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Initial and Boundary Conditions 

Hello, everyone. So, in last lecture we discussed about basic governing equations of fluid flow, 

heat transfer, species transport equation and also we discuss about the heat conduction equation 

in solid. So, these equations we will discretize using different methods in this course, in the 

domain but at the same time we need to discuss about the initial conditions and boundary 

conditions. 

If the equations are unsteady, so if equations are kind of marching problems, then we need to 

define the value of any particular variable at the inside the domain at time T is equal to 0, so that 

is known as initial conditions. And at the same time we need to define the boundary values, so 

those are known as boundary conditions. So, first let us write the basic governing equations of 

fluid flow in 2 dimension, incomprehensible and Newtonian fluid flow. 
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So, if you write the fluid flow equation, which we discuss in last class, so for 2D, 

incomprehensible flow Newtonian fluid flow and constant properties. With negligible body force 

and heat generation. So, with that if you write then you will get del u by del t let us write first 

continuity equation, so first let us write the continuity equation. 



So, this is your del u by del x plus del u by del y is equal to 0 for incomprehensible fluid flow 

and the Navier Stokes equation, which is momentum equations, so this is your x momentum 

equation for constant properties, so there is a pressure variant del p by del x plus kinematic 

viscosity Nu del 2u by del x square plus del 2u by del y square, so this is in 2 dimensions. And y 

momentum equations similarly you can write as del v by del t plus u del v by del x plus v del v 

by del y is equal to minus 1 by rho del p by del y plus Nu del 2u by del x square (plus) sorry del 

2v, del 2v where square del 2v by del y square. 

And energy equation if you write then it will be del t by del t plus u del t by del x plus v del t by 

del y is equal to alpha which is your thermal diffusivity k by rho cp del 2t by del x square plus 

del 2t by del y square with negligible heat generation. So, these are the equations we will use in 

this course as well as for the solid if you write the heat conduction equation, then if you put the 

velocity is 0 then you can write the heat conduction equation. 

Heat conduction equation in solid, so you can write del T by del t is equal to alpha del 2T by del 

x square plus del 2T by del y square. And if you have the steady state assumptions ,then the 

temporary term will go to 0, so we can write, for steady state you can write del 2T by del x 

square plus del 2T by del y square is equal to 0. So, this governing equations will discretize and 

using different method and we will solve in the interior domain. 

So, if you have this is the domain and this is the boundary, so discretize equation you will solve 

inside the domain but you need to specify the value of that particular variable at the boundary, so 

that is known as boundary conditions. And if it is unsteady problem, so it is marching in time, so 

for that you need to specify the variable at p is equal to 0, so that is known as initial conditions. 

So, let us discuss about initial condition and boundary conditions. 
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So, initial condition. So, as we discussed for an unsteady problem, we need to specify the value 

of the variable at time t is equal to 0 inside the domain. So, if this is your domain, so this is your 

interior points, interior points and this is your boundary. So, you have to specify the value inside 

the domain at time is t is equal to 0 that is known as initial condition. So, there are different 

equations we have already discussed, so the particular variable you need to specify at t is equal to 

0 at inside domain. 

So, we will write these initial condition for any general variable phi, so general variable phi if 

you write, so phi may be your u, v, w or any other temperature or any species, so for any 

variable, general variable phi, so phi may be at the time t is equal to 0 at time t is equal to 0, phi 

may be constant, you can specify at constant value at the domain or phi may be function of x, y, 

z means especially varying. 

So, phi may vary especially or it may have some constant value and that you need to specify at 

time t is equal 0 to inside the domain. So, that is known as initial condition. Now, as I told initial 

condition you need to specify only for unsteady problem later we will see that these are marching 

problems, so for marching problems you need to define the initial condition or prescribe the 

initial condition at the interior domain. 

At the same time you need to specify the value of the variable at the boundary, because you will 

solve the discretize algebraic equations inside the domain, so you need to specify the value of 



any variable at the boundary. So, those that is known as boundary conditions. So, now we will 

discuss about the boundary conditions. So, we will first categorize in 3 different types of 

boundary conditions, one is Dirichlet condition, then Neumann condition, then Mixed or Robin 

condition. 

