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Welcome you again to this course Fundamentals of Compressible Flow. We are in the 

Module 4 - Normal Shock Waves.  

(Refer Slide Time: 00:43) 

 

So, previously we have gone through two lectures in this module, where we discussed 

about the formation of shock waves, what is its importance, we discussed about the 

fundamental equations, and we derived one important relations known as Prandtl 

relations for the normal shock.  

And based on these relations one can find out the flow property across a normal shock. 

So, we will move further from this contents and today in this lecture we are going to 

discussed some important inferences that we come across from this normal shock 

analysis.  

Now, apart from that we are trying to introduce a theorem which is known as Crocco’s 

theorem which is a very vital and important theorem that relates the fluid kinematics 
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aspects with respect to thermodynamic relations that normally is encountered across a 

normal shock. Of course, this Crocco’s theorem has nothing to do with normal shock 

phenomena. Crocco’s theorem is independent in nature that correlates the fluid kinetic 

concepts to thermodynamic concepts. And in our study that is in the normal shock 

analysis, we will try to see how this theorem is useful to us to describe certain flow fields 

across a normal shock.  

Now, having said this we will now move to introduce a gas property table for normal 

shock relations. So, previous lectures you derived the mathematical formulations of 

different parameters for a normal shock, but many a times these parameters are difficult 

to evaluate, and for which we have to refer to the property tables.  

So, I will introduce this gas property table, how you are going to see the table to find out 

different values. Then we will try to see that how that gas table can be used to solve 

certain numerical examples. So, this is the broad outline for this lecture for today. 

(Refer Slide Time: 03:27) 

 

Just to give the brief insight what we have learnt in the previous class, I can say that a 

normal shock is a very natural phenomena for a supersonic flow field in which all the 

compression waves merge in a very thin region, and this thin region has a typical 

dimension of 10-7 m.  

239



 

 

And across this thin region all the flow properties before the shock and after the shock 

needs to be correlated. So when you see this magnitude of this property, they jump in a 

very steep manner or they jump drastically in one direction and across this discontinuity 

region.  

So, the given problem that we have is that we have a standing normal shock. So, the 

conditions that are upstream conditions are known to us such as pressure, temperature, 

density, velocity, Mach number, all stagnation properties they are known. And what are 

the unknown condition is what happens after the shockwave. So, in our previous study, 

we tried to derive the correlations between these properties value upstream and 

downstream across this shock wave.  

(Refer Slide Time: 05:07) 

 

So, after doing so, we will try to find out; of course we have derived so many parameters 

across the normal shocks. So, we will try to find out some important consequences. So, 

with which I call as inferences, inferences number 1. So, first inferences that we can talk 

about is limiting Mach number.  

So, as you say see from this Prandtl relations which is the star conditions of M1 and M2 

across a normal shock, they are inversely related. And from these relations, we can 

actually find out the Mach number relations across the normal shock that is M2 and M1. 
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So, this is the given by these equations. Now, having said this we can say that how M2 

will vary with respect to M1. So, this says that if your M1 is supersonic, M2 has to be 

subsonic. So, it means that has to be subsonic, so that means, this is the first important 

relations what we get but why M1 has to be supersonic that we will come back later when 

you do the entropy analysis.  

But the for the time being let us say that M1 is supersonic, now when M1 is supersonic 

the minimum value of M1 should be 1. So, when it is M1 is 1, M2 is 1 which means there 

is no shockwave. It is just a simple Mach wave or just a beginning of formation of shock 

wave. So, effectively in the flow is there is no shock wave, entire flow condition is 

isentropic. 

So, this is one case that is what I can say the beginning condition of shock wave. So, we 

say that this is the first limiting conditions. Now, second limiting conditions that how 

long I can increase M1. So, if I go on increasing the M1, we will find there is a upper 

limit of M2. So, M2 cannot be more than certain value.  

So, this we can see from these equations. The relation between M2 and M1 can be also 

written in this form that is 
2
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.  

