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Welcome you to this course again, Fundamentals of Compressible Flow. We are in the 

Module 5; the topic of this module is Expansion Waves and Oblique Shocks. 

(Refer Slide Time: 00:51)  

 

So, in the first lecture of this module, we discussed about the oblique shocks, its 

fundamental equations; one of the important relations known as θ-β-M equation. Then, 

we derived the property relations for the oblique shock. 

So, now moving in this lecture 2, we will address again the property relations, but in a 

different context. And most importantly, we will discuss about a curve which is very 

common in oblique shock situations which is known as θ-β-M curve. After having that, 

we will try to solve some numerical problems. This is all about this content of this 

lecture. 

Now, just to brief about what we have learnt from this last lecture of this module, though 

our main focus was on oblique shock. 
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Now, when a oblique shock is formed? The first question arises that, when a supersonic 

flow encounters a compression corner and this particular compression corner what you 

can see in this figure is a type of concave corner which is inclined by an angle θ. So, I 

can say that this corner is oriented by an angle θ. So, when a supersonic flow sees this 

compression corner an oblique shock wave is formed.  

Now, across this oblique shock when it crosses, the general tendency would be that the 

flow will turn by a certain angle. And, in this case since the corner is inclined at an angle 

θ, the flow will also turn by same angle θ so that the streamlines in the downstream will 

be parallel to this corner. 

Then a shock wave angle is formed that is known as β. Now, across this oblique shock, 

we have shown that all the static properties in the downstream they increases, but the 

Mach number decreases. In fact, we also told that when the shock wave angle becomes 

90°, that particular situation becomes a special case where we say it is a normal shock. 

So, oblique shock becomes a normal shock, when this shock wave angle β becomes 90°.  

And this is the situation and when the shock wave becomes a normal shock, again the all 

the static properties increases; but, most importantly the Mach number becomes 

subsonic, that is M2 is less than 1 for a given supersonic flow in the upstream condition. 
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So, now with this oblique shock situations; like if your shock wave is angle is β, the flow 

deflection angle is θ and upstream Mach number is M1; then, we derived in the last 

lecture some the fundamental equations and the summary of those fundamental equations 

are given here. So, what we have shown here is that, across an oblique shock, it is the 

normal component of the Mach number that becomes vital for flow property 

calculations.  

So, in the upstream condition 1, if your Mach number is M1, the normal component of 

Mach number will be Mn1; if your downstream condition 2, if your Mach number is M2, 

then the normal component of Mach number is Mn2. And, when I say these two are 

normal components; so this oblique shock can be effectively treated to be a normal shock 

for upstream Mach number of Mn1 and downstream Mach number of Mn2. 

When we say this two parameters are fixed, then all property ratios like density ratio, 

pressure ratio and temperature ratio, they can be evaluated based on the normal shock 

Mach number Mn1. And then these normal shock Mach numbers can be further related to 

main flow Mach number, like Mn1 can be related to M1; by this equation that is 

1 1 sinnM M   for which we require this shock wave angle β. Similarly for the 

downstream situation, the normal component of Mach number Mn2 is related to M2; that 

is 
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So, we must know the flow deflection angle θ and β for calculation of M2, Mn2, Mn1. So, 

to do these things, we have this trigonometric relations, which is known as θ-β-M 

equation. So, this equation will tell you that for a given flow deflection angle and 

upstream Mach number what will be the shock wave angle β. 
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Now, let us talk about something more about this θ-β-M relations. So, now if you look at 

this equations, one can easily say that there are two approaches to solve this equations; 

the first one is that if you know M1, if you know β, then a direct relations can be used, so 

that you can calculate θ; that is from this equations. 

So, θ is nothing but a typically geometrical parameter which is a compression corner 

needs to have. For a example, if you have a concave corner, then θ is typically this angle. 

And in fact, this oblique shock which sits on here has to turn and the free stream flow 

when it crosses this oblique shock, it has to turn by an angle θ.  

So, which is same as that of geometric parameters. So, the flow deflection angle is 

normally same as the geometric shape of this concave corner in which it is oriented. 