So, Dirichlet condition first let us discuss, Dirichlet boundary condition. So, Dirichlet boundary 

conditions, in Dirichlet boundary condition you need to specify the value of the variable at the 

boundary, that value may be constant, it may be temporarily varying or it may be especially 

varying. So, that means you have prescribed surface value, so the value is specified at the 

boundary, value is specified at the boundary, so that is known as Dirichlet boundary condition.  

And for any general variable phi, so it may be constant, at the boundary, then it may be 

temporarily varying, it may be function of times, so it may be temporarily varying, it may 

especially varying, so phi is function of x, y, z or it may vary both in time and space. So, it may 

vary with specially and temporarily, So, what it is, so you are specifying the value at the 

boundary, so that is known as Dirichlet type boundary conditions. 

Next we will discuss the Neumann type boundary conditions, in Neumann type of boundary 

conditions you need to specify the gradient, so the gradient is prescribed at the surface or 

boundary.  
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So, now we will discuss about Neumann boundary condition, so you have prescribed flux value, 

prescribed flux value, that means gradient is specified at the boundary. So, this is your boundary, 

so gradient is specified at the boundary. So, at boundary in Neumann type boundary conditions, 

it may be that the gradient whatever you are specifying, so that will be always flux will be the 

normal to the surface. 

So if it is normal to the surface then del phi by del n will be constant, so you can specify a 

constant value of that flux that means the gradient value is constant or it may be 0, so for a 

particular condition like adiabatic condition in heat transfer, where there will be no heat flux 

from the boundaries, so that means your del t by del n is equal to 0. So, that is Neumann type 

boundary conditions, adiabatic type boundary conditions. 

So, that means del phi by del n may be 0, constant value may be 0 for adiabatic boundary, for 

heat transfer, you will get also I will show for a fluid flow problem also the normal gradient will 

be 0, or del phi by del n may be function of time, it may be function of space as we discussed and 

it may be function of both space and time. 

So, the boundary conditions you are specifying in terms of flux, so flux may be constant or that 

flux may be vary with time or flux may vary with space or flux may vary with both time and 

space. So, that is known as Neumann type boundary conditions. Now, we will discuss about 



Mixed or Robin boundary condition. So, in Robin or mixed type boundary conditions it is 

combination of these two, Dirichlet and Neumann type boundary conditions. 

So, it will value plus the gradient will be specified such a way that it will have both type of 

boundary conditions. So, in general we will write this as alpha, alpha is phi plus beta del phi by 

del n, it is normal flux is equal to gamma. So, you can see that phi is a constant value, so it is 

Dirichlet type, del phi by del n is the flux or gradients, so that is specified equal to some value 

gamma. So, we will take some examples and will show these different types of boundary 

conditions. 
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First, consider flow inside 2 parallel plates, infinite parallel plates, so flow inside or flow through 

or flow inside 2 parallel plates, flow inside 2 parallel plates. So, first you need to find what is 

your computational domain. So, you have 2 parallel plates, so now this is your boundary then, 

how many boundaries are there in 2 dimensional situations? You have 4 boundaries. Now, as 

you are solving a fluid flow and heat transfer problem then you need to solve the governing 

equations, nernst of equation and the energy equation in 2 dimension what we wrote in todays 

class in the beginning. 

Now, you need to specify the boundary conditions. So, this is your flow inlet, flow is coming and 

entering here, flow is going out through this boundary, so it is outlet and these are wall. So, now 

the walls boundary conditions let us discuss. So, in the wall we know that we will have no slip 



boundary conditions that means the fluid particles sitting on the solid wall, so it will have the 

same velocity at the wall. 

So, if the continuum hypothesis is valid, then obviously here you will have the no slip boundary 

conditions and in that case the velocity is at the boundary you need to specify a 0. So, velocity is 

if in 2 dimensions u and v, so u v will be 0 at the solid wall and these are Dirichlet type boundary 

conditions, because you are specifying the value of the velocity at the wall. 

