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Lecture-36
Axial Turbine: Examples

Welcome to the class. Now, we are going to work about the examples related to axial turbine.
Let us see the first example.

(Slide Time: 00:38)

(refer time : 00:38). This example states that a multistage turbine is to be designed with
impulse stages. So, it is said in this example that we are going to design an impulse turbine.
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And it is to operate with an inlet pressure and temperature of 6 bar and 900 Kelvin with an
outlet pressure of 1 bar. Isentropic efficiency of turbine is 85%. All the stages are to have
nozzle outlet angle of 75◦ and equal outlet and inlet blade angles. Mean blade speed of 250
m/s and equal inlet and outlet gas velocities are also said.

Estimate maximum number of stages required. Assume Cp is 1.15 kJ/kg and gamma as 1.33.
So, this is given thing for us and with this given thing, we are also said that this has to be
solved for optimum blade speed condition and we have to derive this condition. So, let us
derive first what is optimum blade speed condition. We know that the velocity triangles for
the turbines are this way, this is inlet velocity triangle, this is outlet velocity triangle. And we
are working with frictionless and same Ca.

So, this is Ca, this is C2, this is C3. Sorry this is V3, this is C3, this is V2. So what we have
is, this angle is α2, this angle is β2, this angle is α3, this angle is β3. Then we have this as
u velocity and this we have as Cw1 and then this as Cw2. This is Ca3. Basically this is Cw2
and this is Cw3 and then this is Ca2. So, with this, we have to define for optimum blade speed
condition. For that we are going to define a new term, which is blade, blading efficiency.

Blading efficiency of a turbine is defined as rotor blade work divided by entry energy sup-
plied to the rotor. So, we know that Wt is rotor work and Ein is entry energy given. So, for
us, we know in general, from Euler turbine turbo machinery question, we have specific work
done is u(Cw2 - Cw3), but in this specific case, we have Cw3 in opposite direction to Cw2. So,
we have Cw2 + Cw3, which is what we are calling it as ∆Cw. Now, we have to define what is
Ein.

What is the energy available to the blade. Then energy available to the blade is first kinetic
energy at the exit of the nozzle, which is 1

2C2
2 plus there are two forms of energies; one is

change in blade velocity, centrifugal energy, which is based upon the diameter πDN
60 plus there

is enthalpy drop which is going to take place on the blade, which is going to alter the kinetic
energy from relative sense. So, this is change in kinetic energy, which is going to happen on
the blades.

This is due to the centrifugal energy and this is available kinetic energy in absolute sense at
the inlet. At this moment, as what we said, we are working on axial flow turbine and we are
having, for this example, we have degree of reaction which is λ = 0. What is the repercussion
of it, this is that delta h rotor is equal to zero, says ∆h|R = 0 and we are considering frictionless
flow, there is no change in enthalpy in the inlet and outlet of the rotor, which is not going to
alter.

Therefore, the relative velocity at the inlet and at the outlet further. So, this term is no more
present. Further, we are working for the axial flow turbine with mean height or at the mean
blade plane and for that we have u2 = u3 = u, so this term also vanishes. So ultimately, we
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have 1
2C2

2 as the energy. So, blade blading efficiency we are defining it as ε is u∆Cw
1
2C2

2
, so it is

2u∆Cw
C2

2
.

So, let us find out what do we mean by ∆ Cw. For us, it is Cw2 + Cw3 and we can know Cw2
is this, Cw2 is this complete and Cw3 is this complete, but this complete length can be also
said to be equal to V2 sin β2, which is this small length plus V3 sin β3, which is this length.
So, we are defining it and we will have, suppose we are given in the example that equal blade
outlet angle. So, we are given that β2 = β3 and also we have V2 = V3, so ∆ Cw = 2 V2 sin β2.

