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Welcome to this course, Fundamentals of Compressible Flow; in the module 4 Normal 

Shock Wave.  

(Refer Slide Time: 00:47) 

 

We covered in last 3 lectures the following topics. So, the topics of shock waves, its 

formation in one dimensional medium. Fundamentals equations have been derived and 

most importantly the relations that governs through Prandtl equation is also framed from 

these fundamental equations. 

Then, we move to the normal shock analysis and flow property calculations across the 

normal shock, which uses this Prandtl equation. And, having said all this property 

calculations, we move to a very important theorem called as Crocco’s Theorem. This 

theorem talks about the fluid kinetics aspects with respect to thermodynamic concepts, 

and that can be correlated for the normal shock.  
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Now, having said all these things, we tried to demonstrate the gas property tables. And, 

this gas property tables was derived from the fundamental equations of normal shock 

analysis that are used for flow property calculations. In fact, this gas property table can 

be considered as a database or data set to find out the flow property that are prevailing 

across a normal shock.  

So, these are the very basic topics that were covered in this normal shock. Now, in this 

lecture we will try to justify certain important facts with respect to the shockwaves as a 

compression device. So, what we have seen here is that always there is a steep pressure 

raise across a normal shock. So, the question arises can you think of the shockwave as a 

mechanism to compress a gas? Is it will be effective? 

So, all these things we will try to answer by considering the fundamental thermodynamic 

aspects that is with respect to isentropic compressions versus shock wave compressions. 

Now, when you deal with this isentropic compressions, normally there are standard 

thermodynamic relations that are available, but we do not know the thermodynamic 

background although we found out the flow property, but we do not know the 

thermodynamic background. 

So, for that a relation which is derived which is called as Hugoniot relations and in fact, 

these forms the basics of thermodynamic concepts that happens the pressure rise across a 

shock wave. And, using this relation one can find out that how a shock wave 

compression mechanism can be understood thermodynamically. 

So, before you move to this shock wave analysis of compression. So, let me give some 

very basic background of thermodynamic analysis of a compression process. 
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We all know from the beginning of thermodynamics course, we used to have a very 

simple concept of using a figure considering a piston cylinder device in which gas is 

contained. and when the gas is supposed to be compressed, the piston has to move 

towards the dead end of the cylinder. If, the gas has to expand the piston has to move 

away from the dead end.  

So, this is the way we can make this gas to compress or expand. Now, in fact, what we 

can say is that the gas which is there in this cylinder as change in the specific volume or 

density when the pistons moves in and out from the dead end of the cylinder.  

So, we view this method to be compression or expansion. And, in fact, many a times we 

can also make this system as and while motion of the piston is regulated in the cylinder, 

we can say there is a work transfer in terms of PDV work. 

And, other analysis we could perform that one can add heat into this gas and thereby see 

what happens to the piston movement. So, there are multiple ways one can handle this 

particular thermodynamic aspects of this piston motion inside the cylinder. So, such a 

process are generally given a names, those names we can call this as a constant pressure 

process or isobaric process, constant volume process (isochoric process), constant 

temperature process (isothermal process), constant entropy process (isentropic process).  
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And, all these four processes can be thought of occurring in a very steady state manner 

and in a very small or we can say in a very quasi static manner. So, that the process can 

be thought of happening in a reversible way, but other process that may not be a 

reversible, we call this as adiabatic process where there is no heat additions; that means, 

this cylinder does not encounter any heat interaction. 

So, this is how we handle this motion of the piston inside the gas accordingly we assign 

different thermodynamic processes. Now, when all these thought processes we call them 

as a polytropic processes. So, when I say polytropic processes and if we try to plot the 

pressure volume diagram. So, normally we call this as a p-v diagram; pressure and 

specific volume diagram.  

So, this process we say it is occurring in a polytropic manner, where np C  . So, 

following these equations the pressure volume relation is considered. Now, let us see that 

what does this mean, now when n is equal to 1? So, when n is equal to 0. So, it is like p 

is pressure is equal to constant. So, there is no change in the pressure. 

So, we cannot recognize this to be a compression process. But, apart from n is equal to 0 

for all other values of n, we can say that when there is a decrease in the specific volume 

the pressure always increases.  

