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Welcome you again for this course that is Fundamentals of Compressible Flow. We are 

in the 2nd lecture of the module 4 that is Normal Shock Waves.  

(Refer Slide Time: 00:39) 

 

So, if you look at the first lecture at this module; what we have discussed is about the 

concept of shockwaves. Then in a one dimensional medium, we explained the formation 

of the shock waves and how it propagates in the flow and also we gave the correlation 

between a standing shock wave and a moving shock waves. Then, after that we framed 

the fundamental equations of normal shock that can be applied in a flow field.  

Now, moving further in this lecture, we will again discuss more about this normal shock 

analysis and that starts from this fundamental equations. And, we try to derive a relations 

known as Prandtl relations for a normal shock. In fact, this relations forms the 

fundamental basics for all subsequent flow property calculations across the normal 

shock; so all these things will be covered in this lecture.  
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Now, just to brief about what we have framed the concept of normal shock. What we can 

say is that; normal shock is a inevitable phenomena in a supersonic flow field and, it 

occurs naturally by the merger of all compression waves in a very thin region. And, this 

thin region is typically measured to be a size of 10-7m.  

And, whatever property change that come across this thin region or the shock wave that 

happens to be non isentropic; which means, entire flow field involving a normal shock 

can be considered to be isentropic except this thin region.  

So, in other words what it means to us; in our normal shock calculations, whenever we 

want to apply the property relations across this normal shock, we cannot assume the 

process to be isentropic. So, subsequently we say that this normal shock is a phenomena 

in which property change drastically in one directions across a discontinuity region.  
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Now, while dealing with the mathematical analysis, we have made certain assumptions. 

So, the first assumption was treated to the fact that the normal shock we are that we are 

considering each one dimensional in nature; that means, in this flow field we can say that 

streamlines are perpendicular to the shockwave. Now, the flow process including the 

shockwave can be considered to be adiabatic with no external work.  

So, obviously, there is no external work and only there is a flow work that is involved 

when it passes the shock wave and while talking about the adiabatic, what we can say 

that when you deal with this normal shock; we can say the region in which this normal 

shock wave is considered can be treated to be a duct consisting of large number of 

streamlines and these streamline are parallel to each other. And, while dealing with the 

streamlines you have to deal with the streamlines one before the shock also and also for 

the after the shock.  

So, the very basic problem that we are going to address through this continuity 

momentum and energy equations are as follows like; what conditions we know is that the 

given conditions, which we say that upstream of the flow that is ahead of the shock or 

before the shock. So while dealing with what we do not know is the downstream 

conditions, which are considered to be unknown conditions.  

And, these inequality signs I have just put just to show you that certain conditions like all 

static condition; static pressure, temperature, density, all these parameter increases, 
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velocity drops, stagnation pressure drops, whereas the total temperature or stagnation 

temperature remains constant. In fact, Mach number becomes suddenly subsonic.  

So, what it means entire kinetic energy of the flow which was there in the upstream side 

of this normal shock, all of them gets converted to internal energy, when this speed 

drops. So, thereby these conditions get prevalent in the downstream conditions.  

In fact, all these inequality signs, we can essentially prove by considering this continuity 

momentum and energy equations. And, apart from these 3 equations you also have to 

consider a calorically perfect gas for which we can ideally make the conditions for 

enthalpy and we also know that equation of state for a gas. So, these relations we are 

going to use for all subsequent analysis. 

(Refer Slide Time: 07:17) 

 

So, the first important analysis that we are going to discuss is the Prandtl relations. In 

fact, this is one of the fundamental relations that forms the basics for all subsequent 

property calculations before and after the shock wave.  

So, here just to what this relation talks about is
2

1 2a u u  , or 
2

1

1
M

M




 . What it 

physically means that in a certain flow field with a standing normal shock, we say that in 

the upstream side of the flow, the Mach number is M1 whereas in the downstream side of 

the flow the Mach number is M2. In fact, later on we will say that M1 is always greater 
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than 1 and M2 will be always less than 1, that can be proved from this; Prandtl relation as 

well.  

Now, just to explain about this equation what it essentially means is as follows. What we 

are trying to say here, we introduce a parameter a*; a* means it is a condition that any 

arbitrary flow field can be taken to star conditions where its velocity becomes a*.  

So, for example, in the upstream side of the flow if your velocity of the flow is u1 and in 

the downstream side of the flow, the velocity of the flow is u2. And, correspondingly the 

speed of sound in the medium 1 or that is the upstream region 1 and downstream region 

2. So, we can say 1
1

1

u
M

a
 . Similarly, we can say 2

2

2

u
M

a
 .  

