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Lecture-34
Axial Turbines

Welcome to the class. Now, we are going towards the discussion for axial turbines. We
have seen that axial turbine is an integral part of aircraft engines if we have chosen it to be,
otherwise, there can be other option of the turbine which is part of other lectures. So, axial
turbines, as the name suggest, the fluid is in the axial direction of the turbine. So, we will see
how is its configuration, axial turbine. (refer time: 01:06)
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As it was already discussed, we are talking about configuration. As it was already discussed,
a turbine is work producing machine and hence if I say a turbine, it will have two compo-
nents, or rather one stage or single stage. And those two components are first is nozzle and
the second is rotor. So, this is stator or nozzle, second is rotor. So, flow will first enter into
the nozzle, gain the kinetic energy and it will enter into the rotor and lose the kinetic energy
and it does the work.

This is how the configuration of a turbine would be, and hence the axial turbine, as the name
suggests, it will also have two parts. So, the nozzle would be the stationary part, this is the
nozzle suppose, this is stationary part of the turbine, and then we have rotor in the schematic
which is the moving part of the turbine. And then this rotor would be attached to a shaft. So,
in all this is the schematic of a axial turbine where flow is parallel to the axis.

Now, it is understood that first the flow has to pass through the nozzle and then it has to go
to the rotor. Let us see how the flow pattern would be. So, this will be the direction of the
flow. So, we will first have a flow which is entering with velocity C; into the nozzle. This is
nozzle ring or stator ring where fluid is supposed to enter, and then this is velocity C,; and
angle ;. Then, secondly, it will enter into the rotor blades.

So, the configuration of rotor blades would be this and this rotor rotates in this direction. This
is direction of rotation of the rotor which will be accounted while considering the u velocity
or the tangential velocity of the rotor. So, this is u velocity or tangential velocity of the rotor.
After entering into the nozzle it would get accelerated, and then the flow would attain a ve-
locity which is C,. Hence it will have relative velocity V.

So, practically, flow will have C,; as the axial velocity, the angles, C, angle is o, V, angle
is B,. Hence this component of absolute velocity will be C,,; or whirling velocity. Now,
the flow would come out of the rotor with tangential velocity which is V3 and there will be
absolute velocity which the flow would have. This is V3. Then, we will have u velocity, and
then this is Cs.

So, the angle of C3 is o3, and angle of V3 is 33, and then this is the velocity representation.
Again, here, we are considering everything at the mid plane height of the blade. So, if this h
is the height of the blade, we are working in the mid plane. So, we are plotting inlet velocity
triangle at this location, outlet velocity triangle at the same location. So, u velocity is same at
the inlet and at the outlet. So, this is one section, this is section two, and this is section three
for the one stage of the turbine. (refer time: 08:24)

Having said this, we can proceed and plot the coupled velocity triangle, inlet and outlet ve-
locity triangles together. Since u velocity is common we can plot both together. So, this is u
velocity and then we have this as C,, this as V;, and we are all set, we have this as C,, which
is axial velocity, and then this is oy and this is ;. Having said this, we will plot the outlet
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velocity triangle and in the outlet velocity triangle this is V3, this is C3.

And hence angles are oz and f33. Parallelly, we will have the velocity C,3. Considering the
components, we have this complete component is whirl velocity 2 and the small component
is whirl velocity 3. So, this complete width is AC,, which is change in whirl velocity. So,
from inlet triangle we can say u which is the blade velocity is equal to C,, tan .

So, this C,; tan o is this complete which is C,, practically, - C,otan B, which is this dis-
tance. And then this is yy, this is x;. So, we are seeing u =y - x| which is C stan o - Cyotan
Bz. So, u = Cgptan ap - Cyotan B,. From outlet velocity triangle we have u is equal to, again
the same thing. Outlet velocity triangle we can represent it as xj.

So, we have this complete would be y;, y, - X2. So, y» in this case is C stan B3 - C,3 tan 0.
So, u = Cgstan B3 - C,3 tan a3, but C,p = Cu3 = Cy, u/C, = tan a; - tan B = tan B3 - tan 0.
So, practically, we have tan o - tan 3, = tan 35 - tan og.

So, we have tan o - tan 3, = tan 33 - tan az. We name this as equation number 1 and this
is equation number 2. We know that turbine work W; is equal to riz X u X, basically, it is
n(Cyouy - Cy3u3), but up = u3, so turbine work is equal to mu(C,,, - C,3). So, we can write
down C,,» and C,,3 in terms of C,,.



So, we can write it down as C,tan o3. So, the directions are different in this case. So, we
practically have plus sign here, plus C,tan ;. So, we have W; = riwu(tan oz + tan 0)C,.
Here, if we are considering negative sign, we are practically writing rituAC,,, but if we see
here, C,,; is in this direction and C,,3 is in this direction.

So, AC,, will get addition of C,,, + C,;3, so there is plus sign which is getting the plus by
minus. We know o + o3 is B2 + B3. So, W; = rau(tan B, + tan 33). We have C, also along
with this. So, this is the turbine work. Now, we know that this turbine work is equal to the
one more thing which is iC,, ATy|s.