So, we can write it as 2u×2V2sinβ2
C2

2
. So, we have 4uV2sinβ2

C2
2

. So, let us find what is V2 sin β2. V2

sin β2 is this distance, which we can write as V2 sin β2 = C2 sin α2, which is this big distance
minus u. So, we have ε = 4u(C2sinα2−u)

C2
2

. So, which gives this as 4 u
C2

sinα2 - 4 u
C2

2
.

(Slide Time: 09:52)

(refer time : 09:52).Then let us define u
C2

as ρ , which is blade speed ratio. So, we have ε is
equal to, we already had 4 u

C2
sinα2 - 4 u

C2
2
. This is what we had got the expression for epsilon

and hence, we have ε = 4ρsinα2 - 4ρ2. Now, we can see for given alpha or nozzle angle,
blading efficiency is just function of rho. So, dε

dρ
if we equate to zero, we can get the condition

for this we can also write ρsinα2 - ρ2.
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This would help to cancel the 4. So, we have this as a dε

dρ
4[ρsinα2 - ρ2]. So, 0 will cancel.

We can differentiate with rho, we have sin α2 - 2ρ sin α2 = 0. So, we have ρ = 1
2 sin α2. So,

we have u
C2

= 1
2 sin α2. So, this is the condition for blade loading, blading efficiency to be

maximum. We can find out maximum blading efficiency, which is ε = 4ρsinα2 - 4ρ2. So we

have 4 × sinα2
2 sinα2 - 4

(
sinα2

2

)2
.

So, we have 2sin2 α2 - sin2 α2. So, ε is equal to we have sin2 α2. So, this is the maximum
blading efficiency, which we are to obtain for ρ = 1

2 sin α2. Now, what is going to happen
with this. We have u

C2
= ρ , sorry, u

C2
= ρ = 1

2 sin α2. So this gives us C2sin α2 = 2u. If we see
the velocity triangle, we can see C2sin α2 is this length from here till here, within that one u
is exit already there.

So, we can write down this as u + u. So, second u over here is basically C2sin α2 = u + V2sin
β2. This is known to us. So, we have V2sin β2 = u. But we know V2 = V3 and sin β2 = sin β3
that is also equal to u. So, if that is equal to u, then we can know that, that will only be equal
to u, if we have Ca = C3. So, we can get from Ca3 = C3, so flow is axial at outlet for optimum
condition, we get this constraint that flow has to be axial. Having said this, now, we can start
solving the example for this condition.

So, in the example, we are told that λ = 0, T01 = 900 K, P01 = 6 bar, P03 = 1 bar. Then we
have turbine efficiency is 85%. We have given nozzle angle is 75◦. We are told thatβ2 = β3
symmetric blades for impulse turbine. We are told that u = 250 m/s. Also, we are told that
there is no friction, which is V2 = V3. So, we are to find out what is n, which is number of
stages. How to find out number of stages? We can find out number of stages by knowing that
there is one ∆T0 maybe complete turbine.

And that ∆ T0 complete turbine is equal to n number of stages into ∆ T0 in one stage. One
turbine has many stages, so total temperature drop as a summation of across all stages is
equal to ∆ T0 across the turbine. We know that turbine efficiency = T02 - T03, sorry T01−T03

T01−T ′03
.

So, we have from here as ∆T0|t , which is the numerator is equal to ηt (T01−T
′

03). So here, it

is ηtT01(1 - T
′

03
T01

).

So, we have ∆T0|t = ηt T01

[
1−
(

P03
P01

) γ−1
γ

]
. Knowing this, we can find out total temperature

change across the turbine. So, this is 0.85 × 900 ×
[

1−
(1

6

) 0.33
1.33

]
and this gives us to 274.56

K. Now, our objective is to find out stage temperature drop. So, stage temperature drop we
can find out by two ways. Let us first consider a way which is A here, we will directly use
the optimum condition.
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Using optimum condition, we are told that u
C2

= sinα2
2 . So, we can say that C2 = 2u

sinα2
. So, we

know now u, which is 250
sin75 and this gives us C2 = 517.6 m/s.