So, that means your u is equal to v is equal to 0 and u is equal to v is equal to 0. At the inlet if 

you specify the velocity, then let us say that you are specifying a velocity uniform velocity at the 

inlet, so it is entering let us say it is u infinity, so that means u is equal to u infinity you are 

specifying and b is equal to 0. So, that means you are specifying the value of the velocities, so 

this are Dirichlet type boundary conditions. 

And at the outlet generally we assume that it is a fully developed conditions that means there will 

be no axial variation of this variables, that means, if it is x direction, then you will have del u by 

del x is equal to del b by del x is equal to 0, so that means axial gradient of this velocities are 0. 

So, this is outflow boundary conditions, outflow boundary conditions. So, obviously you can see 

that we are specifying the flux at the outlet that means you are actually specifying the normal 

gradient. So, obviously these are Neumann type boundary conditions. 

Now, if you are solving with heat transfer, then you need to specify the temperature at the inlet 

as well at the valve. Let, us say that valve temperature is higher than the inlet temperature, so if it 

is if you are specifying T let us say it is maybe 500 degree centigrade, this is also, let us say 

adiabatic wall, there is no heat loss from this boundary, no heat loss from the boundary, so this is 

adiabatic wall, so no, so that means no heat transfer across this wall, so obviously it will be del T 

by if it is normal direction is y then del t del y is equal to 0. 

So, you can see that it is Neumann type boundary condition and on the bottom of wall we are 

specified the temperature it is Dirichlet type boundary condition and at the inlet we will specify 

temperature let us say T is equal to, let us say some 300 not degree centigrade let us say it is 

kelvin, 500 kelvin and 300 kelvin, 500 kelvin, 300 kelvin. So, this is your specifying the value of 

the temperature at the inlet, so obviously it is Dirichlet type boundary condition. 



And at the outlet similar way, you can define del T by del x equal to 0, this is the boundary 

conditions, for this flow inside to parallel plates. Again you may need to specify the inlet 

velocity as parabolic, where especially it will vary. So, if want to give the fully developed 

condition at the wall, then you need to specify parabolic boundary condition. So, this you can see 

that it will especially vary.  

So, for a particular problem let us say flow inside parallel plates, so this is the inlet, this is the 

inlet and this is your x from the center and this is your y and let us say the height is H and this is 

also H. So, the distance between two parallel plates is 2H, so this is x y, so you can specify the 

parabolic profile like this, so at the center you will have maximum, so you can see here the 

velocity is varying especially. 

So, u is function of y .And this u function of wall you can specify as let us say if average velocity 

is u infinity, average velocity is u infinity then 1.5 u infinity into 1 minus y square by H square, 

so this you have derived analytically for a fully developed flow problem that is known as 

(())(22:32) flow. So, that we are gaining as inlet at the you are giving this as inlet condition. So, 

we can see y is equal to 0, 1.5 to infinity so maximum velocity is your 1.5 times the average 

velocity. 

And at y is equal to H, y is equal to H, u is equal to 0, y is equal to minus H, u is equal to 0 so 

this is you parabolic profile, parabolic velocity profile. And this is Dirichlet type boundary 

conditions, this is Dirichlet type boundary conditions, but it is especially varying, u is function of 

y. Now, let us have one example of Robin boundary condition. So, let us consider a solid, here, 

this solid, over it there is some fluid flow, so you have temperature T infinity and H is the heat 

transfer coefficient, H is the heat transfer coefficient of the fluid, heat transfer coefficient of 

fluid. 

And for solid k is the thermal conductivity. Let us say k s, so k is the thermal conductivity of 

solid. So, what is happening? So, we have the solid, where the surface you have a fluid flow that 

fluid temperature is t infinity and the heat transfer coefficient is H. So, we can see that this fluid 

will take away the heat from the solid. So, at the solid wall you can have the energy balance and 

that energy balance if you do, so at the solid wall you can have the energy balance. 