So, it is equal to rmu(tan B, + tan fB3). We would have written it for o + a3 as well. So, ATy,
which is stage temperature drop is equal to ”CCP“ (tan 3, + tan f33). We should remember from
the concepts of Brayton cycle and its components. Again from the aircraft engines we have
seen that y over here in the case of turbine we generally take as 1.33, C, we generally take

for gas as 1.148 kJ/kg.K.

So, this is what is the input for C,, and y. Then, we can define the AT, by one more fact,

ATy |s using thermal efficiency of turbine. It is TOL;OF So, practically, turbine efficiency is
02— 4p3

actual work divided by ideal work. So, this gives us éfﬁciency is equal to ATol|s/(Tor — T(;3).
So, ATy |s = Ni(Too — T3).
We can take Tp> common. So, it is Tq» (1 — % . We should remember that we have turbine

means we have nozzle and rotor. So, 1 is here, 2 is here, and 3 is here. These are the three
states. But 1 to 2 is no work interaction, so we have To; = Tp. So, we have ATy|; = 1,.To;

/
(l — %) bracket raised to, Tgr = To;.

r=1
Now we can express in terms of pressure ratio saying that ;. To; |1 — (%) " 1. So, we can
find out the stage efficiency also like this where the term in the bracket represents the pressure
ratio of the turbine. So, now, we will go ahead having said about the temperature rise in a
stage, temperature drop in a stage, turbine work input, turbine efficiency, and go ahead and
discuss about degree of reaction.(refer time: 19:59)

In case of degree of reaction, we know A is equal to a degree of reaction that is ATo|g/ATp|s.
Soitis, Ty - T and it is equal to Tg - T3, but let us assume that we are working for a turbine
which has C,, = C,3 = C, and also C; = C5.

If you go back and see in the velocity triangle, what we are trying to say is for the first stage
we have C; which is velocity for the gas entering into the nozzle and Cj3 is the velocity of the
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gas which is leaving the rotor. If it has to go to the next stage, we would obviously have C; =
Cj.(refer time: 21:14)

That is same kinetic energy for fluid at the entry of each stage. So, this is ATg|g/ATg|s which

is equal to ATy|g divided by, we can mention. (refer time: 21:36)

We will talk about degree of reaction. We know that degree of reaction is defined as AT|g/ATp|s.
We will consider a special case where we have C,» = C;3 = C, and we have C3 = C;. So, if
you go back and see, we are practically seeing that in the velocity triangle the flow which is
coming with velocity C; into the nozzle of first stage is leaving the rotor of first stage with
velocity Cs.

Now, this C3 = C;, means if there is a next stage, it is receiving the same kinetic energy as
what first stage has received. So, if we say so, we can mention it as AT|g/AT|;. We can bring
it in terms of static temperature. Now, AT, is practically the work done, W, = C,, AT which
is equal to C,(T; - T3) since C, = C3, and that is equal to uC,(tan B3 + tan f3;).

Having said this, we can consider this for the denominator, but for the numerator we know
enthalpy drop which is C,(T; - T3) = change in relative kinetic energy, so V% - V%. So,
practically enthalpy drop in the rotor would lead to change in relative velocity and hence the
kinetic energy. So, we have C,(T; - T3) is equal to half.
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So, let us see what is V3. If we try to write V3, then V3 is this. And we are talking about in
terms of C,, we can write in terms of C, since C, is constant between the inlet and the outlet.
So, C, and V3 has an angle f33. So, V3 is equal to C, sec 3. So, we have it equal to C2 sec?
Bs -, same way, V» is equal to C2 sec? ;. We know that is equal to C,(T, - T3).

We can take CZ common and the terms in the bracket would remain as it is. So, sec 0 we
know the relation, what it bears with tan 6, so we have that relation which is 1 + tan 2 Bs -
1 +tan 2 B,. one one would get cancelled. So, we have C p(T2-T3) = % C2 (tan? B3 - tan 2 By).

2
Now we can tell that T, - T3 = AT|g = % %“(tan 2 B; - tan 2 f3,). Having said this, we can
4
2 2R 2
represent A and hence A becomes 3 %“ _tanPy—tanpy
p y (tanPs+tanp)

1 G tan’By—tan’py
2 u (tanPz+tanPy)’

tan 2 33 - tan 2 B, can be split and said as (tan B3 + tan 3,) x (tan 3 - tan f3,) divided by (tan
B3 + tan f3>) and this bracket would get cancelled. So, 1 % (tan B3 - tan f3).

So, C,, and C,, will get cancelled, one C, would get cancelled. So, we have

So, let us say that C, which is axial velocity divided by blade speed is equal to ¢, which is
flow coefficient. So, this gives us A = % ¢ (tan B3 - tan f3;). (refer time: 28:59)

If we go back and see the derivation for the y which is the blade speed ratio, we can define the
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term which is y which is called as blade loading coefficient that is defined as C, AT,/ %uz
or this is also equal to W,/%uz. So, this is equal to %(tan B2 + tan f3). So, this y is also
equal to 2¢(tan 3 + tan f3,).