Now, in this equation when I put the limiting condition, when M1 goes to infinity, means 

this region, the upstream goes to infinity that means we are putting a limit that we keep 

on increasing the Mach number on the upstream side. So, what happens in the 

downstream if this particular term when at this condition we can say 
2

1

1

M
 goes to 0.  

So, when I say 
2

1

1

M
goes to 0 in the expression of this M2, we can say these two 

particular term becomes 0. So, this leaves out the limiting case of M2 will be equal to 

1

2

 


. Now, when we put gamma is equal to 1.4 for air, so this value turns out to be 

0.378. So, at this condition we say your M2 will be fixed by 0.378.  
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So, in other words, the M2 value cannot come below this number provided you are using 

air that is first consequence, and that is the upper limit. Lower limit M1 can be 1, so M2 

will be 1. So, this particular situation will tell let you know that the flow is isentropic, 

and there is no shock wave. So, this is the first limiting case, this is the limiting case for 

Mach number.  

(Refer Slide Time: 10:17) 

 

Then moving further, let us see what happens to static property ratio. By static property 

ratio I mean static pressure ratio 2

1

p

p
static temperature ratio 2

1

T

T
, and static density ratio 

2

1




. So, previously we have derived these relations across the normal shock, and all 

these relations are nothing but the functions of M1. So, looking at this equation when 

what one can say that when M1 goes to infinity, the 2

1

p

p
and 2

1

T

T
also goes to very high 

value. So, there is no limiting case because this equation does not restrict these numbers.  

But whereas, interesting phenomena will happen for the density; so when M1 goes to 

infinity, unfortunately this term
2

1

1

M
goes to 0. So, in

2
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M
goes to 0, the density ratio 2
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turns out to be 
1

1

 

 
. And for gamma is equal to 1.4, this ratio has to be 6.  
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So, here also I can say that M1 is equal to 1, M2 will be 1, but at the same time your 2

1




 

goes to 6 when M1 goes to infinity. So, irrespective of what value of pressure 

temperature, the density ratio cannot be more than 6 for air that is irrespective of Mach 

number. 

(Refer Slide Time: 12:13) 

 

And next we will move to the third inferences that is for the entropy conditions. So, in 

the beginning, I told that we say that M1 is supersonic, now we will and try to find out 

this answer why this M1 should be supersonic. So, these particular things can be 

answered from this entropy analysis.  

So, what we learnt so far that from Prandtl relation one can obtain Mach number 

relations across a normal shocks. So, the conditions for subsonic and supersonic nature 

of the flow across the normal shock is decided through entropy analysis. The static 

pressure static temperature increases across the normal shock. 

So, the entropy equation will demonstrate that the entropy change across a normal shock 

is a function of Mach number. In fact, we derived this from our previous analysis. Then 

we will try to invoke that what the second law of thermodynamics tells us. So, the 

second law of thermodynamic tells us the important consequence that is directionality of 

a flow. So, this flow will proceed in a direction in which the thermodynamic property 

that is entropy should increase.  
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So, now to show that why M1 cannot be subsonic, so first thing we have to see this 

particular important equation, this is the very thermodynamic fundamental equations 

how you want to calculate the entropy change between two states 1 and 2. Now, that is 

2 2
2 1

1 1

ln lnp

T p
s s c R

T p

   
     

   
.  

Now, this is the broad analysis. Now, we try to use these equations for a shock wave. So, 

we know this temperature ratio; we know the pressure ratios. So, when you put those 

expressions which turns out to be this. Now, one thing important to be noted here that 

when M1 is equal to 1, so 
2 1s s . This is what we say that when M1 is equal to 1, M2 is 

equal to 1, so this is
2 1s s , then this is the entire isentropic as if there is no shock wave.  

And in this equation when you put M1 is greater than 1, we will find the 
2 1s s . So, this 

is the conditions for shock wave that we have been analyzing so far. So, that for which 

we say that M1 will be always greater than 1 for which M2 should be less than 1. So, 

these two relations holds good.  

But if you see the third relations, what we find out that if M1 is less than 1, your 

 2 1 0s s  . So, this does not follow the second law that entropy decreases in the 

direction of the flow. So, this is a impossible situation as far as the second law of 

thermodynamics is concerned. So, always we consider the relation which is written in the 
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middle that is M1 must be greater than 1. And also we can say that for subsonic flow, 

entropy decreases across a normal shock and hence shockwaves do not exist in the 

subsonic flow.  