(Slide Time: 19:24)

(refer time : 19:24). Knowing this C2, we can proceed with the optimum condition that C3
= Ca3 = Ca2, but we know from velocity triangle Ca2 is C2 cos α2. So, we can say C3 = C2
cos α2, so C3, we know C2 and C2 is 517.6 × cos 75 and this gives us C3 as 133.96 m/s. So,
we can find out enthalpy drop in the nozzle. Since we know that C3 is around is equal to C1
where C3 is exit velocity of rotor and C1 is entry velocity to the nozzle. So, both velocities
are around same.

So, we can know the enthalpy drop ∆h, which is rotor for the impulse case, specifically it is
mainly due to change in kinetic energy. So, it is C2

2 - C2
1 and then that is what the enthalpy

drop in the nozzle and then there is no enthalpy drop in the rotor. So, we have C2, we know
now C1. So, we can get enthalpy drop as 124,981.6 J/kg. So, we can write delta at ∆T0|R as

1
2Cp

(C2
2 - C2

1). And this gives us enthalpy drop. Total sorry temperature drop as 108.67 Kelvin.

So we have stage temperature change, we have turbine total temperature, turbine temperature
change n is equal to stage and this is equal to stage. And this gives us 274.56/108.67. This
gives us 2.52, so it is actually saying that, we need three stages. Now, same thing, we can
find out by a method, which is B suppose and in this method, we can now use the concept for
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the velocity triangle, where we know tan β2, which is basically Catan β2 = u.

We know this from the inlet velocity triangle. So, we have tan β2 = u
Ca

. So, we u which is 250,
we know Ca and that Ca is 133.96. So, this gives us tan β2 as 1.8662, so gives us β2 = 61.81
which is also equal to β3. Here, we can use the formula total temperature change across the
stage = uCa

Cp
(tan β2 + tan β3). So, ∆T0|s, u is known to us, which is 250, Ca is known to us,

which is 133.96/Cp and Cp is 1147 (tan β2 + tan β3).

So it is 2 tan β2. ∆T0|s = 250x133.96
1147 × 2 tan β2 is 1.8662 and this gives us delta T0 stage

is around same, which is 108.97. So, we can find out number we can find out stages and
number of stages n = ∆T0|t divided by ∆T0|s, so we have 274.56/108.97, which is around
three stages. So, this is how we should remember we can solve the example for the turbine,
which is told to be impulse turbine and here, we have learned how to derive the expression
for the optimum blade speed condition.

With certain constraints that equal blade angles without friction and outcome is we will have
axial flow velocity and we get u

C2
= sinα2

2 .

(Slide Time: 26:00)

(refer time : 26:00). Knowing this, we can move ahead and solve the next example, which
says that following particulars of a single stage turbine of free vortex type is given below.
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Determine gas temperatures, velocities and discharge angle at the blade root and tip radii.
Assume 1.147 Cp and γ 1.4. Total pressure inlet head is 4.6 bar, static pressure at mean ra-
dius is 1.6 bar, mean blade diameter to height ratio is 10, nozzle loss coefficient is 0.1, total
head inlet temperature is 973, outlet nozzle outlet angle is 60◦, mass low rate is 20 kg/s.

(Slide Time: 26:56)

(refer time : 26:56). So, having said this, we can say that the given things for this example
are P01 = 4.6 bar, T01 = 700◦ C, which is 973 K. Then P2 = 1.6 bar, Dm mean diameter to the
height of the blade, that ratio is told to be 10, ṁ is given as 20 kg/s, Cp is given as 1147, γ is
given at 1.33. We are told that loss coefficient is 10%. So, we are practically told that nozzle
efficiency is 90%. We are also told that nozzle angle is 60◦.