Thus, in many practical situations, the θ is a typically a known parameter and upstream 

flow Mach number is also a given parameter. 

302



Now, if you say that, if you know M1 and θ and look at that equations; it looks like an 

implicit nature, you require a trial and error approach to solve for β. In fact, this becomes 

a tedious approach.  

So, what has been done is that, a series of curves that are obtained for different values of 

theta and different values of Mach number. So, different curves can be plotted; so, which 

you call this has a θ-β-M curve. So, what we can say is that the θ-β-M curve is nothing 

but the graphical representation of this θ-β-M equation. How that equation will look like? 

(Refer Slide Time: 10:37) 

 

So, this equation will look like in this form.  
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So, if you look at this curve, x axis of the curve represents the flow deflection angle θ, 

while y axis of the curve represents the shock wave angle β. So, this is the θ and in this 

equation, right hand side of the equation contains β and left hand side of the equation 

contains θ. Now, what the relation has been drawn is that, for a given Mach number say, 

let us say M1. Let us say, in this case we have taken for the curve a, first curve M is equal 

to 2. So, M1 is equal to 2; when you vary θ, then you can get the value of β. So, if you go 

along this curve M1, we can say that across the M1 curve where M1 is equal to 2, every 

point your θ value changes. For different values of θ, we can get series of values of β. 
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Similarly, we can do for other Mach numbers as well. So, in this plot we have plotted it 

up to Mach number 8; the last plot that is curve f is for M is equal to 8. And, the other 

curves like curve b is 2.5, then Mach number 3; if curve d is the Mach number 4 and then 

curve e is Mach number 5 and curve f is Mach number 8. So, if you go along these 

directions, effectively your Mach number increases.  

But, what interestingly you can see that, one interesting inference that you can get from 

here that for a given Mach number we cannot arbitrarily increase the θ values. For 

instance, if you do it, there will not be any solutions possible through this equations. So, 

in other words what we say that when your θ value goes beyond a maximum value, there 

is no oblique shock solution is possible. 

For example, if I say that same curve for M1 is equal to 2 and if I choose θ as 25°; I 

would not find any value of β, because it has cross this maximum value of θ. But the 

same 25° angle will have a solutions for Mach number of 2.5.  

So, if this curve is for M is equal to 2.5; but same 25°, we can say there are possible 

solutions of oblique shocks. But, for Mach number of 2, 25° deflection angle will not 

have an oblique shocks solutions; this one of the important inferences that we can get; or 

in other words, there is a maximum possible angle beyond which the oblique shock 

solution is not possible and those points are denoted for each Mach number as a1, b1, c1, 

d1, e1 and f1. 

So, these are the points of a1, b1, c1, d1, e1 and f1 represents the point of or location of 

maximum flow deflection angle, location of maximum θ known as θmax. So, this is one of 

the important inference that we can get. Now, when I say this; what its effectively mean 

to us? 
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So, what it means to us? So, again we refer the same curve, so I will say that, the first 

inference that we are going to say is that; we are going across different Mach numbers 

ranging from 2 to 8, for a given upstream Mach number there is a maximum flow 

deflection angle that is a1, b1, c1, d1, e1 and f1. 

Now, this maximum flow deflection angle is decided by θ-β equations. But, in general 

not necessarily your physical compression corner or physical concave corner will have a 

deflection angle less than θ. Now, what will happen if the deflection angle is greater than 

θmax? So, for example, if you say that Mach number of 2 and let us choose a value of our 

physical geometry theta or a compression corner which is 25°.  

Now, if I look at this figure for this 25° at Mach 2, no solution is possible. So, when 

there is no oblique shock solution is possible; what will physically means to us that the 

oblique shock will not be attached to this surface, rather it will stand at certain distance 

and this particular distance is known as standoff distance. And in fact, this nature of the 

shock wave will be no longer a oblique shock, it is a shape of a bow shock. 

So, this will be another characteristics of shock wave, which is neither a normal shock 

nor a oblique shock. So, it is a kind of a bow shape. So, it is a bow shock or in terms of 

oblique shock terminology, we call it as a strong shock; but, this characteristics is that it 

does not get attach to this surface. So, likewise if an oblique shock has to be there, then it 
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would have been in this shape and it would have been attach to this surface at this corner, 

which is not possible in this case.  