So whatever heat is conducted, heat is conducted, so that is actually convicted, heat convicted 

because you have a fluid flow, so heat is convicted, so this is the energy balance if you do that so 

we can see, so this boundary condition is known as convective boundary condition, convective 

boundary condition. So, now we are doing the energy balance heat conducted, what is heat 

conducted? So, this is your y then you can write minus k s del T by del n or y you can write it is 

normal, y is the normal to the surface del T by del y at y is equal to 0. 

So, that is the heat conduction taking place and at y is equal to 0 we are finding what is the heat 

flux and equal to now whatever heat is conducted, so if you have a heat transfer coefficient H 

and the boundary temperature t at y is equal to 0 minus t infinity, so that is Newton law of 

cooling, right so it is Fourier law and this is Newton law of cooling. So, h is so T at y is equal to 

0 minus T infinity, right. 

So, you can see now if you see so you can rearrange it and you can see that it will be h if y is 

equal to 0 it is let us say wall, so it is Tw if you write, so then it will be h Tw plus or ks del T by 

del y at wall is equal to, so this will go this side so it will be h into t infinity. So, you can see that 

this is if you recall we have written alpha phi plus beta del phi by del n is equal to gamma, so this 

is the Robin boundary condition, combination of Dirichlet and Neumann type boundary 

condition. 

So, here you can see the alpha is equal to h, beta is equal to ks and gamma is equal to hTw. So, 

these boundary condition you can see one of the example, examples of Robin type of boundary 

conditions and in heat transfer convective boundary condition is Robin type boundary condition. 

So, that we have shown here.  
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So, now let us discuss about the course contents. So, already we have discussed this week 1 

lectures, so we have already in the first lecture we have shown the application of CFD and why 

we need to study the CFD that we have discussed. 

In second lecture we have discussed about the governing equations, fluid flow as well as heat 

transfer and next in todays lecture we discuss about the initial condition and boundary condition. 

In week 2, we will classify the PDEs, so we can classify the PDEs in two ways, mathematically 

and physically that we will discuss and will take some examples and will show that which type 

of PDEs these are. 

Next week then week 3, in week 3 we will discuss about the finite difference method. So, will 

introduce finite difference method in week 3 and first will use Taylor series expansion to find the 

finite difference of any gradient and will also use different techniques in finite difference method 

one is Taylor series then another is polynomial and another is general approximation. And also 

will do finite difference in no-uniform grid and will discuss type of errors consistency, stability 

and convergence. 

Next in week, 4 will consider only elliptic equation. So, steady heat diffusion equation is 

example of elliptic equation that we will consider and will discretize using finite difference 

method and will learn different discretization schemes. So, then will solve this discretize 

equation using Jacobi iteration method, Point Gauss-Seidel method, Line Gauss-Seidel iteration 



method, point successive over-relaxation method, Line successive over-relaxation method and 

Tri-diagonal matrix, Algorithm TDMA and alternating direction implicit method. 

In week 5 we will consider parabolic equation, we will take one model equation, unsteady 1 

dimensional heat diffusion equation and will discretize this equation using difference scheme 

both explicit and implicit. So, we can see forward time and central space, Richardson method, 

DuFort-Frankel method, in implicit methods we will see backward time, central space BTCS, 

Crank-Nicolson, Beta formulation and also will see in finite difference formulation about 2D and 

3D unsteady diffusion equation. 
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In week 6 we will consider hyperbolic equation, so we will consider 1 dimensional wave 

equation and will learn different discretization scheme, you can see here Euler FTFS method 

forward time and forward space, Euler FTCS forward time central space, then CIR method, Lax 

method, Midpoint leapfrog method, Lax-Wendroff method and in implicit method will learn 

Euler BTCS method, Crank-Nicolson and Multi-step method like Lax-Wendroff and 

MacCormack method. 

Then week 7, will learn the stability analysis, will study here only Von Neumann stability 

analysis and will consider this parabolic and hyperbolic equation and will find what is the 

stability criteria using Von Neumann stability analysis. In week 8, will consider Vorticity steam 

function equation and that will solve using finite difference method and will consider two 



problems, leap driven cavity problem and flow inside two parallel plates and will discuss about 

the boundary conditions. 

