surface. The 

second term or right hand side of this term is a volume integral which is the time rate of 

change of mass inside the control volume.  

 




Vs

Vd
t

sdV 


.  
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Now, moving further, when you same equation, we talk about integral form of equations 

for momentum. So, here the momentum is the main parameter.  

   
  






V sVs

spdVdfVd
t

V
VsdV








 .  

It has this equation has four terms; T3, T4, T5 and T6. So, T3 is the rate of flow of 

momentum summed over the control surface. So, it is a surface integral. T4 is the change 

of momentum in the control volume due to unsteady fluctuations in the local flow 

properties and it is a volume integral. 

And T5 term is the total body forces because the left hand side term talks about the rate 

of change of momentum; whereas, the right hand side term talks about the that is equals 

to the force. So, that is what the T5 term is talked about the total body forces and T6 term 

the total force that arises due to the pressures acting on the boundaries of the control 

surfaces.  
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And the next part is the energy equations, which is based on the first law of 

thermodynamics. So, if you look at these expressions, here we are the term that is energy 

consisting of internal energy, kinetic energy plus potential energy. Here, we have not 

mentioned about the potential energy because we are not we will not be dealing with 

this.  

  sdV
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uVd
V
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So, this part comes as the total energy that is in the right hand side equations and the left 

hand side of this equation consists of energy transfer in terms of work or work or heat. 

Then, in terms of the work done with respect to pdv work; thermodynamically, it is pdv 

work and the work transfer due to control volume. 

So, here T7 terms is the net rate of energy transfer in the form of heat and work; T8 term 

is the rate of work done on the fluid inside the control volume due to pressure forces; T9 

term is the rate of work done on the fluid inside the control volume and T10 term is the 

rate of change of energy in the control volume due to transient variation of the field 

variables; T11 term is the net rate flow of energy across the control surface. So, we want 

to do derive these equations and, but however, we will make some corollary of these 

equations which are much more beneficial of for our analysis.  
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Now, we will talk about this the differential form of conservation of equations and that is 

continuity and momentum equations. In this slide, there are two equations given one is 

for continuity equations and the second one is the momentum equations.  

So, in certain problems, they are addressed through differential approach. So, in which 

we represent them in differential form. So, in the first equations that is continuity 

equations, we say the total derivative contains the density. But however, or when you say 

density as a function of x, y, z and t and from the very basic assumption of the 

continuum, the density we say it is as a global properties and it do not change with space. 

So, we say it density can change only with time. So, this 
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And for the momentum equations, we talks about velocity vector multiplied by density in 

the form that is left hand side of these equations and right hand side expressions are in 

terms of pressure force and body force.  

Of course, these equations are based on certain unit volume and this velocity vector has 

three terms; one in x directions, in y direction and z directions for which respective 

forces are xf , yf  and zf . Similarly, pressure forces are 
x

p




, 
y

p




 and 

z

p




. And with 

respect to velocity, the corresponding velocity in x direction is u, corresponding velocity 

in y direction is v and corresponding velocity in z direction is w.  
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And the most important part of the differential form of this equation is the energy 

equations. This energy equation, as I mentioned earlier is the physical statement of first 

law of thermodynamics. Now, when you deal with see this equations in differential form, 

this is essentially the term that comes from the change of the energy within the 

differential fluid element. So, this is total energy change for a moving fluid.  
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And the right hand side, there are three terms; all these terms refers to the energy 

transfer. Now, in the first term, the first term is the due to work; second term is due to 

heat and third term is due to body forces.  

So, what we have seen is the total energy change is related to the energy transfer in terms 

of work heat or body force in this form of equations. Now this is what we say is a 

corollary of first one of the form of energy equation that is first law what we say is 

dwdudq  . So, if you recall this change in the internal energy wqdu  int , which is 

the basic form of first law of equations.  

So, what we see these are the different forms of energy equations. In fact, these 

equations are most usable equations for our analysis. So, that is what we will talk about 

only end results. So, in one of the form of this complicated equation which is 

q
Dt

VD
p

Dt

De




 , is the form of first law of thermodynamics.  