So, in this case for Mach number of 2 will have a detach shock as shown in this figure. 

So, that is what I have written here for a physical geometry having a deflection angle 

higher than the maximum value, there is no oblique shock solution for a straight oblique 

shock. The shock wave will be curved. So, instead of straight, the shock wave will now 

be curved and it is detached. So, it is commonly known as a bow shock and treated as a 

strong normal shock. This is the first important inference we get. 

(Refer Slide Time: 19:03) 

 

Now, moving further, will the next important inference that, now if I say that if the shock 

wave is attached, so that means for if your θ is less than θmax. So, instead of choosing 

25°, if I choose a 20° for same Mach number of 2; I will have two shock points on this 

curve, θ-β-M curve. And, for each point I can find out one β value. I can say βmax or I can 

say βstrong and this value I will say βweak.  

And, for this 20°; so correspondingly β will be across about may be 53° that is weak 

value and strong value could be about 72°. So, from this curve we can directly obtain. 

So, we say that there are two solutions of shock wave angle for a given upstream Mach 

number and flow deflection angle. 
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Now, if it is a attached shock situation, then there are two possibilities we can; let us say 

in this case, when your M1 is 2, I found out theta as 20° and βweak will be roughly about 

53° and βstrong will be about 72°. So, this I can say, these are the values for β, strong and 

weak solution for Mach number of 2.  

So, higher shock angle represents strong shock, the lower value of shock angle represents 

the weak shock. But, in fact in a natural occurring processes, a weak shock solution is 

mostly preferred; because the strong shock solution is not is essentially driven by some 

back pressure mechanism and it is not natural occurring process. 

So, for example, what do we mean by natural occurring process? That means, when 

some object is flying at supersonic velocity and if an oblique shock solution needs to be 

formed, then it is suppose to be weak in nature. The strong shock is not a general 

occurring phenomena, rather it is driven through some back pressure mechanism. So, this 

will be covered subsequently, under what circumstances we can have a strong shock. 
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So, when it is a weak shock and it is an attach shock. So, let us say in the previous case 

when your theta was 20°, Mach number M1 is 2 and we had the weak shock angle will be 

about 53°. 

So, this is how a typical example what I can give for Mach number of 2. So, what we can 

say; for this situation if it is a weak shock, now if I want to calculate M2 is less than M1. 

When I say M2 is less than M1, then I am in the lower half of the curve. So, if I say that is 

θmax, point a1 refers to be θmax and when you take this 52°, we are basically in the lower 

half of this particular θ-β-M curve for M is equal to 2.  

And, when we were in the lower half of this curve, we say you have M2 is less than M1; 

but had you been in the upper half of the curve where for same M1, we have βweak 53° 

and βstrong about 72 degree. So, if you choose a solution of βstrong, then had this been a 

strong shock; downstream Mach number would have been less than 1. 

So, when it is a weak shock, we say a weak shock solution for which β is 53°; when it is 

a strong shock, it is β is 72°. And, in this case your Mach number would be subsonic. So, 

this is how we say that, strong shock solution will always give a subsonic Mach number 

after the shock. And, what will happen that in a given curve, if I move from strong shock 

solution moving right towards maximum theta deflection angle and when I am moving 

from weak shock region and moving towards θmax, when I am in the strong shock region 

and moving towards θmax.  

308



Trying to say that, the weak shock solution will give you a move towards the stronger 

and strong shock solution will give toward this weaker. But, in most of the situations, in 

a naturally occurring process, when a weak shock solution becomes stronger and 

stronger; so, it moves towards the strong shock solutions. 

In other words what I can say, the attached shock which is a weak in nature will try to 

get detached from this point. So, that means the Mach number which was supposed to be 

supersonic tries to become subsonic. So, that means when you are moving towards right, 

I am essentially trying to say that I am moving towards strong shock region. And, while 

moving towards strong shock solution, the downstream Mach number tries to become 

subsonic. 