(Refer Slide Time: 16:09) 

 

And again moving further from another inferences 4. So, here we will talk about what 

happens to the stagnation property ratio. So, one of the important relations from entropy 

change across a normal shock can be calculated as 02
2 1

01

ln
p

s s R
p

 
    

 
. So,

02p is 

nothing but the stagnation pressure after the shock, 
01p is the stagnation pressure before 

the shock.  

So, we can say that this 
02p is related is calculated from p2 and M2 and

01p is calculated 

from p1 and M1. So, we can say that the entropy change is given by these relations. So, 

this says that 
02 01p p that means stagnation pressure always drops. Why it always 

drops? Because in earlier analysis we have said that energy equation does not change. 

So, total temperature or stagnation temperature remains constant.  

So, having said this, and if you say the equation of state p RT  , and for this case if 

you say 
0 0p RT . So, if this equation has to be satisfied, then these two conditions 

must valid. So, as this is equal; stagnation pressure should drop. So, stagnation density 

also should drop. 
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So, this is all about what we have studied from this analysis of normal shock and its 

inferences. Now, we will move to a theorem which is known as Crocco’s theorem. Just 

to start this. So, let us forget that we are dealing with a normal shock analysis, but what 

we are dealing with just a fundamental theorem and that is applicable for all situations 

that involves fluid kinematics and thermodynamics. And in particular we are trying to 

apply this Crocco’s theorem for our compressible flow theory.  

So, what does this theorem tells; it tells about the relation between a fluid vorticity with 

respect to entropy change. So, when I say fluid vorticity, its a kinematic parameter and 

when I say entropy its a thermodynamic parameter. Now, what it tells is that, so when I 

say fluid kinematic parameters the common parameter that I should know is about this 

angular velocity  , then velocity vector and another parameter what you will say 

vorticity vector. So, vorticity vector is nothing but twice omega vector.  

So, now we know that from fluid kinematics analysis, we can say that  
1

2
V  . So, 

this is how these fluid kinematic parameters is defined. So, what we are trying to see 

here is that Crocco’s theorem which is given by this particular expression, 

  0

V
V V h T s

t


     


. So, this is a vector relation.  
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And to derive this equations, so let us start with the equations that we can recall this 

equation called as Euler equation, but in vector form. So, when I write this Euler 

equation in vector form, what I can write  .
V

V V p
t


    


.  

So, what I can write is, we can find out a term  .
p V

V V
t

  
    

  
. Then also we 

have to recall a Tds relation that is the in vector form. So, one thing I need to emphasize 

this Euler equation is a fluid parameter term, Tds relation is for the thermodynamic term. 

So, what I can write 
p

T s h


  


. So, here we also know that 
p


 from this Euler 

equations. Also we know 
2

0
2

V
h h  that is static enthalpy plus 

2

2

V
is stagnation 

enthalpy. So, from this we can find out what is h .  

So, once you do that, so you have to do some mathematical jugglery. So, we put this 
p


 

in this, Tds relations. So, what I can write  
2

0 .
2

V V
T s h V V

t

  
      

 
. So, here 

you have to know certain mathematical relation what we call as vector identity that 

relates between these two parameters. 

So, what do we write is    
2

.
2

V
V V V V

 
      
 

. So, this is a mathematically 

derived term. Now, when I put this vector identity equation for these two terms in this 

equation, then we write this  0

V
T s h V V

t


     


. 

Now, after rearranging, one can obtain this particular relation written in the first 

equation. So, if you look at this equation, it contains all these terms that relates one side 

of this equation contains the kinematic parameter that is velocity vector; other side of the 

equation contains the entropy term, temperature, and enthalpy term. Also there is another 

parameter which is a unsteady parameter 
V

t




. So, this equation I can say it is for 

unsteady flow. And when for a steady flow this term this term will vanish. So, this 
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becomes steady flow. So, this is how the Crocco’s theorem equation are defined by these 

two expression.  

