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Module - 04

Lecture - 12
Normal Shock Waves

Welcome you again to this course Fundamentals of Compressible Flow. We are in the
Module 4 - Normal Shock Waves.

(Refer Slide Time: 00:43)

So, previously we have gone through two lectures in this module, where we discussed
about the formation of shock waves, what is its importance, we discussed about the
fundamental equations, and we derived one important relations known as Prandtl

relations for the normal shock.

And based on these relations one can find out the flow property across a normal shock.
So, we will move further from this contents and today in this lecture we are going to
discussed some important inferences that we come across from this normal shock
analysis.

Now, apart from that we are trying to introduce a theorem which is known as Crocco’s

theorem which is a very vital and important theorem that relates the fluid kinematics
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aspects with respect to thermodynamic relations that normally is encountered across a
normal shock. Of course, this Crocco’s theorem has nothing to do with normal shock
phenomena. Crocco’s theorem is independent in nature that correlates the fluid kinetic
concepts to thermodynamic concepts. And in our study that is in the normal shock
analysis, we will try to see how this theorem is useful to us to describe certain flow fields

across a normal shock.

Now, having said this we will now move to introduce a gas property table for normal
shock relations. So, previous lectures you derived the mathematical formulations of
different parameters for a normal shock, but many a times these parameters are difficult

to evaluate, and for which we have to refer to the property tables.

So, I will introduce this gas property table, how you are going to see the table to find out
different values. Then we will try to see that how that gas table can be used to solve

certain numerical examples. So, this is the broad outline for this lecture for today.

(Refer Slide Time: 03:27)
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Just to give the brief insight what we have learnt in the previous class, | can say that a
normal shock is a very natural phenomena for a supersonic flow field in which all the
compression waves merge in a very thin region, and this thin region has a typical

dimension of 1077 m.

239



And across this thin region all the flow properties before the shock and after the shock
needs to be correlated. So when you see this magnitude of this property, they jump in a
very steep manner or they jump drastically in one direction and across this discontinuity

region.

So, the given problem that we have is that we have a standing normal shock. So, the
conditions that are upstream conditions are known to us such as pressure, temperature,
density, velocity, Mach number, all stagnation properties they are known. And what are
the unknown condition is what happens after the shockwave. So, in our previous study,
we tried to derive the correlations between these properties value upstream and

downstream across this shock wave.

(Refer Slide Time: 05:07)

So, after doing so, we will try to find out; of course we have derived so many parameters
across the normal shocks. So, we will try to find out some important consequences. So,
with which | call as inferences, inferences number 1. So, first inferences that we can talk
about is limiting Mach number.

So, as you say see from this Prandtl relations which is the star conditions of M1 and M
across a normal shock, they are inversely related. And from these relations, we can

actually find out the Mach number relations across the normal shock that is M, and M.
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So, this is the given by these equations. Now, having said this we can say that how M
will vary with respect to M. So, this says that if your My is supersonic, M2 has to be
subsonic. So, it means that has to be subsonic, so that means, this is the first important
relations what we get but why Mz has to be supersonic that we will come back later when

you do the entropy analysis.

But the for the time being let us say that My is supersonic, now when My is supersonic
the minimum value of My should be 1. So, when it is My is 1, M2 is 1 which means there
is no shockwave. It is just a simple Mach wave or just a beginning of formation of shock
wave. So, effectively in the flow is there is no shock wave, entire flow condition is

isentropic.

So, this is one case that is what | can say the beginning condition of shock wave. So, we
say that this is the first limiting conditions. Now, second limiting conditions that how
long | can increase Ms. So, if I go on increasing the M1, we will find there is a upper

limit of M2. So, M> cannot be more than certain value.