Considering the equation this and the previous expression this or lambda, we can write down
tan 33 is equal to ﬁ(%l]/ + 2A) and tan 3, is equal to ﬁ(%l]/ - 2A). Similarly, we can have %

¢ =tan oy - tan 3 = tan f3 - tan 0.

So, we have tan o3 = tan f33 - % and tan o = tan 3, + % So, if we take a particular case of A
is equal to 0.5 or 50% reaction turbine, then we have % = tan 35 - tan 3. Then, & is equal

to L tan o - tan B, = tan B3 - tan o3, and hence we have B, = o3 and o = 3. We will move
ahead and discuss about the T-s diagram.(refer time: 32:37)

So, if we try to plot T-s diagram, then first we have Py, the gas expands till P,, this is an
isentropic expansion, but from 2 it goes to 3. Initially, gas is at state 1. If that state is isen-
tropically compressed to Pgp, then this temperature is To;. This gas expands till state 2 and
then it responds further till P3, but in P, we can isentropically again compress, then we will
have this as Py, and the same temperature we will come in that is T is equal to Tg;. This is
Pos.
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This is 0. This is 1. This is 2. This is 3. Here, we are having nozzle. Here we are having
rotor. Now, we will talk about the nozzle which we have discussed, that is free vortex design.
In case of free vortex design we have seen that C,,r = constant. So, we have C,tan opr =
constant, but C, is again itself a constant, so our number of constants increase. r tan 0o
constant.

Let oy, is the mean angle at the inlet of the absolute velocity. So, we have r,, tan 0, =1 tan
a. Here, this is alpha. This r is any radius r at which o is measured. This is the mean radius
and this is the mean angle. So, we have tan o = %’"(tan Oby,). Similarly, tan o3 = rT’"(tan 03m).

Further, we know that Cla =tan o - tan B,. So, we have tan 3, = tan o - Cla So, we have tan

B2, we know this is tan @, it is “2(tan Q) - #. This u is going to vary at different r. So,

we know that u :%. So, we know u is equal to some constant into r. So, u,, is equal to that

constant X Iy,.

So we have ™ is equal to —m So, tan 3, = ’”(tan Otzm) C So, we can now say it as C
L that is C Similarly, tan 3 = = 2 (tan Q) + = . So, this is the thing what we know

from the free vortex design Wthh we have seen, that for free vortex design where we had

considered radial equilibrium of the flow element and then we assumed that the work done at

all the heights is same.
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So, we have got C,,r as constant, but now this is not the sole philosophy in which the turbines
are designed. (refer time: 39:10)

Apart from free vortex theory turbine design has one more constraint or method which is
constant nozzle angle. Let us try to find out the derivation which is similar to C,,r = constant,

but it is for constant nozzle angle design. We know from the vortex equation or vortex flow

dh
dr -

= (0 with the fact that work done at all the heights is same. So, we have C,

2
equation we have C, di C,+C, di C,+ & =

So, we have dho =

d C,+C, C + C” = (0. We know that “2 = cot o from the velocity triangle, okay?
Then let us say that thls is constant. Since we are considering constant nozzle angle and this
is inlet angle at the nozzle, so we have C,, = constant X tan ap x C,,».

So, we have j C2 = tan oy, sorry this is cot o, this is also cot ap x cldC_;vz. So, we can write
down dggz = dC,; by, sorry this is dr, X cot o. We can use this for this expression and we

can mention it as C,y(cot o dgfz) +C, C + G = =0.

. C2
We know C, is equal to C,,» cot o, so we have C,,» cot aix(cot o dS‘VZ) +Cyn jr Cyo + 22

c?
= 0. So, we have C,, cot®> o d 4G Cy jr Cuo + ”2 = 0. So, we can divide this expression
(] +cot? o ) + 92 = 0.

by Cy», so we have
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cos?op
sin2op

which is actually going to get replaced here, ngz

So, we have dCC—’fz'z(l +cot? oy ) = —dTV. Having said this, this cot? o can be written as

1

=2 2 . .
sin“0p+cos“ 0 which is !
sin“ oy

sin2 o

So, we have

1 __dr
sinop r’

So, dcc 12 = _ gip? 062 . We can integrate both sides and then we can get szr”” ® = constant
and this is the constramt for constant nozzle angle design of turbine blades. Further, we know

that C, is directly proportional to C,,», so we can write down this as C,, = constant.

So, these two are the expressions of nozzle design with constant angle or constant nozzle
design angle for the turbines. So, we will see some examples related to this in one of the
lectures. Here, we have seen, if given an axial turbine, how to find out the velocity triangle,
from the velocity triangle how to find out the blade loading coefficient, turbine work output,
ATy or temperature drop in a stage, and also degree of reaction.

We have seen how they can be calculated for the axial turbine. Further, we have seen what are
the different design criteria for designing an axial turbine. So, there are two ; one is vortex
flow theory, another is constant nozzle angle. So, we have seen the expressions for both from
fundamental equations. Regarding axial turbine examples we will see in one of the classes.
Thank you.
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