(Refer Slide Time: 27:31) 

 

Now, let us see how this Crocco’s theorem is useful to us. So, now, let us say if we are 

talking about a shock wave, and we are trying to correlate the fluid parameter with 

respect to thermodynamic parameters. So, here we are talking about the 
0h that is 

0h , 

and that is nothing but  0pc T . So, that does not change because total temperature 

across a shock wave is remains constant. So, 
0h is 0.  

Now, what happens to s ? 
2 1s s always greater than 0, so that means, entropy gradient 

of entropy cannot be equal to 0. So, this says that your  V  cannot be equal to 0. 

When  V cannot be equal to 0, this turns out to be   cannot be equal to 0 which 

means that when I say thin region of the shock wave, the flow field in this thin region is 

highly rotational, which means if you visualize the flow field we will find this fluid 

elements try to have rotational vector in this thin region. So, across a normal shock, the 

flow is highly rotational. This is one of the important inference that a shockwave analysis 

gives to us. 
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Now, whatever we have learnt so far we if we want to summarize normal shock 

relations, we said about the Prandtl relations that relates between the shock Mach 

number before the shock and after the shock. So, very basic bottom line is that if we have 

a standing normal shock the conditions that are known to us is the upstream conditions, 

all the flow parameters are known; the conditions that are not known to us as the all the 

downstream parameters.  

But what we know simply is the relation between Mach numbers M1 and M2 through 

these Prandtl relations. Now, using these relations, one can find out all the static pressure 

ratio, static density ratio, static temperature ratio. And if you see here, all this number 

will increase. So, in fact, we also can have stagnation pressure ratio that drops; total 

temperature is equal. So, in this way we can calculate.  

So, one way of looking at this equation if you see, all these ratios are the functions of 

Mach number and which is in the upstream regions, which is known to us. And every 

time if we know the Mach number, every time it is almost a time consuming task to use 

these equations to know the flow parameters.  

So, one convenient way of looking at this approach would be create a database in which 

we will vary M1, and try to find out how the ratios will be. So, in this way a table can be 

prepared for a normal shock and we call this as a gas property table for all the normal 
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shock relations. So, by that table, we will avoid the time consuming task of using 

calculating the flow parameter using these equations.  

(Refer Slide Time: 32:07) 

 

Now, let us see how this table is the framed. So, for this table, I have taken this extract 

from this reference book John D Anderson Modern Compressible Flow that is McGraw 

Hill Publications. So, this is one source of extract what I have just taken. What it says is 

that this has about 7 column of data. The first column belongs to the Mach number which 

is upstream. 

So, for the normal shock, the first column that talks about is M1 and the last column is 

M2. So, across a normal shock, I know what is my value of M1, and correspondingly the 

last column will talk about what will happen to the M2 conditions. Similarly, pressure 

ratio, if I want to calculate if it is p1 and if it is p2. So, second column will give the 

pressure ratio across the normal shock.  

If your density is ρ1 and ρ2, the third column will talk about the density ratio which is the 

function of Mach number. Fourth column will talk about the temperature ratio, T1 and 

T2. Fifth column will talk about the stagnation pressure ratio. So, stagnation pressure 

ratio, that means, for corresponding p1 and M1, we can define a stagnation pressure p01 

and for M2 and p2, we can define the stagnation pressure p02. So, that ratio is given by 

this 02

01

p

p
.  
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And also there is another relations once you have this p01, and we can also correlate with 

p1; this is another important relations we call this as Rayleigh-Pitot equations. So, many 

a times this ratio is also very important which we can directly find out from the gas table. 

So, what I can we can see that there are three regime is just I have written. First regime is 

you can say the first value that stands as M1 is 1 that is what we say and this M1 can goes 

to infinity.  

So, here it has been plotted about 17, Mach number of 17. And till now this is the 

realistic number what we can say. So, the first part of this is can say it is a low 

supersonic, middle one is in the range of maybe supersonic, the bottom one is very high 

supersonic and we call this as hypersonic flow.  