So, so there is a intermediate point which is known as transition phase, that is point a2, 

b2, c2, d2, e2 and f2; these points represents the points at which the downstream Mach 

number M2 approaches to subsonic value; that means, if I chose any point beyond a2 for 

M is equal to 2, then I will land off a subsonic region. And, almost at one particular 

point, when I am moving from a low supersonic Mach number to subsonic Mach 

number, at one particular point the flow tries to be sonic.  

So, this points a2, b2, c2 all these things are the sonic points. So, this is what it has been 

written here. During transition phase, the Mach number is exactly sonic at one particular 

point and this one particular point will be different for different Mach number. So, in this 

case it is a2; the second Mach number for point 2.5, M1 is equal to 2.5, it will be point b2; 

likewise for other Mach number. 
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So this is how we say that what will happen when we are in this domain. But, let us see 

that for a given Mach number, what are the upper limits and lower limits? So, first upper 

limit I can say, when we say it is a strong shock; the strong shock becomes a normal 

shock when β is equal to 90°, we say it is a normal shock. 

So, if we look at this particular plot, what will see that, all the curves merge to 90° point 

at this, all the points tries to merge or converge to a particular point; that means, at this 

point all the curves merge to a normal shock. But, this is not so in the lower limit of 

those curves, if we look at the lower limit of this curve.  

So, if this is for M1 is equal to 2, and this is for M1 is equal to 8; if you say lower limit of 

this curve, the shock wave angle is about 30° for M1 is equal to 2. Whereas, the lower 

limit curve of M1 as 8 is close to about 8°; how do you get it? Because these are nothing 

but that a weak shock becomes a Mach wave at θ goes to 0. 

So, here it becomes a strong shock when θ goes to 0. So, at θ=0, there are two possible of 

strong solutions; one is β 90 degree that refers to normal shock and for other cases the 

limit is the θ 0, it is the a limit which is a Mach wave and that angle is known as Mach 

angle. And, this is we know from this expression, that is 
1

1

1
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M

  
  
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 . So, oblique 

shock becomes a Mach wave. 
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The next important inference that we can say is that, for a fixed deflection angle as the 

free stream Mach number decreases from high to low supersonic value. So, for a given 

deflection angle θ let us say 20°; if I am moving from high supersonic, that is if I am 

moving from M is equal to 8 to M is equal to 2, what we see in the weak shock region, 

your shock wave angle increases. So, in the weak shock region, the shock wave angle 

increases.  

But, if I am moving towards the maximum θ deflection angle for this M1 is equal to 2 

and beyond which there is no solutions possible for M1 is equal to 2. But, it is for the rest 

of the Mach numbers there are possible oblique shock situations.  

For a fixed deflection angle there is a Mach number below which no solution is possible, 

it refers the maximum θ deflection angles. And, when we are in the domain of θ less than 

θmax will have attach shock; when we are above that θ greater than θmax will have a 

detach shock. 
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So, in other words what I have shown here is that from this θ-β-M curve, we can say 

using this relation, what parameters that controls? Whether a oblique shock will be a 

Mach wave or oblique shock will have a strong shock solution or oblique shock will 

have a weak shock solution that is mostly decided the parameter which is normal 

component of the Mach number. 

So, looking at this equation what we can say that, the strength of an oblique shock is 

higher if the normal shock Mach number strength is more. When the normal shock Mach 

number is more; then obviously, the downstream Mach number Mn2 will be all become 

subsonic.  

When it becomes subsonic, so it is a strong shock; when it is supersonic, it need not be a 

strong shock, it will be a weak shock. And, Mn1 can be increased by two ways; one is by 

increasing the M1 or increasing the β, increasing the β we do not have control, but to 

increase β we have to go for higher flow deflection angle. 

So, whatever I discussed, it has been summarized here; but, as a rule of thumb what you 

can say, as the flow deflection angle increases keeping upstream Mach number constant, 

the shock wave angle increases. If the upstream Mach number increases keeping the flow 

deflection angle constant, then shock wave angle decreases. In one case we are keeping 

Mach number constant, in other case we are keeping flow deflection angle constant. And 
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accordingly we can say that, we can vary the shock wave angle, whether you can 

increase or decrease. 