So, now the value of n essentially decides, the how a process can occur in a very slowest 

possible manner? When we are occurring the process in the slowest possible manner, 

then it will be very quasi static in nature and the conditions of maintaining the reversible 

nature will be assured.  

So, as and when we move n towards up the process occurs in a very slow manner. So, let 

us say when n is equal to a 1. So, this process is np is p C  , and this relation is true 

for isothermal process and let us say in a constant pressure process, we can say it is n is 

equal to 0. In fact, it is no longer a compression process. And, in a constant volume 

process that is the other limit where this compression process happens to be vertical very 

steep manner.  

So, it is a constant volume process. So, here n goes to infinity. But, any other value of n 

makes this curve to be steep. Now, let us say that when we are undertaking a 

compression process for a certain change in the pressures. So, if say p1 initial state and p2 
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and if at all I want to do this compression process, then if I start from n is equal to 1 

means isothermal process.  

So, if the initial state we can start from 1 and final state starts ends at 2. So, I can go in a 

slowest manner that is n in a isothermal process. Similarly, keeping increasing n further 

the curve becomes steep. But, what the basic condition is that? The work transfer which 

is essentially quantified that area under the diagram comes down if the curve becomes 

steeps. Now, in particular when we have a constant entropy process, which is isentropic. 

So, there it is nothing but the reversible adiabatic process. 

So, there n becomes gamma that is specific heat ratio. So, somewhere for air this 

becomes 1.4, somewhere we can have another curve which is just close to n is equal to 1. 

So, this we can say n is equal to gamma. So, normally we can say roughly an isentropic 

process will be somewhere in this manner. But, when we say another process which is 

called adiabatic? So, this need not be have to be reversible in nature. 

So, although we can say is equal to gamma is equal to 1.4 for the process is irreversible 

whereas, this is a constant entropy process, this is reversible in nature, which means 

while going from 1 to 2, I can come along the same path while in return with very 

minimal loss. So, this is how we view this compression mechanism in a p v diagram. 

So, with this background let us see that, how I can incorporate a shockwave as a 

compression device. Does any of the relation suits to me or not?  
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To do this analysis let us see that when we undertake a compression in a shock waves. 

So, we say there is a standing normal shock. So, across a shock wave the Mach number 

drops, but your static pressure p2 always rises, but in a very steep manner. Now, one 

angle we can give to this particular problem and obviously this process cannot be 

considered as any of the quasi static process, because this jump is very instantaneous or 

very steep. And, this happens in a very shortest time.  

So, none of the quasi static process will follow. Then, even it cannot be also considered 

as an isentropic, because entropy always increases across the shock wave. But, one more 

realistic way of looking at this problem, because when you derive this normal shock 

relations, we can say there is an imaginary duct consisting of stream line, but that duct is 

adiabatic duct.  

Adiabatic duct means there is no heat interaction into this medium. So, to some extent 

the process will be an adiabatic process. But, although process is adiabatic, whether we 

have to really dependent on the specific heat ratio gamma or not, that become still a 

question mark; so, all these analysis we are trying to see that if we can give a 

thermodynamic meaning to this compression process.  
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So, such a thermodynamic meaning we can keep through an relation what we call as 

Hugoniot relation. So, what it says is that till this point of time, we always talk about 

normal shock from its analysis, the relations, flow property calculations. But, the time 

being let us see only thermodynamic aspects of increase in the pressure and whether we 

can say that this increase in the pressure can have any thermodynamic link. 

So, this is the entire motive of this analysis and so, what we say here is that changes 

across a normal shock can be independently assessed purely on thermodynamic aspects 

that is without involvement of any reference velocity or Mach number. Because, in all 

earlier analysis we used to say for m for different values of Mach number, these are the 

property ratio 2

1

p

p
 , 2

1

T

T
 and so on.  

But, here we will say that without involvement any velocity or Mach number how we 

can give a meaningful thought and that equation is known as Hugoniot Equations. And, 

these Hugoniot equations can be derived from the basic governing equations for one-

dimensional flow prevailing in a adiabatic duct.  

So, this equation has a great resemblance to the “First law of Thermodynamics for an 

Adiabatic Process”. That is what the process or mechanism of shockwave; since, we 

followed to a some extent we say that it is a adiabatic duct because there is no heat 

transfer involved.  
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So, with these logics we can say the process is in adiabatic nature and when Hugoniot 

equation is formed we can say that it has a definite link to the first law of 

thermodynamics.  