Now, what we are trying to say that, since these are any arbitrary flow field situations. 

So, we can bring these conditions to star condition. So, when I say star conditions. So, 

here, the flow becomes a*; that means, the final velocity becomes Mach number 1 and 

correspondingly when you say a*, we assign a temperature condition T*. So, we can 

define * 1
1

1

u
M

a 
  

So, this is how we can define where 1 1a RT  and similarly for the downstream 

conditions, we can also write 2 2a RT  because the temperature conditions will be 

different. Similarly we say * 2
2

2

u
M

a 
 . So, with this one can define the star conditions in 

this flow field.  

Now, to start deriving this expressions what we can recall is that we start with continuity 

equation. So, in the continuity equation we can write 1 1 2 2u u  and in the momentum 

equation we can also write as 
2

222

2

111 upup   . So, we know both the equations 

and now what you try to do, you try to find out what is 21 pp   that is nothing, but

2

11

2

22 uu    .  

So, now, divide both sides by p1. So, we can write  
2

1 2 1 1
2 1

1 1

p p u
u u

p p


  . 
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Then, you have to recall 2 p
a




 . So, we can say 

2p a

 
 . So, I can write in this 

equation, this is one way. And, again the other form of equation what we can find from 

this momentum equation, we can also rewrite the fact that  1 2
2 1

1 1 2 2

p p
u u

u u 
   .  

How do you get it? So, in the momentum equations the left hand side you divide by 
1 1u  

and the right hand side you divide by 
2 2u . This is another expression that you get out of 

it. So, we get one important equation this; other equation we can get out of this as like 

2

1 1p a

 
 . So, we can say 

2 2

1 2
2 1

1 2

a a
u u

u u 
   . So, these are the 2 equations we get in the 

combined form of continuity and momentum equations.  

So, we are now going to move further with these 2 equations. 

(Refer Slide Time: 15:32) 

 

So, this particular equation we derived and we also want to use the another form of 

equation, that is alternate form of energy equation. So, if you recall this alternate form of 

equation where did you get? In our isentropic flow situations, we derived the equation in 

which we involved the speed of sound, the velocity of the flow and star conditions in one 

form of these equations.  
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2 2 21 1

2 2
a a u

     
    
   

 

Now, these 2 equations we are going to derive these relations. So, we know what is a and 

this condition 1, this is the condition 2. So, this condition 1 for which we have speed of 

sound a1 and velocity u1 and for condition 2 the speed of sound is a2 and velocity u2. 

So, when I write these 2 equations for a1 and a2 what I can write is that.  

2 2
2 2

1 2 2 1

1 1 2 2

1 1 1 1

2 2 2 2

a a
u u u u

u u u u

   

   

             
             

         

 

So, this equation can be simplified,  

     2

2 1 2 1 2 1

1 2

1 1

2 2
u u a u u u u

u u

 

 

    
       

  
 

So, overall we can say next expression this will get cancelled and after simplification we 

can solve for a*. So, this will be  

equal to 
2 1 222 1

2 1

u u
a

 

 

    
   

  
.  

So, this expression you can do by simplifying this. So, ultimately we get land off having 

an expression 2

1 2a u u  .  

Now, when I say this we can rewrite this equation as this will also implies 1 2 1
u u

a a 
 . 

What it physically means; that, when we say a* here, we are defining these conditions, 

bringing the flow from upstream and downstream both to a common condition a* and 

when you define this a*, correspondingly we define T*, and when you say T* and Mach 

number M*, we say 1u

a
and Mach number in the other side we can say 2u

a
.  

So, what we try to do is that across this thin region, we try to correlate the star conditions 

of M1 and M2 and this star condition essentially reflect what are the upstream conditions 
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for actual flow Mach number M1 and the what is the downstream condition of actual 

flow Mach number M2.  

Now, moving further from this analysis this can be related as 
1 2 1M M   . So, this 

fundamental equation’s now is called as Prandtl relations. So, this is one of the very 

fundamental basics that how a Prandtl’s relation is derived.  

(Refer Slide Time: 24:10) 

 

Now, we will move further; what is the essential significance of this Prandtl relations? 

So, the very basic philosophy that happens here is the fact that, we say here 
1M  , we say 

2M  . Now, from the Mach number relations we knew that when M1 greater than 1, 
1M   

also greater than 1; means, when Mach number is supersonic the corresponding star 

Mach number is also supersonic.  

Now, from this Prandtl relation we say that, there are two possibilities one can have one 

is we can write 
1

2

1
M

M




 , or

2

1

1
M

M




 . But, the very important question here is that M1 

should be always greater than 1. 