So, this we can see from these equations. The relation between M, and M1 can be also
=y
M, 2

(1Y)
Y [ZMlzj

Now, in this equation when | put the limiting condition, when M goes to infinity, means

written in this form that is M7 =

this region, the upstream goes to infinity that means we are putting a limit that we keep
on increasing the Mach number on the upstream side. So, what happens in the

el . . . 1
downstream if this particular term when at this condition we can say Ve goes to 0.
1

1 . . .
So, when | say Wgoes to 0 in the expression of this M2, we can say these two
1

particular term becomes 0. So, this leaves out the limiting case of M. will be equal to

-1 . . .
yz— . Now, when we put gamma is equal to 1.4 for air, so this value turns out to be
Y

0.378. So, at this condition we say your M will be fixed by 0.378.
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So, in other words, the M> value cannot come below this number provided you are using
air that is first consequence, and that is the upper limit. Lower limit M1 can be 1, so Mz
will be 1. So, this particular situation will tell let you know that the flow is isentropic,
and there is no shock wave. So, this is the first limiting case, this is the limiting case for

Mach number.

(Refer Slide Time: 10:17)

Then moving further, let us see what happens to static property ratio. By static property

ratio | mean static pressure ratio &statlc temperature ratio T—Z, and static density ratio

1 1

Pz So, previously we have derived these relations across the normal shock, and all

P1
these relations are nothing but the functions of Ms. So, looking at this equation when

what one can say that when My goes to infinity, the P2 ang %also goes to very high

1 1

value. So, there is no limiting case because this equation does not restrict these numbers.

But whereas, interesting phenomena will happen for the density; so when M1 goes to

infinity, unfortunately this termizgoes to 0. So, in%goes to 0, the density ratio Pz

1 1 Py

turns out to be y—+i . And for gamma is equal to 1.4, this ratio has to be 6.
'Y —
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So, here also | can say that My is equal to 1, M2 will be 1, but at the same time your Pz

Py
goes to 6 when M; goes to infinity. So, irrespective of what value of pressure
temperature, the density ratio cannot be more than 6 for air that is irrespective of Mach

number.

(Refer Slide Time: 12:13)

And next we will move to the third inferences that is for the entropy conditions. So, in
the beginning, | told that we say that Mz is supersonic, now we will and try to find out
this answer why this M1 should be supersonic. So, these particular things can be

answered from this entropy analysis.

So, what we learnt so far that from Prandtl relation one can obtain Mach number
relations across a normal shocks. So, the conditions for subsonic and supersonic nature
of the flow across the normal shock is decided through entropy analysis. The static

pressure static temperature increases across the normal shock.

So, the entropy equation will demonstrate that the entropy change across a normal shock
is a function of Mach number. In fact, we derived this from our previous analysis. Then
we will try to invoke that what the second law of thermodynamics tells us. So, the
second law of thermodynamic tells us the important consequence that is directionality of
a flow. So, this flow will proceed in a direction in which the thermodynamic property
that is entropy should increase.
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(Refer Slide Time: 13:35)

So, now to show that why M cannot be subsonic, so first thing we have to see this
particular important equation, this is the very thermodynamic fundamental equations

how you want to calculate the entropy change between two states 1 and 2. Now, that is

sz—sl=cpln[Tr—2j—Rln[%J.
1 1

Now, this is the broad analysis. Now, we try to use these equations for a shock wave. So,
we know this temperature ratio; we know the pressure ratios. So, when you put those
expressions which turns out to be this. Now, one thing important to be noted here that

when My is equal to 1, so s, =s;. This is what we say that when M is equal to 1, Mz is

equal to 1, so this iss, =s,, then this is the entire isentropic as if there is no shock wave.

And in this equation when you put M is greater than 1, we will find the s, >s,. So, this

is the conditions for shock wave that we have been analyzing so far. So, that for which
we say that M1 will be always greater than 1 for which M. should be less than 1. So,

these two relations holds good.