We are supposed to find out temperature and velocity and angles at different heights, where
we are told that there is free vortex design. Having said this, we can go ahead and solve

the example. We know nozzle efficiency as T01−T2
T01−T ′2

, but we know T01
T ′2

=
(

P01
P′2

) γ−1
γ

. Here

we are assuming isentropic process in the nozzle where initial the flow had total condition,
after expansion it entered with static condition P2 and T2, which is for isentropic is P

′
2 and T

′
2.

But P2 = P
′
2. In reality flow will attain same pressure but not the same temperature. So, we
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have T
′

2
T01

=
(

P
′
2

P01

) γ−1
γ

So, we have T
′

2 = T01

(
P
′
2

P01

) γ−1
γ

and it is going to give us 973 × 4.6

divided by, sorry P
′
2 is (1.6/4.6)

1.33−1
1.33 . So, this gives us T

′
2 and this T

′
2 = 748.73 K. It was

required over here since T01 and n j are already given.
So, this is 0.9 and T01 is 973−T2

973−748.73 . So, this gives us T2 and T2 comes to be 771.16 K. Hav-
ing said this, we can write down the expression for total enthalpy at state one is equal to h2 +
C2

2/2, this is from the energy equation. So, we can find out C2 which is equal to
√

2(h01h2).
So, this is equal to

√
2(T02−T01), sorry T02 - T1. So, having said this we can calculate C2,

so it is 2 × Cp, we are told that it is 1147.

Sorry, this 2 is inside the square root, 2× 1147× T02 and T02 is 973 T2 is told or calculated
771.16 and this gives us C2 680.46 m/s. From velocity triangle, we know Ca2 = C2 cos α2.
So, we know C2 now, which is 680.46. We are told that α2 is 60. So, this gives us C2 as
340.23 m/s. Now, we have to find out different dimensions, which will be used for the free
vortex design. So, for that, we can make use of ṁ, which is mass flow rate.

Which is equal to ρAV, this is velocity into area into density. But here, we have to take ve-
locity as C2, here we have to take ρACa2. But we have to find out ρ . So, for that, we know
that P = ρRT. So, this gives us ρ = P/RT. So, we have ρ2 = P2/RT2. But we do not know
R. What we are given with Cp, which is 1147. We know that γ = Cp/Cv and Cp - Cv = R.
So, having said this, we can find out R by replacing Cv with Cp and then we can get Cp = γR

γ−1 .

So, R = Cp γ−1
γ

. So, this we can use to find out R and then we can make use of it for the
calculation of area. So, we can make use of this over here for ṁ = ρAC2, so we have now ρ

as P2
RT2

ACa2, so this we can have as P2ACa2
RT2

. So ṁ = P2ACa2

Cp
γ−1

γ
T2

and so this gives us ṁ = γP2ACa2
Cp(γ−1)T2

.

So, we know ṁ is 20 as given in the example and that is equal to 1.33, P2 is given as 1.6 x 105.

The area is to be evaluated. Ca2 is 340.23 divided by Cp is 1147 × γ -1, which is 0.33 × T2
which is 771.16 and this gives us area is equal to basically A2 and 0.08 m2. But, we know
that the area A2 = π Dm h. This is the area across which flow is flowing. But we know h
given in terms of D as the Dm/10. So it is (π/10)× D2

m. And then this is equal to 0.08 and
this gives us Dm = 0.506. So, we can know Rm, which is radius as 0.25 m. Further, we know
Dm/h = 10. So, we get h = 5.06 cm. It is very small number.

(refer time : 38:47). Having said this we can proceed for further calculations. Now, we
can find out root, Rroot , what is the radius at root and then that radius at the route is equal
to Rm - h/2. So, it comes out to be 0.25 - 0.0506/2 which is 0.2247 m. Similarly, radius
at the tip is equal to Rm + h/2 and so we have 0.25 + 0.506/2 = 0.2753 m. Now, we know
all radii, we can use the free vortex expression, which says that (Cw2r)m = (Cw2r)t = (Cw2r)root .