(Refer Slide Time: 35:37) 

 

So, this is the another example what I am trying to give that, whatever I have 

summarized that in most of this supersonic objects or you can say missile of this 

particular shape; so you can say it is a missile, missile shape object. Now, when this 

missile shape object travels at a high altitude, at different altitudes it moves in different 

flow regimes.  

So, in fact for this particular shape, there is a certain deflection angle θ. And, when it is 

moving at different velocities, what may have is at some situations, some flow conditions 

upstream and downstream the shock wave may be a detached one or shock wave may be 

a attached one. 

For example, I can say that, let us say it we starts with Mach number of M1 is equal to 

1.05; and under those conditions and for this θ a we can have a detach shock. But, not 

necessarily that this shock wave will always be detached; but, if I increase this Mach 

number to be 1.45, it tries to get attach to the body. 
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. 

So, likewise initially another situation may be, it may be initially attached, then move to 

a detached one; which means, that not necessarily that always will have only attach 

shock or only detach shock in a flow changing environment. By controlling the Mach 

number, we can say that we can either move from attach shock solution to a detach shock 

solution or we can go from detach shock solution to a attach shock solution, just by 

controlling the Mach number and θ. So, this observations of oblique shock properties 

gives a very vital understanding about the flow behavior in a supersonic objects. 

(Refer Slide Time: 38:31) 
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Now, I will try to demonstrate the gas shock property tables that are to be used for 

oblique shock relations. So, here the property table that you see here is for a normal 

shock relations. But, as I mentioned while looking at this particular table, you should 

look at this particular M1; instead of looking at the Mach number M1, we have to look at 

this as Mn1. So, as I said that, it is the normal shock Mach number that is important to see 

the property table.  

First thing is that, for a given upstream Mach number M1 and flow deflection θ; we can 

find out value of β using this particular θ-β curve. Once you know β, then we can find 

out Mn1 and then you refer this table Mn1, where you will land off. And correspondingly, 

the property values ratios can be denoted and here also instead of M2, we have to say the 

effective number will be Mn2. 

Now, when I say Mn2; so for a given M1 when I find Mn2, I know β and θ. So, I can also 

calculate M2. So, this is how your approach should be how to combinely look into the θ-

β-M curve and this normal shock property table to find out the oblique shock property 

relations for static pressure, temperature, density, and stagnation pressures. 

(Refer Slide Time: 40:25) 

 

Now, with this will try to solve some numerical problems. So, whatever I have analyzed 

this far. So, here just to say these things; so, first problem it is talks about a supersonic 

stream of Mach number 3 pressure 0.9 bar and 20°C. 
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So, first solution for this would be, you have to draw the physical geometry. So, you 

when you draw this physical geometry, first see that it is a compression corner, a 

supersonic flow has to turn a shape. So, the angle is given as 20°. So, you know M1, we 

do not know M2; we do not we need to find out V2, T2, ρ2, P02 and so on, T02. All 

upstream numbers are known P1 0.9 bar, T1 20°C that is 293K. 

So, first thing we need to find out is that, obviously since you know this; we also require 

stagnation properties for this Mach number. And so, Mach number is given as 3; for 

given Mach number and p1 and T1, we can use the isentropic property table to find out 

p01; p01 as 33 bar and T01 as 820K.  

So, instead of using isentropic property table, we can also find out from this relation 
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So, either you use isentropic property table or use this relations, we can estimate this. So, 

by this we can say all upstream parameters for region 1 is known. So, we need to find out 

the downstream numbers. To approach would be something like that. So, first thing we 

need to know, we have θ 20°, we have M1 3.  

So, M1 3 means, you have to go for this curve c and θ 20°. So, this will give you β as 

close to 37° from this curve; once I say β 37°, I can find out Mn1 that is 1 sinM  . 

So, Mn1 would be 1.82. Now, when I know Mn1, you take this normal shock table. So, 

this is some extract data I have taken from normal shock table. So, close to 1.82, we can 

note down the properties values; the properties values would be like Mn2 0.6121; then, 

2
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p
 is 3.698, 2
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T

T
 1.547, 02

01

p

p
 0.8038. So, once we know this ratios then we can easily 

compute as p2 as 3.32 bar, T2 would be 453K. So, you take this ratio, you know upstream 

number and p02 2.65 bar. 