But if you see the third relations, what we find out that if My is less than 1, your

(s,—s,)<0. So, this does not follow the second law that entropy decreases in the

direction of the flow. So, this is a impossible situation as far as the second law of

thermodynamics is concerned. So, always we consider the relation which is written in the
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middle that is M1 must be greater than 1. And also we can say that for subsonic flow,
entropy decreases across a normal shock and hence shockwaves do not exist in the

subsonic flow.

(Refer Slide Time: 16:09)

And again moving further from another inferences 4. So, here we will talk about what

happens to the stagnation property ratio. So, one of the important relations from entropy

change across a normal shock can be calculated assz—slz—Rln(@J. So, p,,is

01
nothing but the stagnation pressure after the shock, p,,is the stagnation pressure before

the shock.

So, we can say that this p,,is related is calculated from pz and M2 and p,, is calculated

from p1 and M1. So, we can say that the entropy change is given by these relations. So,

this says that p,, < p,that means stagnation pressure always drops. Why it always

drops? Because in earlier analysis we have said that energy equation does not change.

So, total temperature or stagnation temperature remains constant.

So, having said this, and if you say the equation of state p=pRT, and for this case if
you say p,=pRT,. So, if this equation has to be satisfied, then these two conditions

must valid. So, as this is equal; stagnation pressure should drop. So, stagnation density
also should drop.

245



(Refer Slide Time: 17:53)

So, this is all about what we have studied from this analysis of normal shock and its
inferences. Now, we will move to a theorem which is known as Crocco’s theorem. Just
to start this. So, let us forget that we are dealing with a normal shock analysis, but what
we are dealing with just a fundamental theorem and that is applicable for all situations
that involves fluid kinematics and thermodynamics. And in particular we are trying to

apply this Crocco’s theorem for our compressible flow theory.

So, what does this theorem tells; it tells about the relation between a fluid vorticity with
respect to entropy change. So, when | say fluid vorticity, its a kinematic parameter and
when | say entropy its a thermodynamic parameter. Now, what it tells is that, so when |
say fluid kinematic parameters the common parameter that | should know is about this
angular velocity ®, then velocity vector and another parameter what you will say

vorticity vector. So, vorticity vector is nothing but twice omega vector.

So, now we know that from fluid kinematics analysis, we can say that o= %(V ><\7) . So,

this is how these fluid kinematic parameters is defined. So, what we are trying to see

here is that Crocco’s theorem which is given by this particular expression,

vV x(V x\7) =Vh,—-TVs +%/ . So, this is a vector relation.
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And to derive this equations, so let us start with the equations that we can recall this

equation called as Euler equation, but in vector form. So, when | write this Euler

equation in vector form, what I can write p%+p(\7.V)\7 =-Vp.

So, what | can write is, we can find out a term@:—[%+(\7v)\7}. Then also we
p

have to recall a Tds relation that is the in vector form. So, one thing I need to emphasize
this Euler equation is a fluid parameter term, Tds relation is for the thermodynamic term.

So, what | can write TVs:Vh—@. So, here we also know that @ from this Euler

p p

2 2
equations. Also we know hO:h+V?that Is static enthalpy plus V?is stagnation

enthalpy. So, from this we can find out what is Vh.

So, once you do that, so you have to do some mathematical jugglery. So, we put this vp

p

, .
in this, Tds relations. So, what | can write TVs = Vh, —V(V?J+%+(\7.V)\7. So, here

you have to know certain mathematical relation what we call as vector identity that

relates between these two parameters.

2

So, what do we write isV(%]—(V.V)V:Vx(VxV). So, this is a mathematically

derived term. Now, when | put this vector identity equation for these two terms in this
: L N -

equation, then we write this TVs =Vh, +E_V X (V xV )

Now, after rearranging, one can obtain this particular relation written in the first

equation. So, if you look at this equation, it contains all these terms that relates one side

of this equation contains the kinematic parameter that is velocity vector; other side of the

equation contains the entropy term, temperature, and enthalpy term. Also there is another
I NV : : o
parameter which is a unsteady parameter x So, this equation | can say it is for

unsteady flow. And when for a steady flow this term this term will vanish. So, this
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becomes steady flow. So, this is how the Crocco’s theorem equation are defined by these

two expression.