So, when M1 is greater than 1, this will also implies M2 should be less than 1. So, what it 

says is that Mach number behind the normal shock is always subsonic. But, in this 

Prandtl relation it does not talk about why the Mach number behind the normal shock is 

always subsonic. But, question remains that can M1 less than 1 or can M1 is equal to 1. 
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There are two other possibilities, when M1 less than 1; so this will also implies M2 

should be greater than 1. But, the question remains this? In down the line will prove that 

this will be an impossible situation. So, it cannot happen for some other thermodynamic 

regions, which we will prove later.  

The other possibilities could be M1 can be 1; so this also implies M2 will be also equal to 

1. So, this is a situation that there is no change in the Mach number across the shock 

wave. So, as if the shock wave does not exist. When such a thing is there, this will reflect 

a situation that flow field is isentropic. So, this assumption of shock wave does not exist. 

But, the very basic philosophy that I want to address here, we will say that M1 is always 

greater than 1 and M2 is always less than 1 that is Mach number beyond a normal shock 

is always subsonic.  

(Refer Slide Time: 28:02) 

 

So, in the previous relations the Prandtl number talks about the relation between 
1M   and 

2M  . But, it does not talk about what is relation between M1 and M2. But, we know that 

any arbitrary Mach number can be correspondingly connected to its star condition of 

Mach number, that is through this expressions.  
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So, we can effectively write that 
 

 

2

2

2

1

2 1

M
M

M









 

. Now, if this relation we are 

going to apply for condition M1. So, we can write that
 

 

2

12

1 2

1

1

2 1

M
M

M









 

. Similarly, 

we can say 
 

 

2

22

2 2

2

1

2 1

M
M

M









 

.  

Since, we say 
1

2

1
M

M




 . So, by putting these expressions here, we will arrive at the 

relation between the Mach number between these. So, if you see that this relation will be 

only true when your Mach number is supersonic for M1.  

2

1
2

2
2

1

1
1

2

1

2

M

M

M






 
  
 

 
  
 
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The next expression that we are going to talk about is the static density and speed ratio. 

So, now we are moving with the fact that, we are going to calculate the flow property 

across a normal shock. So, for this flow property calculations the very basic relations that 

you have to remember is the Prandtl relation. So, these Prandtl relations will say that 

2

1 2a u u  . So, this relation will be very vital for these calculations.  
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And, in this case what we are trying to say that what is going to happen to the density 

ratios. So, if I put the density terms as ρ1 and ρ2 and velocities are u1 and u2. So, from 

continuity equation, we can write
1 1 2 2u u  . So, we can say that is 1 2

2 1

u

u




 ; so this 

relation first holds good.  

Now, let us see that what is u1 and u2. So, we can write this equation as 
2

2 1

1 1 2

u

u u




 . So, I 

multiplied u1 in the numerator and denominator. So, this is written as 
2

2 1

2

1

u

a



 
 . So, we 

say this is 2

1M  . So, we say 1
1

u
M

a




 . So, we also know that; when I say 

1M  what is the 

relation between 
1M and M.          

So, we can rewrite this equation as
 

 

2

12

2

1 1

1

2 1

M

M



 




 
. So, this relation we get from M1 

and M. So, between M1 and M, this is the relation exists. So, we can write this equation. 

So, when I say 2

1




, then I also can calculate what is 1

2

u

u
. So, this is what we do for 

density ratio and speed ratio across this normal shock.  

(Refer Slide Time: 33:50) 
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Now, we will move to the conditions for static pressures. So, very basic things that we 

want to say the static pressures are defined as p1 and p2, that is before the shock and after 

the shock. So, our basic philosophies that we want to find out the ratio of 2

1

p

p
. So, this 

2

1

p

p
we are trying to express in the form of M1, because you do not know the M2, but we 

know the flow Mach number and the upstream.  

So, how we get this relations; to do that we have to recall these momentum equations 

that we have already derived in one of the slides that is 
2

2 1 1 1 2

1 1 1

1
p p u u

p p u

  
  

 
. So, in 

the last slide we derived this equations from the momentum equation and continuity 

equations.  

So, when I say this; so again I also told that we know the other relations like 2 p
a




 . 

So, we can say 
2a p

 
 .  

Now, then what you do? We simplify this; so we say 
2

2 1 2

2

1 1 1

1 1
p u u

p a u

  

    
  

. So, in 

earlier expressions we know 
 

 

2

11

2

2 1

1

2 1

Mu

u M








 
. So, in the last slide we derived this 

relation between the speed ratio as a function of Mach number.  