So, there are any number of intermediate data that can also be generated. So, this is really 

just to give you a glimpses that how a gas property table looks like. Now, knowing on 

this, we can just find out all the parameters.  

(Refer Slide Time: 35:55) 

 

So, with this, let me see demonstrate that how one is supposed to refer this gas property 

tables. So, for that let us solve some numerical problems. The problem that is given to us 

that we have a standing normal shock in a in the test section of a supersonic wind tunnel, 

it has the parameter that is upstream for which the Mach number is 3.5, static pressure 

ratio is 0.4 bar and static temperature is -70°C. So, we have to calculate the Mach 

number, static pressure, static temperature, velocity downstream of the wave.  
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So, if you want to solve this problem, so first thing we have to draw a very schematic 

sketch that briefs about the problems. So, if you have a normal shock, what we know is 

upstream which is M1 that is 3.5, static pressure p1 0.4 bar, static temperature is T1 that is 

-70°C or we can say 203K.  

What you do not know is M2, required to calculate what is p2, and T2 and u2. So, one way 

to look at the problem is that you take all the standard relations, use your calculator and 

calculate all these parameters 2

1

M

M
, 2

1

p

p
, because M2 will be a function of M1, 

2

1

p

p
 will be 

a function of M1, all these numbers are known to us.  

But what I am trying to say is that how to use the gas dynamics table. This is one such 

extracts from these gas dynamic table from the book, where I can get the information 

about Mach number of 3.5. So, if you look at this the first row on these things says that 

Mach number of 3.5, it talks about all the parameters. So, I can write this when M1 is 

equal to 3.5, then I can say 2

1

p

p
 is 14.12. 2

1

T

T
 we say 3.315. We also require Mach 

number. So, we can say M2 will be 0.4512.  

So, we require p2. So, p2 can be written as 2
1

1

p
p

p

 
 
 

. So, we know p1, we know 2

1

p

p
. So, 

p2 can be calculated as 14.12 x 0.4. So, it is about 5.65 bar. Similarly, T2 will be 2
1

1

T
T

T

 
 
 

. 

So, this will be if you calculate 3.315 x 203 = 673 Kelvin.  

So, what is left out? We know M2, we got p2, we got T2, we want u2. So, 
2 2 2u M a . So, 

2 2 2u M RT  . So, 2 0.4512 1.4 287 673u     
2 235 /u m s . So, this is how we look 

at this problem. So, we get all the parameters by using this table data. 
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The second problem we will try to see in another way of looking at the problem. A blunt 

nosed missiles flies at Mach 2.3, calculate the pressure and temperature at the nose of the 

missile. So, in one of analysis is a blunt nosed missile. So, a blunt nosed missile is 

something is represented in this manner, nose is a blunt. So, for a blunt nosed missile, 

when it is flying at 2.3 Mach which will have a shock wave sitting onto this body at the 

nose. 

So, what we want to see is that are the nose of this, we can zoom this version we can 

assume it to be a normal shock. So, when it is a normal shock, so upstream condition we 

can say that as if a gas is moving or moving from upstream to downstream for which 

your M1 will be 2.3. And if there are two situations it is asked; when for this M1 is equal 

to 2.3, what we require is pressure and temperature at the nose. 

So, at the nose of this, what we see here the flow happens to be almost remain stagnant 

because if these flow comes at the this point, flow is almost stagnant, so that part will say 

that on a blunt nose body at the nose of the missile will encounter a normal shock, and 

whatever pressure and temperature that will be nothing but your stagnation pressure. So, 

for that what we want to find out what is p02, what is T02.  

So, here the confusion may arise what pressure we should find, static pressure or 

stagnation pressure? But here your answer should be stagnation pressure because a blunt 

nose missile always encounters stagnation pressure at the nose, because the flow tries to 
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comes down to almost rest at that point. And second assumption what we are doing at the 

nose portion, the shock wave will be close to a normal shock.  

Now, this is the things we require. But what the condition that is given there are two 

situations. So, we have to find out one at sea level conditions, other is at 18 kilometre 

altitude. So, means that if a missile is flying at sea level what will be the p02 and T02? If 

the missile is flying at 18 kilometre altitude, what will be this value?  