(Refer Slide Time: 27:31)

Now, let us see how this Crocco’s theorem is useful to us. So, now, let us say if we are
talking about a shock wave, and we are trying to correlate the fluid parameter with

respect to thermodynamic parameters. So, here we are talking about the h,that is Vhy,
and that is nothing but V(cpTO). So, that does not change because total temperature

across a shock wave is remains constant. So, Vhyis 0.

Now, what happens to Vs? s, —s always greater than 0, so that means, entropy gradient

of entropy cannot be equal to 0. So, this says that your (V x\7) cannot be equal to 0.

When (V x\7)cannot be equal to O, this turns out to be @ cannot be equal to 0 which

means that when | say thin region of the shock wave, the flow field in this thin region is
highly rotational, which means if you visualize the flow field we will find this fluid
elements try to have rotational vector in this thin region. So, across a normal shock, the
flow is highly rotational. This is one of the important inference that a shockwave analysis

gives to us.
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Now, whatever we have learnt so far we if we want to summarize normal shock
relations, we said about the Prandtl relations that relates between the shock Mach
number before the shock and after the shock. So, very basic bottom line is that if we have
a standing normal shock the conditions that are known to us is the upstream conditions,
all the flow parameters are known; the conditions that are not known to us as the all the

downstream parameters.

But what we know simply is the relation between Mach numbers M1 and M> through
these Prandtl relations. Now, using these relations, one can find out all the static pressure
ratio, static density ratio, static temperature ratio. And if you see here, all this number
will increase. So, in fact, we also can have stagnation pressure ratio that drops; total

temperature is equal. So, in this way we can calculate.

So, one way of looking at this equation if you see, all these ratios are the functions of
Mach number and which is in the upstream regions, which is known to us. And every
time if we know the Mach number, every time it is almost a time consuming task to use

these equations to know the flow parameters.

So, one convenient way of looking at this approach would be create a database in which
we will vary My, and try to find out how the ratios will be. So, in this way a table can be

prepared for a normal shock and we call this as a gas property table for all the normal
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shock relations. So, by that table, we will avoid the time consuming task of using
calculating the flow parameter using these equations.

(Refer Slide Time: 32:07)

01000401 01000401 01000401 01000401 01000401 01893401 01000401
01020401 01047¢01 01033401 01013401 01000401 01938401 09805400
01040401 01095401 01067401 01026401 0999400 01984401 09620400
01060401 01144401 0101401 01039+01 09998400 OLI2401 0944400
01080 +01 01194401 01135401 01052401 09994+00 0282401 09277+00
01100401 01245401 01169+01 01065401 09989+00 02133401

01120401 01297401 01203401 01078401 09982400 02185401
01140401 01350401 01218401 01090401 09973:+00 02239401
01160401 01403401 01272+01 01103401 09961400 0294401
01190401 01458+01 0107401 01115401 0946400 02350401

04000401 0180402 04571401 04047401 01388400 02107402
04050401 01897402 04598401 04125401 01330400 02159402
04100401 01944402 04624401 04205401 01276400 02211402
04150401 01993402 04650401 04285+01 0123400 02264402
04200401 02041402 04615401 04367:01 01173400 02318402
04250401 02091402 04639401 04449401 01126400 02372402
04300401 02140402 04123401 04532401 01080400 02427402
04350401 02191402 04746401 04616401 01036400 02483402
04400401 02242402 04768401 04702401 0994801 02539402
04450401 02294402 040+01 04788+01 09550-01 02596402