So, we have basically we can mention here we can find out Cw2r for mean radius. So (Cw2r)m,
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(Slide Time: 38:47)

we can write down Cw2 is 680.46× sin 60× 0.25. we know that we are writing Cw2 as C2sin
α2. So (Cw2r)m is coming to be 147.32 units. So, we know that Cw2|root = 147.32

Rroot
and Rroot is

147.32/0.2247. So Cw2 at root is 655.64 m/s. But we know that Cw2|root = Ca2 tan α2|root .

So, tan α2|root = Cw2
Ca2
|root . So, tan α2|root = Cw2, which is 655.64 divided by Ca2 and Ca is

basically 340.23. We have found out Ca, which is 340.23. And this gives us the angle, which
is α2|root and this angle is 62.6◦. So, one of the answers we have found out, what is the angle
at root or the nozzle and then we know now we have to find out C2|t , C2 at tip is equal to also

Ca2
cosα2|tip . So we have, but here we have to first find out what is cos α2 at tip.

So, for that, we have to first equate (Cw2r)tip = 147.32 and then we know r at tip and r at tip
is 0.2753. This gives Cw2|tip, which is equal to 535.12 m/s. So, we can find out now, first tan
α2. So, we have C2 at tip = Ca2. We know again that Cw2|tip = Ca2tan α2|tip. So, we have tan
α2|tip = Cw2|tip/Ca2 and so we have 535.12/340.23 and we get from here as α2|tip and that is
57.55◦.

So now, we can work out with the temperatures, so for that, we have to find out absolute ve-
locity. So, C2|r = Ca2

cosα2|root
. So this gives us velocity as 739.3 m/s. Similarly, C2|tip = Ca2

cosα2|tip
and this gives us C2|tip as 634 m/s. Having said this, we can find out temperature T2|tip = T02

- C2
2 |tip
2Cp

. We know T01 = T02 which is 973 - C2|tip as 6342/(2 × 1147).
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So, we get temperature at tip as 792.76 K. Similarly, T2|root = T02 - C2
2 |root
2Cp

. So, which is 973 -

739.32/(2 × 1147). So, T2|root = 734.7 K. So, this is how we can make use of the basics and
the velocity triangle to solve the example, which is for the turbines.

(Slide Time: 38:47)

(refer time : 47:59). In case of turbine, following are the salient features what we learnt. So,
this is the velocity triangle for the turbine, where we are assuming that the axial at the inlet
and at the outlet is same. So, here we will have this as C2, this as V2 and hence this as Ca2,
further this as Ca3, which is equal to Ca and which is equal to again Ca. But then, we will
have this as V3, this as C3. So, the angles what we can make out over here, this first angle is
α2, the second angle is β2.

Over here, this angle is β3 and this internal angle is α3. So, this is what further we have this
as u and then this would be our Cw1, then this would be Cw2. Then, we have some derived
formulas, where we said that u

Ca
= tan α2 - tan β2 = tan β3 - tan α3. So, we could also write

u
Ca

= tan α2 + tan α3, which is equal to tan β2 + tan β3. We know that turbine work is ṁ ∆Cw.

So, which is equal to ṁu(Cw1 + Cw2), so we can write it as ṁu, Cw1 is Ca, (Ca2 cos α2 + Ca3
cos α3). So, Wt = ṁu(cos α2 + cos α3)Ca. We also know from thermodynamics that work
done = ṁCp ∆T0, which is ṁCp (T01 - T03). Further ∆T0|s = uCa

Cp
(tan β2 + tan β3). There is
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one more formula, which includes pressure ratio.

So, we have ∆T0|s = ηt

[
1−
(

1
P01
P03

) γ−1
γ

]
× T01. We know blade loading side is equal to

Cp∆0|stage
1
2 u2 , and so it is 2Ca

u (tan β2 + tan β3). We know degree of reaction λ = Ca
2u (tan β3 - tan

β2). We have also defined φ as flow coefficient, which is Ca
u .

So, these are the relations and the diagram which are required to solve the examples related
to axial turbine.
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