(Refer Slide Time: 18:29) 

 

So, to do that to do this analysis; so, let us revisit the governing equations of normal 

shock, which is continuity, momentum and energy equations. So, continuity equations 

we say it is 
1 1 2 2u u    momentum equations is 2 2

1 1 1 2 2 2p u p u   . And, energy 

equation we are writing in this form that is 
2 2

1 1 2 2
1 2

1 22 2

p u p u
e e    

 
.  

Why you bring this internal energy concept here? Because in the beginning of analysis of 

normal shock, we define that entire flow kinetic energy due to high speed nature 

immediately, because what we told that after this normal shock, the flow becomes 

suddenly subsonic from it is supersonic value. So, whatever kinetic energy of the flow it 

has in the upstream, all of them gets converted to internal energy thereby increasing it is 

temperatures. 

So, what we say is for this condition 1 and 2; p1 and T1 and here 
2 1p p and 

2 1T T ; so, 

for internal energy e1 and e2. So, normally this 
1 1e c T and

2 2e c T . So, there is a rise 

in the internal energy. So, that is what these equations are reframed in this manner.  
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So, now let us relook into these equations, but in a different context. So, from continuity 

equation one can rewrite 1
2 1

2

u u
 

  
 

or 2
1 2

1

u u
 

  
 

. So, now we take only this 

expressions and substitute in momentum equation. So, these we get from continuity and 

we substitute that thing in momentum equation.  

So, when I substitute this in momentum equations, that is u 2 in the right hand side. So, 

we get

2

2 1
1 1 1 2 2 1

2

p u p u
 

    
 

. So, we simplify these equations and solve for 2

1u . So, 

how do you do? So, you can bring this particular term to the other side 

like
2 2

2 1 1
1 1 2 2 12

2

u
u p p


   


 .  

So, 2 1
1 1 2 1

2

1u p p
 

    
 

. So, ultimately we can write this equation as 

2 2 1 2
1

2 1 1

p p
u

   
   

    
. So, this is what we get from momentum equation.  

Similarly, when you put this u1 in the momentum equations left hand side, then we can 

also get u 1, 
2 2 1 1
2

2 1 2

p p
u

   
   

    
. So, now we have 2 expression 2

1u and 2

2u . So, now, 

you substitute 2

1u and 2

2u in energy equation.  
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So, when you do that we arrive at these particular expressions. And, we do and simplify 

then we arrive at this particular expressions.  

 2 1 2 1
2 1 1 2

1 2

1 1

2 2

p p p p
e e

     
          

     
 

What it says is that the left hand side of this expression it is 
2 1e e , which we say is that 

change in internal energy. So, change in the internal energy across the shock wave. That 

is equal to the  2 1
1 2

2

p p 
   

 
. Now, expressing this specific volume into density 

one can write 
1 2

1 1


 
. So, this is how we say we can write this particular expression?  

Now, if you give a little bit of thought assuming that in normal sequence, when you 

calculate the average pressure normally you add up all the pressures and divided by the 

total numbers of terms we are going to add. So, here there are two pressures. So, we 

represent this as avgp  ,   because the density increases, the specific volume 

drops that is why minus. So, across this the shock wave we say there is a step change in 

internal energy.  

Now, this is what we see across the shock wave. Now, let us say see the First law of 

Thermodynamics. So, in a first law of thermodynamics in a differential form we see we 
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write de dq pd   . Now, in a situation when the process is an adiabatic process this 

term we can neglect. So, that we can see de pd   .  

Now, if you look at these two equations. So, this is for a differential form of internal 

energy. And, we see that there is a great resemblance between these two terms. Of 

course, the only difference that we have here is that here the change is a very finite, but 

this change we represent in a differential form.  

So, that is what it is written here that it has a great resemblance for first law of 

thermodynamics for an adiabatic process that is the change in internal energy is equal to 

change in this specific volume multiplied by mean pressure across the shock wave.  

In fact, this relation is true for all the thermodynamic processes and that holds good 

across a normal shock. Since we did all these things from these basic fundamental 

equation, it is true for all types of gases, real gases, chemical reacting gas, perfect gas as 

well.  