08000+01 07450402 05565401 01339402 0848802 08287402
09000401 0M33+02 05651401 01669402 04964-02 01048403
01000402 01165403 05714401 02039402 03045-02 01292403
0100402 01410403 05762401 02447402 0194502 01563403
01200402 01678403 0599401 02894402 01287-02 01859403
01300 02 01920403 05828401 03380402 08771-03 02181+03
01400402 02265403 05851401 03905402 0613803 02528+03
01500402 0263403 05870401 04469402 04395-03 02902403
01600402 02985+03 05885401 05072402 03212-03 03W1 403
01700402 03370403 05898+01 05714402 0239003 03726403

Now, let us see how this table is the framed. So, for this table, | have taken this extract
from this reference book John D Anderson Modern Compressible Flow that is McGraw
Hill Publications. So, this is one source of extract what | have just taken. What it says is

that this has about 7 column of data. The first column belongs to the Mach number which
IS upstream.

So, for the normal shock, the first column that talks about is M1 and the last column is
Ma. So, across a normal shock, I know what is my value of M1, and correspondingly the
last column will talk about what will happen to the M. conditions. Similarly, pressure
ratio, if 1 want to calculate if it is p1 and if it is p2. So, second column will give the
pressure ratio across the normal shock.

If your density is p1 and p2, the third column will talk about the density ratio which is the
function of Mach number. Fourth column will talk about the temperature ratio, T1 and
T,. Fifth column will talk about the stagnation pressure ratio. So, stagnation pressure
ratio, that means, for corresponding p: and M1, we can define a stagnation pressure poz
and for M and p2, we can define the stagnation pressure po2. So, that ratio is given by

thisPez.

Pos
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And also there is another relations once you have this po1, and we can also correlate with
p1; this is another important relations we call this as Rayleigh-Pitot equations. So, many
a times this ratio is also very important which we can directly find out from the gas table.
So, what | can we can see that there are three regime is just | have written. First regime is
you can say the first value that stands as My is 1 that is what we say and this M can goes

to infinity.

So, here it has been plotted about 17, Mach number of 17. And till now this is the
realistic number what we can say. So, the first part of this is can say it is a low
supersonic, middle one is in the range of maybe supersonic, the bottom one is very high

supersonic and we call this as hypersonic flow.

So, there are any number of intermediate data that can also be generated. So, this is really
just to give you a glimpses that how a gas property table looks like. Now, knowing on

this, we can just find out all the parameters.

(Refer Slide Time: 35:55)

M A A I L
i Ll A T B n

03500401 01412402 0461401 0BIS+01 02129400 0164402 04512400
0350401 01454402 04296401 01B4+01 02039400 01610402 04492400
03600401 01495402 04330401 034S4+01 01953400 01716402 04474400
03650401 01538402 04363401 03525401 0IST1+00 01762402 04456400

03950401 01804402 04544401 03969401 01448400 02086402 04363400

So, with this, let me see demonstrate that how one is supposed to refer this gas property
tables. So, for that let us solve some numerical problems. The problem that is given to us
that we have a standing normal shock in a in the test section of a supersonic wind tunnel,
it has the parameter that is upstream for which the Mach number is 3.5, static pressure
ratio is 0.4 bar and static temperature is -70°C. So, we have to calculate the Mach

number, static pressure, static temperature, velocity downstream of the wave.
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So, if you want to solve this problem, so first thing we have to draw a very schematic
sketch that briefs about the problems. So, if you have a normal shock, what we know is
upstream which is My that is 3.5, static pressure p1 0.4 bar, static temperature is Ty that is
-70°C or we can say 203K.

What you do not know is My, required to calculate what is p2, and T2 and u2. So, one way

to look at the problem is that you take all the standard relations, use your calculator and

M i . .
calculate all these parameters M—Z : &, because M2 will be a function of My, Pa iy be

1 pl pl

a function of My, all these numbers are known to us.