Week 9, we will solve the full Navier Stokes equation using finite difference method algorithm 

MAC will use to discretize this Navier Stokes equation, MAC stands for Marker and Cell 

method. In week 10, will start finite volume method, so first will study the basics of finite 

volume method, then will consider steady heat diffusion equation or steady diffusion equation 

and then unsteady diffusion equation and will discretize these equations using finite volume 

method. 

And will discretize using both explicit, implicit method and also will learn Crank-Nicolson 

method. In week, 11 will continue with the finite volume method and first we will discretize 

steady, convective, diffusive equation using finite volume method and we will discuss about 

different convective schemes and after that will solve this finite volume then will solve the 

unsteady convective diffusive equation using finite volume method. 

In last week, week 12 we will solve the full Navier Stokes equation using finite volume method. 

So, we will considered steady state 2 dimensional Navier Stokes equation and we will solve 

using simple algorithm. And also will discuss about the Staggered grid and collocated grid in this 

lecture and also will derive the pressure correction equation and will discuss about the pressure 

correction techniques like SIMPLE. 
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In this course mostly we will follow these 3 books, one is Computational Fluid Mechanics and 

Heat Transfer by Tannehill Anderson and Plectcher, then Computational Fluid Flow and Heat 

Transfer by Sundararajan and Muralidhar and these 2 books are mainly for finite difference 

method and for finite volume method you may refer these books Numerical Heat Transfer and 

Fluid Flow by S.V Patankar, it is very popular book for finite volume method and Indian version 

is available you can purchase these books for your reference.  

But you need to follow my class note, because few derivations will derive from other differences 

books, which I have not noted here. And now we will show some CFD results from the in house 

code developed at ITG by the PHD students and M.Tech students. So, this is some motivation to 

you that students you can write some programs or using CFD for fluid flow and heat transfer 

problems. CFD if you want to learn then only theory is not sufficient, you need to write the 

computer code then only you will learn CFD. So, today now I will show some results from the 

ANU solver.   
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So, this ANU solver is known as AnuPravaha this project is funded by DAE Department of 

Atomic Energy, BRNS Government of India, we have developed a general purpose CDF solver 

for fluid flow problems over a hybrid unstructured grid, this is a multi-physics problem so here 

you can solve different types of problem. And these solver is developed particularly by 4 PHD 

students and more than 35 M.tech students and several project staffs. 

So, whatever results I am showing here, so this are actually solved using this ANU solver 

AnuPravaha. So AnuPravaha means ANU is atom and Pravaha means flow, so these name was 

given from BRNS because this is department of atomic energy, so with that the name is given as 

AnuPravaha. 
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The salient features are that it is inherently 3 dimensional code, you can generate the 

unstructured grid in a complicated domain. And we have hybrid unstructured grid, so 4 types of 

grid we have like hexahedral, tetrahedral, prism and pyramid in our solver, it is multi-block 

solver, so you can solve for more than 1 free zone and more than 1 solid zone you can see that it 

is a heat exchanger problem, so fluid is coming in here and another fluid is coming in here, so it 

is a hot fluid, is a cold fluid and there is a solid. 

So, you have 2 fluid zone, 1 solid zone, so this type of problem you can solve using multi-block 

solver. And we have also prohibition for writing user defined function, we have multi-physics 

problem and we have used first linear solvers and we have also graphical user interface. 
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So, now we will discuss about what are the capabilities of this solver, so we have incompressible 

and quasi-incompressible flow, steady and unsteady flows, Laminar flows and Turbulent flows. 

In turbulent flows we solve Reynolds-averaged Navier Stokes equation using different 2 

equation models, we also can solve Newtonian and Non-Newtonian fluid flows, conjugate heat 

transfer, phase change like solidification and melting. 

Multi-phase flows for liquid and airflows way of inter-facial flows so for inter-facial flows, we 

use volume of fluid method and for gas and particle flows, we have gas particulate flow solver. 