(Refer Slide Time: 27:57) 

 

So, this is again another way of interpreting this Hugoniot Equations. So, basically we 

framed this equations from our analysis that is change in internal energy and it is 

represented through this Hugoniot equations.  
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Now, in this equation we will try to see that these relations when you do it for perfect 

gas. When you recall that for a perfect gas and calorically perfect gas we can write 

e c T  , 
1

R
c 

 
 and 

p
T

R


  .  

Now, when you put all these relations, the Hugoniot equation turns out to be a pressure 

volume relations between two thermodynamic states.  

1

22

1 1

2

1
1

1

1

1

p

p

   
 

   
   

 
   

 

So, here are two thermodynamic states are 1 and 2, like the pressure ratio across this we 

are now representing specific volume, like here if I say p1, pressure is p2, corresponding 

specific volume is 
1  and in fact that is nothing but 

1

1


. And, its corresponding specific 

volume after this normal shock would be 
2

1


. 

So, what it says is that, the presser ratio are now expressed in terms of specific volumes 

for a calorically perfect gas. So, that is what I can say that Hugoniot equation represented 

as pressure volume relation for a normal shock. More specific it will be pressure specific 

volume relation across a normal shock.  

(Refer Slide Time: 30:27) 
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So, now let us see how this Hugoniot relations has a great significance for our 

understanding? So, for that we will now talk about its inferences. What does it signifies 

to us? So, if we recall this particular equation in a very generic way of thermodynamic 

analysis one property can be represented to any other independent parameters.  

For example, I can say internal energy as a function of pressure and specific volume. So, 

this is as per the thumb rule of any thermodynamic property can be represented in other 

two independent parameters. And, in this case your change in the internal energy is 

related to pressure and specific volume, through this Hugoniot relation.  

So, in other words I can say that from using this equation I can express this 

 2 1 1 2 1, , ,p f p u   . And, the how this functional relations forms; one of the 

functional relation is this 2

1u expressed into as a function of p1 and p2. So, this functional 

relation can be exactly defined by this Hugoniot equations.  

So, from this one can find out what is the pressure  2 1 1 2 1, , ,p f p u   . So, what it 

physically means to us like that suppose you have the given conditions or known 

condition are 
1p , 

1 and 
1u . This is normally known, that is upstream condition and 

downstream condition, we can say that we can calculate p2, but what condition you 

require? If you know one of the particular conditions
2 , then in fact, we will just for the 

time being we will not talk about the Mach number.  

So, instead of Mach number if you know only the specific volume in the downstream 

condition, then one can correlate 
2p  with the knowledge of

1 1 2 1, , ,p u  . So, this is also 

a similar context; in earlier situation we were talking in terms of Mach number, here we 

are not talking in terms of Mach number rather we talk about with another known 

parameter and in this case is this specific volume.  

So, this gives a curve which is known as Hugoniot curve. So, what it means is that at 

equilibrium conditions the property value of thermodynamic state can be expressed as a 

function of other state variables. And, in this case for a given upstream conditions for a 

normal shock that of pressure, specific volume, velocity. The Hugoniot equation that is 

this gives the relation for downstream parameters of pressure and specific volume. So, 

downstream parameter of pressure and specific volume can be found out.  
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So, one can generate a plot known as Hugoniot curve and this curve is nothing but the 

locus of all possible pressure and specific conditions across a normal shock. So, means if 

you know these known conditions one can generate a lot of data by just imposing some 

numbers to this. And, all of them will decide about the possible flow conditions across a 

normal shock. And, in fact, the depending on the strength of the normal shocks these 

numbers will vary.  

So; that means, this locus of all possible pressure and specific conditions of normal 

shock various strength can be found out for one specific upstream values.  

(Refer Slide Time: 35:17) 

 

So, to start this, one can say that one can draw an Hugoniot curve of like this in a 

pressure specific volume diagram. So, for different values of 
1 1,p  one can find out all 

possible numbers. Now, when I say so, next question arises, where is this initial point?  

So, if you look at the initial points, the initial point should be corresponds to 0 entropy, 

as if the flow was isentropic. So, s2 was is equal to s1; that means, initially if you start 

from this particular point; so, initial point p1 and p2 as if compression process is just 

initiated. 