So, for that will require we will require a sea level pressure; sea level pressure is 

normally represented in a static value. So, I can say p1 to be 1 bar and T1 to be maybe 

15°C or 288K. Similarly, from the data table, if you look at the property data altitude 

versus pressure temperature, then we can find out that at an 18 kilometre altitude, the 

pressure will be very low, 0.074 bar and temperature is about 218K.  

So, there is a drop in static temperatures with altitude. So, to do that, at sea level situation 

if you want to calculate, then what we can find out, the first relation that is we require we 

know p1, we want p02. So, basically we have to refer this particular column of this table. 

So, for this particular column and Mach 2.3, I have to refer this particular row.  

So, I can get this number to be we can say for M1 is equal to 2.3 will implies 02

1

p

p
would 

be 7.294. So, from these things, one can evaluate what is at sea level we can say p02 

would be 7.294 bar. And at 18 kilometer altitude, we can say p02 will be 7.294 x 0.074, 

so this much bar. So, this is how we get pressure. 

Now, to find temperature, what you require because what we can say temperature across 

a normal shock do not change. So, I can say 
02 01T T . But T01, I can find out that 

201
1

1

1
1

2

T
M

T

 
  , this we get from isentropic relations. 

So, for M1 is equal to 2.3, this ratio turns out to be 2.06. So, we can say T02 at sea level 

would be or T01 would be 2.06 x 288 K that is at sea level. And at 18 kilometre altitude, 

we can say T02 will be T01 is equal to 2.06 x 218 Kelvin. So, this analysis tells us that 

when you go with altitude, the total the pressure drops. 
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So, what you can imagine that that at sea level if your pressure is close to 7.3 bar, but it 

drastically reduced to a very low pressure at that altitude. Since your drag will be less 

and that is the reason one can fly at very high speed high Mach number in higher 

altitude. In fact, temperature will also be less. This is all about the problem number 2.  

(Refer Slide Time: 50:03) 

 

And problem number 3, this is again a similar problem which he says that Pitot tube is 

inserted in a supersonic flow and is measures 3 bar pressure while static pressure is 0.4 

bar. We require Mach number and entropy change. Here the entire idea is mentioned that 

Pitot pressure, the Pitot probe measures stagnation pressure.  

So, across a Pitot pressure, there will be a close to a very normal shock. So, across the 

normal shock the pressure is measured to be 3 bar that is p02, and the static pressure in 

the flow field is 0.4 bar.  

So, one should not confuse that this pressure is a static pressure that is 0.4 bar and when I 

use the word Pitot probe, then I must use this as a stagnation pressure now which 

stagnation pressure. So, this has to be stagnation pressure after this normal shock. So, 

when I say after the normal shock, then it must be p02. So, when I say this, when I infer 

the data, then I can say I can easily calculate the ratio 02

1

p

p
.  
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This ratio is about 7.5. So, to do that I have to refer this data, because I do not know the 

Mach number, but Mach number you want to find out. So, from this table, we have to 

find out in this column of 02

1

p

p
which data is close to 7.5. So, take the extract from that 

then this number turns out to be M1 is equal to point 2.35. So, this will tell M1 is 2.35.  

So, when M1 is 2.35, what you require entropy change. So, entropy change will be 

2 1s s , one can use simple relation 02
2 1

01

ln
p

s s R
p

 
    

 
. And for this Mach number of 

2.35, this ratio is 0.5615.  2 1 287 ln 0.5615s s    . 
2 1 165.6s s  J/kgK 

So, this is how we can find out the Mach number if Mach number is not given. This is 

the essence. This is the most advantage part of the using data table, even though the 

Mach number is not given, but still we can given the data of property data, we can also 

calculate the Mach number. This is another way of visualizing the advantage of graphical 

or a data table for property calculations. 

So, in this way I have just given some sample example how to use the data table for a 

normal shock applications and in fact one need not have to remember the big expressions 

of flow equations, but one has to understand that such equation exists. And in fact, all 

these data tables are derived from those relations. So, with this, I will conclude my 

lectures for today. 

Thank you very much for your attention. 
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