We have also electro and magneto-hydro dynamic flow solver, Porous media solver, Radiative 

heat transfer combined with flow in participating media and also we have developed some 

axisymmetric flows solver for laminar, turbulent and multi-phase. So, you can see that it is a 

multi-physics solver where you can solve different types of problem.  
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So, these are some snapshots of pre-processors Salome is a grid generator, this is actually open 

source grid generator and this is the GUI of that, this is the solver GUI and this is the AnuVI 

GUI, so this is actually post processing solver developed at BARC Bhabha Atomic Research 

Center at DAE institute. 
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We have also developed over the period theory manual, so that one can learn the theory of each 

module.  
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We have validation manual so whatever problem we have solved and validated with the results 

available in the literature either experiment or numerical results, so that we have put in the 

validation manual.  
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And we have user manual, where one can use it through the GUI. So, you can see how to give 

the inputs in GUI, so that we have described and how to post-process it. 
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Now, let us see some validation results. So, first we will discuss 3 dimensional Lid driven cavity 

problems, so it is a famous problem, so if someone is writing his own solver then this is the 

easiest problem to solve that whether your code is cut or not. So, in 2 dimension you have 2 

dimensional Lid driven cavity problem, here it is 3 dimensional lid driven cavity problem, you 

can see that upper lid is moving with velocity 1 and other all the walls velocities are 0. So, you 

will get these are the steam line profiles at different z locations, z is equal to 0 and z is equal 0 

point 5, 0 point5 is the mid-plane. 
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And these results if you can see that u velocity along vertical central line at z is equal to 0 point 5 

we have compared here, so you can see our result is with solid line and from the literature Ku-et-

al the reference is given here. So, for different Reynolds number 100, 400, 1000 our present 

results is matching avail with the Ku-et-al results. This is the plot of V velocity along horizontal 

center line at z is equal to 0 point 5 of the cavity and you can see the velocity profile is matching 

avail with the literature. 
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This is a problem we have taken unconfined flow over circular cylinder. So, you can see that you 

have a circular cylinder and you have a uniform flow inlet, these are the symmetry boundary 

conditions and you can have local refinement in unstructured grid, so that we have done to 

capture the gate interval and Reynolds number greater than 40 generally it becomes unsteady.  

So this is the steady problem and this is your unsteady problem and that we have correctly 

captured. 
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And the results of drag coefficient is 12 number and the recirculation length of steady problem 

we have compared with Dalal et al and Park et al. So, you can see the for different Reynolds 

number, we have compared these values and these comparison are very good. 
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Then this is the problem of Mixed Convection where buoyancy in also included and boussinesq 

approximation is valid in this case and we have the square cylinder heat square cylinder, heated 

square cylinder, this is the inflow, so due to buoyancy there will be also there will be buoyancy 

effect and that we have compared our result with Sharma and Eswaran. 
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So, these are some isotherms and streamlines at different Richardson number you can see, so at 

Richardson number minus 1 you can see this is becoming unsteady.  
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And these are some comparisons of different Richardson number, drag coefficient, pressure drag 

coefficient and natural number, with our these are present results and these are sum and epsilon. 
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This is a turbulent flow past a built in triangular cylinder in a channel, so this is channel walls, 

this is your triangular cylinder and you have a inlet velocity and Reynolds number is considered 

45000 so that it becomes turbulent and blockage ratio is 1 by 3 and intensity of free stream 

turbulence is given as 5 percent.  

(Refer Slide Time: 42:34) 

 

So, you can see, so these are some animations of vorticity, so flow behind this cylinder, how it 

looks, so periodically this are shading and these are some comparison with experimental and 

numerical results, so this are central line u velocity, that we have compared with the literature.  
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These are some phase change problem, so solidification this is the solidification problem, this is 

alloy solidification and this is your casting problem, so continuous casting. So, some 

comparisons are given of these inter-phase when it is moving with time, so that we have 

compared with the literature.  
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This is inter-facial flows problem, so we have one water column and there is obstruction you can 

see and suddenly if these inter-phase is broken then water will fall and that we have stimulated 

using volume of fluid method and you can see the comparison of water height at different 

locations with time and these results we have compare with some experimental and numerical 

results. So, this is you can see how the interface is moving, when the water is coming out or 

falling then from different angle. 