Now, if I want to think about bring the non isentropic nature through a shock wave, then 

I can say the point 2 will proceed along this curve in this directions. Now, when I move 
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this direction, I can bring this process through a Hugoniot curve. So, I can say 2 can lie 

here, 2 can lie here, 2 point can lie here. So, any point we can draw this.  

So, all these point is nothing but all possible conditions of a normal shocks. In fact, we 

can start a point somewhere here let us say 1`. So, correspondingly this point can be a 2` 

or this point can be 2``. So, likewise all possible conditions one can generate. So, point 2 

will move towards left. Why left because the pressure should increase and corresponding 

y axis will talk about what pressure we are supposed to get.  

So, on this Hugoniot curve we can say any 2 points on this Hugoniot curve will talk 

about the pressure jumps across a normal shock. So, this is how it is explained that, the 

locus of all possible physical states occur only in the upper branch of the Hugoniot curve 

in which initial Mach number is either larger or equal to unit  

So, this direction of movement is not possible because it will lead to an expansion not a 

compression. So, it will be impossible situation and shock wave will not occur. So, that 

means, in shockwaves flow can occur that are initially supersonic. So, all these points 

will lie in the supersonic region.  

(Refer Slide Time: 38:15) 

 

Now, to bring more clarity into this that, how exactly I locate the point 2 on this curve. 

So, let us revisit this equations of Hugoniot relation that is 

2

2 1 1

2 1 1

p p u 
  

    
. So, if you 
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look at this normal shockwave, what does this normally mean u1 and ρ1 is the nothing but 

the velocity and density that is nothing, but 
1

1


.  

So, it is a mass flux. I can say rho I can say ρu is equal to constant that is 
1 1u C  . So, I 

can say this as mass flux per unit area. Because, we can say it is a per unit area. So, 

which means that or in other words I can write this is nothing but 1

1

u


.  

So, this is also represented in this as mass flux per unit area. So, now this gives a logical 

meaning that the right hand side of this equation is the nothing but the mass flux per unit 

area which is normally known for a normal shock. And, left hand side of this equation is 

nothing but slope along this curve.  

So, means that if you know the mass flux per unit area, then you also know the slope. So, 

one can calculate the slope and this negative slope will take you from point 1 to 2. So, in 

other words what it means, for a given condition 1, which is located here if I know this 

particular number 

2

1

1

u 
 
 

 and by taking this negative slope, if I draw a line then it will 

cut this point at point 2.  

So, this particular slope is nothing but 

2

1

1

u 
 
 

. So, I have to put minus because we are 

moving towards the negative specific volume directions. And, if for another situation of 

1

1

u


, if I can draw another line from this point which may take me to another point of 2` 

for different values of u1 and 
1 . So, likewise any number of states that is possible for 

given state one.  

So, for a given upstream conditions different states of 2, 2`, 2`` is possible. So that 

means, the straight line can be drawn that will intersect the Hugoniot at some point 2. 
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So, now when I join this line 1 and 2 in this Hugoniot curve. So, this line is known as 

Rayleigh line. Because, it is drawn for a particular mass flux. And, in fact, I told that the 

downward slope of the Rayleigh line is not possible, because we cannot go below this 

line. 

So; that means, if I start from the point 1 I should proceed in this directions, upward 

directions; downward slope is not possible. In this way we can say all thermodynamic 

states across a shockwave can be located graphically on a Hugoniot curve.  

(Refer Slide Time: 42:27) 
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So, having giving a name as Hugoniot curve or simply H curve, we are now able to see 

that whether I can compare this particular shock based compression to an isentropic 

compression. So, for an isentropic compression I can say this process is reversible 

adiabatic. So, we can say it is we can say p C  or 1 1 2 2p p    .  

So, I say it is a reversible adiabatic process. And, this is nothing but we say H Hugoniot 

equation. So, this is what we say, an isentropic process is governed quantitatively and the 

Hugoniot equation governs the shock wave compression quantitatively. So, when I 

compare both these two, these two equations, I can judge the effectiveness of shock 

wave compression, with respect to isentropic compression.  