But what | am trying to say is that how to use the gas dynamics table. This is one such
extracts from these gas dynamic table from the book, where | can get the information
about Mach number of 3.5. So, if you look at this the first row on these things says that

Mach number of 3.5, it talks about all the parameters. So, | can write this when My is

equal to 3.5, then I can say P is 14.12. -_Ir_—z we say 3.315. We also require Mach

1 1

number. So, we can say M, will be 0.4512.

So, we require p2. So, p2 can be written as [&] p,. So, we know p1, we know &. So,

h Py

p2 can be calculated as 14.12 x 0.4. So, it is about 5.65 bar. Similarly, T, will be [%jﬂ.

1

So, this will be if you calculate 3.315 x 203 = 673 Kelvin.

So, what is left out? We know Mz, we got pz, we got T, we want uz. So, u, =M,a,. So,

u, = M, /yRT, . So, u, =0.4512/1.4x 287 x673 u, =235m/s. So, this is how we look

at this problem. So, we get all the parameters by using this table data.
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02000401 04500401 02667401 01687401 07209400 05690+01 0574400
0050401 04736401 02740401 01729401 0675400 05900401 05691400
02100401 04976401 0212401 0170401 06742400 06165401 05613400
02150401 0526401 02882401 01813401 06511400 06438401 05540400
02200401 03480401 02951401 01857401 06281400 06716+01 05471400
02250401 05740401 03019401 01901401 06055400 002401 05406+00
02300401 06005401 03085401 01947401 05833400 0794401 05344400
02350401 06206401 03149401 0193401 03615400 07592401 05286400
02400401 06553401 0322401 0240401 05401400 07897401 0581400
0450401 06836401 073401 0288401 05193400 008401 05179400

The second problem we will try to see in another way of looking at the problem. A blunt
nosed missiles flies at Mach 2.3, calculate the pressure and temperature at the nose of the
missile. So, in one of analysis is a blunt nosed missile. So, a blunt nosed missile is
something is represented in this manner, nose is a blunt. So, for a blunt nosed missile,
when it is flying at 2.3 Mach which will have a shock wave sitting onto this body at the

Nose.

So, what we want to see is that are the nose of this, we can zoom this version we can
assume it to be a normal shock. So, when it is a normal shock, so upstream condition we
can say that as if a gas is moving or moving from upstream to downstream for which
your My will be 2.3. And if there are two situations it is asked; when for this My is equal

to 2.3, what we require is pressure and temperature at the nose.

So, at the nose of this, what we see here the flow happens to be almost remain stagnant
because if these flow comes at the this point, flow is almost stagnant, so that part will say
that on a blunt nose body at the nose of the missile will encounter a normal shock, and
whatever pressure and temperature that will be nothing but your stagnation pressure. So,
for that what we want to find out what is po2, what is To.

So, here the confusion may arise what pressure we should find, static pressure or
stagnation pressure? But here your answer should be stagnation pressure because a blunt
nose missile always encounters stagnation pressure at the nose, because the flow tries to
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comes down to almost rest at that point. And second assumption what we are doing at the

nose portion, the shock wave will be close to a normal shock.

Now, this is the things we require. But what the condition that is given there are two
situations. So, we have to find out one at sea level conditions, other is at 18 kilometre
altitude. So, means that if a missile is flying at sea level what will be the po2 and To2? If

the missile is flying at 18 kilometre altitude, what will be this value?

So, for that will require we will require a sea level pressure; sea level pressure is
normally represented in a static value. So, | can say p: to be 1 bar and T: to be maybe
15°C or 288K. Similarly, from the data table, if you look at the property data altitude
versus pressure temperature, then we can find out that at an 18 kilometre altitude, the

pressure will be very low, 0.074 bar and temperature is about 218K.

So, there is a drop in static temperatures with altitude. So, to do that, at sea level situation
if you want to calculate, then what we can find out, the first relation that is we require we
know pz1, we want poo. So, basically we have to refer this particular column of this table.
So, for this particular column and Mach 2.3, | have to refer this particular row.