So, that we have shown using volume of fluid method and these are comparisons, these are some 

snapshots you can see that water droplet is falling okay in thin plane then and this is the problem, 

2 droplets are rising, their margin and collapsing, so these all problems we have solved using this 

in house solver and please remember that this are developed by the students only. 
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Now, this is the Bubbling gas-solid fluidized bed. So, you have solid particles here and you have 

some inlet velocity you can see that initial particle volume fraction is given as 0 point 6 and here 

initial inlet gas velocity as 0 point 46 meter per second and these are the dimensions these are 

some densities are given and these problem we have solved and compare the time average 

volume fraction, time average is done between 5 to 60 second of the stimulation time. 

And you can see that our results this is our black colour solid line is our results, time volume 

average fraction along the a x and we have compared our result with numerical and experimental 

results.   
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This is a problem of conjugate heat transfer, where in the solid also you solve the heat 

conduction equation. So, you can see this is the problem, where you have inlet is here and this is 

the backward facing step and this is the solid. 

So and this is the fluid zone, so we have fluid and solid zone and inlet velocity you have given as 

parabolic and for different thermal conductivity ratio, k is the thermal conductivity ratio we 

define. We have solved this problems and we have potted the temperature at this interface, so 

this is the interface at fluid and solid right, so this is the interface from here to here, so it is the 

interface between fluid and solid and along this we have potted the interface temperature and 

compared with the literature. So you can see the it matches well. 
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Now, in some problem where you have a high temperature difference, like combustion, where 

radiation is taking place, where high temperature difference is there and radiation is taking place. 

So, here no longer boussinesq approximation is valid. So, in that case density may vary due to 

the temperature gradient, it may vary also due to the concentration gradient. So, these problem 

we have solved where boussinesq approximation is not valid. 

So, density varies with temperature gradient and using some numerical technique we have solved 

this problem, where radiation is also taking place, so here we need to solve the radiative transfer 

equation as well along with the fluid flow and energy equation. So, you can see this is the cavity, 

these are the 4 walls and in the 4 walls this is Tc cold wall, 400 kelvin, this wall is 800 kelvin 

and emissivity are 1, so this are black surface. 

Top and bottom walls are adiabatic, for radiation as well as conduction and these are also black 

walls and these problem we have solved, so radiation is taking place natural convection is also 

taking place but natural convection is taking place but boussinesq approximation is not valid, so 

non-boussinesq approximation we have taken. 

So, here also the properties are also function of temperature. So, you can see that variable 

properties also we have solved, we have solved for random number 5 into 10 to the power 6, 

random number 0 point 71 and different other non-dimensional numbers. And these results if 



you see that conductive natural number, average natural number and radiative average natural 

number, we have calculated at hot and cold walls. 

So, that we have compared with Darbandi and Abrar, so that you can see the comparison is good 

and here velocity we have compared along the central line, with the literature as well as the 

natural number, conductive natural number and total natural number N ut is the total natural 

number we have compare with the literature and we can see comparison is very good.  

So, these results I have shown just to motivate you that these solver is written by the students, 

starting from scratch and they developed these general purpose CFD solver to solve a multi-

physics problems. And you can see that only few results I have shown here but in last 5 years we 

have solved several problems and shown its accuracy just solving this validation problems. 

So, to learn CFD you need to start learning programming and whatever problems in due course 

of time will discuss you please try to solve using some computer language may be C, C++ or 

Fortran. So, then actually theory you will apply to solve some fluid flow or heat transfer 

problems. So, in today’s class first we have discussed about initial condition for marching 

problems you need to specify, the value at the interior domain at time t is equal to 0. 

So, that is known as initial condition at the same time you need to specify the value of any 

variable at the boundary, so those are known as boundary conditions. So, 3 types of boundary 

conditions we discussed Dirichlet where value of the variable is specified then Neumann where 

the flux or a gradient is, normal gradient is specified at the boundary and Mixed where this 

combination of these two appears. 

And we took some example problems and shown different types of boundary conditions. Then 

we discussed about the course contents and at last we have shown some results from in house 

solver AnuPravaha. Thank you.  

 

 

  

 