(Refer Slide Time: 43:47) 

 

So, to do that one interesting thing what we can say that we can bring a concept as shock 

wave as a compression device. So, what I did is in the same Hugoniot curve, I 

superimpose this isentropic curve; that means, when I am starting from same point 1 and 

I try to go on a Hugoniot curve that is dotted line, and from same point I also can start 

my compression journey in the isentropic curve.  

So, let us see how I can do that? So, what you see is that then the initial phase, you will 

see that both the dotted line and solid line they are more or less same. Now, one you 

once you proceed further I mean once the specific volume decreases at a faster rate, then 

we see that the gap is becomes higher and higher. So, for instance, if at all my point 2 

lies here; I would have reached a pressure p2, if I go on a Hugoniot curve. 
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So, compression that means, p  on a Hugoniot curve would have been
2 1p p ; that 

means, pressure rise on Hugoniot curve will be that is on the H curve would have been 

2 1p p . But, for same specific volume, if I would rather choose an isentropic curve, then 

I would have landed up at point 2`. 

So, my p would have been 2 1p p  . So, this is how we say it is an isentropic curve. 

Obviously, we say that p p   , which means that isentropic curve gives a less 

compression for a same specific volume change than the Hugoniot curve.  

In fact, this gap will become more and more if you climb on a Hugoniot curve, or in 

other words at higher value of specific volume rise, the Hugoniot curve climbs over the 

isentropic curve. So, this is the key point of the Hugoniot curve analysis that says that a 

shockwave can be a thought of a compression device.  

(Refer Slide Time: 46:53) 

 

So, this is how I have explained so far that how a shockwave as a compression device 

can be interpreted? I mentioned that with decrease in the specific volume rise in pressure 

in isentropic curve takes place in a reversible manner where pressure rises instantly on a 

Hugoniot curve. With decrease in the specific volume the Hugoniot curve climbs above 

the isentropic curve; that means, it generate a high pressure.  
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The same thing I have explained here. And, this is how the isentropic curve is governed 

p C   whereas, the pressure rise across a shockwave is governed through Hugoniot 

equation. 

(Refer Slide Time: 47:43) 

 

So, one can make summary of this analysis that why a shock wave compression is a 

effective method. So, one of the key point is that for a given decrease in this specific 

volume, that is 
2 1   , the shock wave creates higher pressure rise increase than the 

isentropic compression.  

So, this is one of the catch point, but there are some side effect is that the shock wave 

compression is less efficient than isentropic compression, because we have seen that it is 

a non isentropic process. So, it involves increase in the entropy on loss of the total 

pressures, which we already view that across a shock wave total pressure drops.  

So, this is also a negative side of the shockwave compression, but many a times the 

quantum of jump that we get through shockwave compression is such a significant that it 

gives a new thought as a mechanism of compression device.  

In fact, this particular concept has created the evolution of next generation of high speed 

flights, which we normally call them as ramjet or scramjet engines. And, these engines in 

fact, have very minimal use of rotating or mechanical components. 
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So, entire compression process in this engine is mostly governed through shock based 

compressions. And, these shock based compression does not require any mechanical or 

turbo machine or rotating components.  

Many a times what happens that, when you travel faster, the structural limit of 

mechanical components, the thermodynamic limit of mechanical component does not 

allow to move faster. But, here it is not that aspect rather the engines can be thought of to 

be controlled through shock based compression process.  

So, this is how the shock based compression has a great resemblance or significance for 

new generation evolution of flights.  

(Refer Slide Time: 50:31) 

 

So, with this I conclude this module that is on normal shockwaves. So, in this module the 

some of these learning components are listed here. So, at the end of the model one 

should understands the phenomenal effect of normal shock, its fundamental equations. 

The relations that, governs the normal shock, how the property flow properties calculated 

across normal shock? 

Apart from this we bring out two important concepts in this normal shock analysis that is 

Crocco’s Theorem that talks about fluid kinematics that means fluid flow across a 

normal shock is highly rotational. And, also this Hugoniot curve that talks about that 

shock wave as a effective compression mechanism.  
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Now, apart from that we demonstrated a gas property table for normal shock relations. 

So, at the end of this module one should understand all these learning components and 

brush up his knowledge whether all these components are learnt properly or not. So, with 

this I will conclude for this lecture. 

Thank you for your attention.  
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