Now, what is remaining is M2. So, M2 can be calculate as 
 

2

sin

nM


. So, β is known, θ 

is known, Mn2 is known; so, you can find out M2 as 2.1. So, what you see is that, initial 

M1 was 3; so Mach number is still supersonic across this oblique shock. 
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So, in the next problem is that, in the same question 1, if the deflection is angle is 

increase to 30°, we have to calculate the same properties value. When θ goes to 30° and 

your M1 is 3. So, this will turn out to be β from this curve. So, here we have to refer 30° 

and M1 3; curve c. 

So, β would be 52°. When I say β is 52°, we have to repeat the same process. But the 

other ratios we can have, like will have p1 as same as 0.9 bar, T1 as which was this 293K. 

So, same as for question 1 data, then T01 as 820K, p01 as 33 bar. So, in these oblique 

shock, here this angle is 30°, this β is now 52° and this region 1 and we want to find out 

region 2.  

So, having said this; so, we have to repeat the same process means, first we have to find 

out Mn1 is 1 sinM  that is 2.36. So, you have to use per normal shock table may be 

closed to a value of 2.35, I can note down this number. 

So, you can say 2

1

p

p
as 6.276, 2

1

T

T
1.993, 02

01

p

p
0.5615; then, this will lead you and you will 

have Mn2 0.5286. So, thus you can find out M2 to be
 

2

sin

nM


. So, M2 would be 1.41; 

likewise, we can say p2 would be 5.65 bar, we know this T2 would be 1.993*293, so 

584K, p02 would be 0.5615*33 will be about 18.53 bar. So, likewise we can solve this 

particular problems. 
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So, in this question what we have shown is that, flow deflection angle increases but, your 

Mach number now becomes 1.41. So, in previous question the Mach number M2 was 

2.1; so, Mach number gets decreased if the flow deflection angle increases. 
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The next question is that, we are keeping this in the question 1; if the free stream Mach 

number is increased to 5. So, the question remains same, what you have, the question 1 

remains same with a only difference that is there; instead of Mach number 3, I have 

increase this to 5, but theta becomes same angle as 20°.  

So, when I change the, we have to find the condition 2. Now, for same p1 was 0.9 bar, T1 

was 293K; since, the Mach number was increased, so p01 will also be increased. So, 

similarly way we can calculate p011 is 476 bar. So, you just imagine that from 33 bar, it 

has to increase to 476 bar when Mach number is increased; stagnation temperature 

becomes 1758K.  

So, this is the property conditions in the region 1. So, we require to find out β. So, 

solution process goes in similar manner. So, here we have to see for curve b that is Mach 

number 5 and θ as 20°. So, somewhere you will have landed off β. 

So, M1 is 5, θ is 20°; this will give you β value from this θ-β-M curve is as 30°. So, when 

I know β, I can find Mn1 is 1 sinM  , that number would be 2.5. And, for this 2.5 Mn1; if 

318



I look for the normal shock table, I will say Mn2 as 0.513 and 2

1

p

p
becomes 7.125, 
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p
would be 0.499. Then, once I put this, then we have to find 

out M2 is 
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So, this turns out to be M2 2.95. What we see is that, when your M1 is increased, your 

downstream Mach number also increases. So, we all know upstream parameters of this 

value, we know this ratios; then, you can say p2 as 6.41 bar, T2 as 626K and p02 as 237.5 

bar. But, what we see here, what remains again same in all these three problems; your 

T01 would be T02; in fact, this is the conditions that remain constant.  

In fact, all the previous problem also T02 would be T01 820K; in this case it was 820. 

And, in the first question also T01 was also 820 Kelvin. So, total temperature does not 

change as it is in the case of normal shock. So, this is how you have to refer this normal 

shock table as well as θ-β-M curve to calculate the property for oblique shocks. So, with 

this I will conclude the topic of oblique shock. 

Thank you for your attention.  
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