Another parameter which we will be using in a compressible flow is the total enthalpy 

change in a flowing fluid. So, total enthalpy change consists of two parameters; one is 

the static enthalpy plus dynamic enthalpy. So, static enthalpy which we will discuss later. 

But for the time being if I can write this expression for 
2

2

0

V
hh  ; it has two 

components which is static part h, other is the dynamic part.  

So, the static part of the equation h and when the fluid is at rest this part is not 0 or this 

dynamic part becomes important for a moving fluid. So, in some instances, if you are 

interested in this total enthalpy change of the fluid, so, the energy equations turns out to 

be of this form  Vfq
t

p

Dt

Dh 
 .0  




 . 

Now, if for this total enthalpy change, if you do not consider the dynamic part, so, it is a 

static enthalpy, then we do not talk about the velocity vector. So, hence, this part that is 

for static fluid means we say does not involve velocity. Then, this particular equation 

again further simplified q
t

p

Dt

Dh
 




 . And the most important part is that further 
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simplification can be done for a steady flow in which we say
t

p




=0 in this above 

equations and flow is adiabatic we say q =0 and there is no body force, we say f


= 0.  

So, the total derivative of stagnation enthalpy or total enthalpy 00 
Dt

Dh
 which means h0 

is equal to constant. This is one of the important consequences of energy equations 

which is very vital for the compressible flow analysis.  
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Now, moving further, the last part that we needs to be solved is the entropy equations. 

and when we say combine first law and second law of thermodynamics, this relations 

gives us the Tds relations.  

This Tds relations are the fundamental parts that we do when we combine first law and 

second law of thermodynamics and that Tds equations is given by this form 
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Now, from the first law, this particular term 
Dt

VD
p

Dt

De


 is nothing but your q . So, from 

this when you simplify, we say 0
Dt

Ds
or s=const. So, this entropy equation, entropy 

remains constant. If it is entropy remains constant, we say it is a isentropic case. So, why 
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we are particular about isentropic case? Because most of our compressible flow analysis 

is based on the reference situation as isentropic.  

So, the conclusion from this analysis, what we can say from this the analysis of these 

equations that if a flow is steady, the entropy remains constant along a stream line in an 

adiabatic, inviscid flow. If the flow originates from a constant reservoir such as free 

steam ahead of the body, that means, from if it is originates, from a free stream, then 

each stream line has a same value of entropy. So, it is a definition for isentropic case. So, 

this is one of the important consequence for the analysis of compressible flow.  
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Now, with this, I am going to close this module 1. So, if I summarize what we have 

discussed in this module that this particular module was focused on some review aspects 

of the fluid mechanics and thermodynamics. Why we say fluid mechanics and 

thermodynamics? Because we are mainly deal with gases and the properties of fluid as 

well as thermodynamic behaviour is equally importance.  

Now, while doing so, we discussed the concept and definition of the fluid in particular 

gas. We debated about the properties of fluids. There are many properties, but some 

properties are most important with respect to gas. 

Then, we also talked about different classification of the fluid. Now, having said that 

when we do all this analysis, we have to represent the fluid motion mathematically. So, 
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to study this fluid behaviour, we have to assume the fact that fluid has to be treated as a 

continuum. And finally, we discussed about the governing equation of the fluid motions 

and in particular, we highlighted that how these equations are important with respect to 

compressible flow.  

So, in the all subsequent modules our main fundamental compressible theory will come 

into picture and in that fundamental compressible theory, we will take this governing 

equations as a background to study this compressible flow behaviour.  

Now, our attention will be mainly dealt with inviscid compressible flow and it is a 

naturally flow and that has to be addressed through steady analysis and in terms of 

particularly, orthogonal direction that is one-dimensional or two-dimensional situations. 

So, I hope, I have clarified most of the fundamental things for the module 1. 

Thank you very much. So, we will see in the next module. Have a good day.  
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