So, when I put this here, I can write
 

 

22
12 1

2 2

1 1 1

1
1 1

2 1

Mp u

p a M






  
        

. So, here 

1
1

1

u
M

a
 and, finally, we will land up an expression like 

 

 

2

122
1 2

1 1

1
1 1

2 1

Mp
M

p M






 
      

. So, this expression can be further simplified to reach 

this fundamental relations between the static pressure ratio 2

1

p

p
. So, this is how the 

relations are framed for static pressure. 
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 22
1

1

2
1 1

1

p
M

p




  


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Now, then next point we are going to address is the static temperature and enthalpy. So, 

here if I define this static temperature as T1 and T2 that is one is before the shock, other is 

after the shock and static enthalpy 
1 1ph c T and static enthalpy h2, after the shock will be 

2pc T . Also we have to write equation of state, that is we can write p RT .  

So, we can write 1 2

1 1 2 2

p p

T T 
 , by satisfying this equation of state, one can write this 

relation 1 2

1 1 2 2

p p

T T 
 . Then, we can find out 2 2 1

1 1 2

T p

T p





  
   
  

; so we get this equation.  

Now, fortunately in the previous slides, we know what is the static pressure ratio 2

1

p

p
as a 

function of M1, we also know static density ratio as a function of M1. So, when I put this 

equation here in this relation, we arrived at the static temperature ratios, which is same as 

the static enthalpy ratio. And, again this is the function of upstream Mach number M1 

 
 

 

2

122 2
1 2

1 1 1

2 12
1 1

1 1

Mh T
M

h T M



 

   
      

    
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The next important condition that we are going to talk about is the stagnation conditions. 

So, for stagnation conditions what I can say this is 1, this is 2. So, I define the stagnation 

conditions like stagnation pressure ratio, stagnation temperature ratio, stagnation density 

ratio.  

So, when I say stagnation conditions then corresponding static pressure will be p1, 

temperature will be T1 density will be ρ1. Stagnation pressure will be defined as 01p  
01T  

and 01 . So, how do I calculate this ratio? These ratios are function of M1, so we already 

know. We get it from isentropic relation right. 

Now, correspondingly in similar way we say p2 T2 ρ2 that is after the shock, stagnation 

values will be 02p , 
02T , 02  and all these terms are another function of M2 and, this 

relation we will get it from through isentropic.  

So, these has nothing to do with the shockwave and as I mentioned within the shockwave 

the flow process is non isentropic. But, still we are able to manage this static pressure 

ratio 2

1

p

p
, 2

1

T

T
and 2

1




. We derived this as some function of M1, these relations we 

already derived in the earlier slides.  
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So, now if you look at this stagnation pressure ratio 02

01

p

p
, I can write this as 

02 2 1

2 1 01

p p p

p p p

   
   

   
. So, all these number will get cancelled finally, I will land up in this 

stagnation pressure ratio. Same concept applies for stagnation temperatures as well as 

stagnation density.  

Now, the expression will be very big here, because first term in this refers to the 

isentropic conditions that is condition 2. The last term refers to condition 1 only. And, in 

between the middle term refers to the condition 1 and 2 and they are related through 

function of M1.  

So, all these things are known to us so we can essentially calculate this stagnation 

pressure ratio after the shock.  

(Refer Slide Time: 44:33) 

 

There is another kind of relation that we are trying to get here, which is typically called 

as Rayleigh Pitot tube equations. What is the very basic background; maybe some 

lectures down the line we will come to know during the measurements in supersonic 

flow.  

We will show that a pitot tube is generally used to measure the stagnation pressure in a 

flow field. So, when some pitot probe is placed in a supersonic flow field, we will have a 
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bow shock sitting on the surface. So, this probe is typically a blunt shape nose; so we say 

it is a probe.  

So, there will be bow shock sitting on this, but what we look at along this axis; in this 

domain if you put a sensor somewhere here and try to capture the flow information. So, 

in this domain it is always assumed to have a normal shock. So, when I say normal 

shock, I know the inflow condition is M1 as if a condition M2 happens to be here, in this 

situation what we measure is after the shock. 

So, what you typically measure downstream is 
02p , that is stagnation pressure because 

entire flow field comes to rest at this nose point. But, many a times we are known 

conditions are p1 that is in the static flow field the conditions are known as p1. Now, the a 

relation that is derived is 02

1

p

p
and that is equal to 02 2

2 1

p p

p p

  
  
  

. So, all these conditions 

again if I say p2 and 02p , then correspondingly it is related to Mach number M2.  