So, I can get this number to be we can say for My is equal to 2.3 will implies Po2 \yould

P,
be 7.294. So, from these things, one can evaluate what is at sea level we can say po2
would be 7.294 bar. And at 18 kilometer altitude, we can say po2 will be 7.294 x 0.074,
so this much bar. So, this is how we get pressure.

Now, to find temperature, what you require because what we can say temperature across

a normal shock do not change. So, I can say T, =T,. But To1, I can find out that

T, -1 . : . .
- :1+YT M/, this we get from isentropic relations.

1
So, for M1 is equal to 2.3, this ratio turns out to be 2.06. So, we can say To2 at sea level
would be or To1 would be 2.06 x 288 K that is at sea level. And at 18 kilometre altitude,
we can say To2 will be Toz is equal to 2.06 x 218 Kelvin. So, this analysis tells us that

when you go with altitude, the total the pressure drops.
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So, what you can imagine that that at sea level if your pressure is close to 7.3 bar, but it
drastically reduced to a very low pressure at that altitude. Since your drag will be less
and that is the reason one can fly at very high speed high Mach number in higher
altitude. In fact, temperature will also be less. This is all about the problem number 2.

(Refer Slide Time: 50:03)
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0200401 04500401 02667401 01687301 07209400 05680401 05714400
0050401 047136401 02740401 0179401 06975400 05900401 05691400
02100401 04978401 02812+01 01770401 06742400 06165+01 05613400
02150401 0526401 02882401 01813401 06511400 06438401 05340400
0200401 05480401 02951401 01857401 0681400 06716401 05471400
02250401 05740401 03019401 01901401 06055400 002401 05406+00
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0200401 06005401 03085401 01947401 05833400 0794401 05344400
02350401 06206401 03149+01 01993401 03615400 07592401 05286400
02400401 06553401 0322401 02040401 S401400 0797401 05231400
0450401 06836401 OR7+01 088401 05193400 0R08+01 05179400

And problem number 3, this is again a similar problem which he says that Pitot tube is
inserted in a supersonic flow and is measures 3 bar pressure while static pressure is 0.4
bar. We require Mach number and entropy change. Here the entire idea is mentioned that

Pitot pressure, the Pitot probe measures stagnation pressure.

So, across a Pitot pressure, there will be a close to a very normal shock. So, across the
normal shock the pressure is measured to be 3 bar that is po2, and the static pressure in
the flow field is 0.4 bar.

So, one should not confuse that this pressure is a static pressure that is 0.4 bar and when |
use the word Pitot probe, then I must use this as a stagnation pressure now which
stagnation pressure. So, this has to be stagnation pressure after this normal shock. So,

when | say after the normal shock, then it must be po2. So, when I say this, when I infer

the data, then I can say I can easily calculate the ratio ﬁ.

P,

255



This ratio is about 7.5. So, to do that | have to refer this data, because | do not know the

Mach number, but Mach number you want to find out. So, from this table, we have to

find out in this column of hwhich data is close to 7.5. So, take the extract from that
P

then this number turns out to be My is equal to point 2.35. So, this will tell My is 2.35.

So, when My is 2.35, what you require entropy change. So, entropy change will be

s, —sS,, one can use simple relation s, —s, :—Rln(@j. And for this Mach number of

pOl
2.35, this ratio is 0.5615. s, —s, =-2871In (0.5615) . S,—S, =165.6 J/kgK

So, this is how we can find out the Mach number if Mach number is not given. This is
the essence. This is the most advantage part of the using data table, even though the
Mach number is not given, but still we can given the data of property data, we can also
calculate the Mach number. This is another way of visualizing the advantage of graphical
or a data table for property calculations.

So, in this way | have just given some sample example how to use the data table for a
normal shock applications and in fact one need not have to remember the big expressions
of flow equations, but one has to understand that such equation exists. And in fact, all
these data tables are derived from those relations. So, with this, I will conclude my
lectures for today.

Thank you very much for your attention.
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