So, when I say Mach number M2; so we know this particular relation is only function of 

Mach number; this particular relation that is 2

1

p

p
 function of Mach number in the 

upstream. Whereas, 02

2

p

p
is a function of Mach number in the downstream. And, 

moreover we know the, what is M1 and M2 through this relations.  

And, ultimately we land up in a big expression like this that talks about ratio of 

stagnation pressure after the shock to the static pressure before the shock. So, this is a 

very vital as far as the experimental point of view, so we call this as a Rayleigh pitot tube 

equation.  

1

1
2

1
202

1 2

1 1

1

1 2

2 2 1

1 1

M
p

M
p M





 

 

  
        
   

  
   

 

 

2 2 12
102 1

2

1 1

11 2
;

1 4 2 1

Mp M

p M



 

  

   
   

      
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Another important relation that we are going to talk about the stagnation temperatures. 

So, we say the before the shock it is 
01T , after the shock it is 

02T . So, as I say that energy 

equation does not change; so I can write 
2 2

1 2
1 2

2 2

u u
h h   and we also know

2

0
2

u
h h  . 

So, we can write 02 01h h , we can say 
02 01p pc T c T . Then this total temperature relation 

we can say as
02 01T T , which means stagnation temperature does not change or is 

constant across a stationary normal shock.  
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Then we are going to move a very important calculations that is entropy in the flow field. 

So, as you know that across the shock wave, the entire flow field is non isentropic. So, if 

I say absolute entropy before the shock is s1, if I say absolute entropy after the shock is s2 

that is per unit mass. So, we can easily calculate what is happening 

2 2
2 1

1 1

ln lnp

T p
s s c R

T p

   
     

   
.  

So, all the static property relations we know; so, we can directly calculate the entropy 

change across the shock. And from this relation what we will see that because the 

entropies related through second law of thermodynamics to define the directionality of a 

system or of a thermodynamic process.  

So, in this context what we will show here that, this relation will be only true when M1 is 

more than 1. This will not be true when M1 is less than 1 because this entropy change 

will be negative. So, as per the second law of thermodynamics, this entropy must 

increase across this normal shock. So, 
2 1s s should always be greater than 0. So, this 

will be only true when M1 is greater than 1.  

Hence, we say that Mach number is always supersonic before the shock and it has to be 

subsonic after the shock. 
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So, this is one working formula for entropy calculations, in many a times in normal 

shock problems, normally this entropy change also calculated through another 

expressions in terms of stagnation pressure. So, we define the stagnation pressure 
01p 1 

and 
02p  and entropies as s1 and s2.  

So, what we are trying to say is that, if you want to recall the same expression. We say 

that only within this shock wave the process is non isotropic and all other regions the 

flow field is isentropic. If, this is the case then what I can bring this particular condition 1 

isentropically to rest.  

So that I can define for the condition 1, this 
1as  which is nothing but s1 and 

corresponding pressure 
1ap  will be 

01p , 
1aT will be 

01T and, for this downstream side I 

can say 
2as will be 

2s , 
2ap will be 

02p , 
2aT will be 

02T .  

Now, if I want to calculate the entropy change that is 
2 1a as s which is same as 

2 1s s , 

but what we see in the right hand side of this expression. So, what I write is 

2 2

1 1

ln lna a
p

a a

T p
c R

T p

   
   

   
.  

So, if you see here, in the previous expression we say 
02 01T T , we prove that this 

particular total temperature does not change across a normal shock. So, having said this, 

we can say first term of the right hand side expression will be 0.  

So, the remaining term that the right hand side will contain the stagnation pressure ratio. 

So, ultimately we can write the 02
2 1

01

ln
p

s s R
p

 
    

 
. So, this is another expression and 

it is also convenient to calculate the entropy change across the shock wave. So, instead of 

calculating the entropy change from the static pressure values, we can directly calculate 

it from the stagnation pressure values.  
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So, this is what I just want to conclude in saying that, the fundamental expression from 

this we say that; entropy change 02
2 1

01

ln
p

s s R
p

 
    

 
 and, it is a function of stagnation 

pressure ratio. Since s2 is always greater than s1; so this will also imply
02p  must decrease 

01p . So, this is true when M1 is greater than 1.  

Hence, this is very basic philosophy of Prandtl relation that Prandtl relation always holds 

good and it has to be correlated in line with entropy change across the shock wave and 

that entropy must increase across the normal shock. If such a situation is there, M1 must 

be greater than 1 and the stagnation pressure will drop across a normal shock.  

So, with this I will conclude this lecture for today. In the subsequent lectures we will 

move further in other analysis of normal shock. 

Thank you for your attention.  
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