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Welcome to the class. Now, we are going towards the discussion for axial turbines. We
have seen that axial turbine is an integral part of aircraft engines if we have chosen it to be,
otherwise, there can be other option of the turbine which is part of other lectures. So, axial
turbines, as the name suggest, the fluid is in the axial direction of the turbine. So, we will see
how is its configuration, axial turbine. (refer time: 01:06)

(Slide Time: 01:06)

1



As it was already discussed, we are talking about configuration. As it was already discussed,
a turbine is work producing machine and hence if I say a turbine, it will have two compo-
nents, or rather one stage or single stage. And those two components are first is nozzle and
the second is rotor. So, this is stator or nozzle, second is rotor. So, flow will first enter into
the nozzle, gain the kinetic energy and it will enter into the rotor and lose the kinetic energy
and it does the work.

This is how the configuration of a turbine would be, and hence the axial turbine, as the name
suggests, it will also have two parts. So, the nozzle would be the stationary part, this is the
nozzle suppose, this is stationary part of the turbine, and then we have rotor in the schematic
which is the moving part of the turbine. And then this rotor would be attached to a shaft. So,
in all this is the schematic of a axial turbine where flow is parallel to the axis.

Now, it is understood that first the flow has to pass through the nozzle and then it has to go
to the rotor. Let us see how the flow pattern would be. So, this will be the direction of the
flow. So, we will first have a flow which is entering with velocity C1 into the nozzle. This is
nozzle ring or stator ring where fluid is supposed to enter, and then this is velocity Ca1 and
angle α1. Then, secondly, it will enter into the rotor blades.

So, the configuration of rotor blades would be this and this rotor rotates in this direction. This
is direction of rotation of the rotor which will be accounted while considering the u velocity
or the tangential velocity of the rotor. So, this is u velocity or tangential velocity of the rotor.
After entering into the nozzle it would get accelerated, and then the flow would attain a ve-
locity which is C2. Hence it will have relative velocity V2.

So, practically, flow will have Ca2 as the axial velocity, the angles, C2 angle is α2, V2 angle
is β2. Hence this component of absolute velocity will be Cw1 or whirling velocity. Now,
the flow would come out of the rotor with tangential velocity which is V3 and there will be
absolute velocity which the flow would have. This is V3. Then, we will have u velocity, and
then this is C3.

So, the angle of C3 is α3, and angle of V3 is β3, and then this is the velocity representation.
Again, here, we are considering everything at the mid plane height of the blade. So, if this h
is the height of the blade, we are working in the mid plane. So, we are plotting inlet velocity
triangle at this location, outlet velocity triangle at the same location. So, u velocity is same at
the inlet and at the outlet. So, this is one section, this is section two, and this is section three
for the one stage of the turbine. (refer time: 08:24)

Having said this, we can proceed and plot the coupled velocity triangle, inlet and outlet ve-
locity triangles together. Since u velocity is common we can plot both together. So, this is u
velocity and then we have this as C2, this as V2, and we are all set, we have this as Ca2 which
is axial velocity, and then this is α2 and this is β2. Having said this, we will plot the outlet
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velocity triangle and in the outlet velocity triangle this is V3, this is C3.

And hence angles are α3 and β3. Parallelly, we will have the velocity Ca3. Considering the
components, we have this complete component is whirl velocity 2 and the small component
is whirl velocity 3. So, this complete width is ∆Cw which is change in whirl velocity. So,
from inlet triangle we can say u which is the blade velocity is equal to Ca2 tan α2.

So, this Ca2 tan α2 is this complete which is Cw2 practically, - Ca2tan β2 which is this dis-
tance. And then this is y1, this is x1. So, we are seeing u = y1 - x1 which is Ca2tan α2 - Ca2tan
β2. So, u = Ca2tan α2 - Ca2tan β2. From outlet velocity triangle we have u is equal to, again
the same thing. Outlet velocity triangle we can represent it as x2.

So, we have this complete would be y2, y2 - x2. So, y2 in this case is Ca3tan β3 - Ca3 tan α3.
So, u = Ca3tan β3 - Ca3 tan α3, but Ca2 = Ca3 = Ca, u/Ca = tan α2 - tan β2 = tan β3 - tan α3.
So, practically, we have tan α2 - tan β2 = tan β3 - tan α3.

So, we have tan α2 - tan β2 = tan β3 - tan α3. We name this as equation number 1 and this
is equation number 2. We know that turbine work Wt is equal to ṁ × u ×, basically, it is
ṁ(Cw2u2 - Cw3u3), but u2 = u3, so turbine work is equal to ṁu(Cw2 - Cw3). So, we can write
down Cw2 and Cw3 in terms of Ca.
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So, we can write it down as Catan α3. So, the directions are different in this case. So, we
practically have plus sign here, plus Catan α2. So, we have Wt = ṁu(tan α3 + tan α2)Ca.
Here, if we are considering negative sign, we are practically writing ṁu∆Cw, but if we see
here, Cw2 is in this direction and Cw3 is in this direction.

So, ∆Cw will get addition of Cw2 + Cw3, so there is plus sign which is getting the plus by
minus. We know α2 + α3 is β2 + β3. So, Wt = ṁu(tan β2 + tan β3). We have Ca also along
with this. So, this is the turbine work. Now, we know that this turbine work is equal to the
one more thing which is ṁCp ∆T0|s.

So, it is equal to ṁu(tan β2 + tan β3). We would have written it for α2 + α3 as well. So, ∆T0|s
which is stage temperature drop is equal to uCa

Cp
(tan β2 + tan β3). We should remember from

the concepts of Brayton cycle and its components. Again from the aircraft engines we have
seen that γ over here in the case of turbine we generally take as 1.33, Cp we generally take
for gas as 1.148 kJ/kg.K.

So, this is what is the input for Cp and γ . Then, we can define the ∆T0 by one more fact,
∆T0|s using thermal efficiency of turbine. It is T02−T03

T02−T ′03
. So, practically, turbine efficiency is

actual work divided by ideal work. So, this gives us efficiency is equal to ∆T0|s/(T02−T
′

03).
So, ∆T0|s = ηt(T02−T

′
03).

We can take T02 common. So, it is T02

(
1− T

′
03

T02

)
. We should remember that we have turbine

means we have nozzle and rotor. So, 1 is here, 2 is here, and 3 is here. These are the three
states. But 1 to 2 is no work interaction, so we have T01 = T02. So, we have ∆T0|s = ηt .T01(

1− T
′

03
T02

)
bracket raised to, T02 = T01.

Now we can express in terms of pressure ratio saying that ηt .T01

[
1−
(

P03
P02

) γ−1
γ

]
. So, we can

find out the stage efficiency also like this where the term in the bracket represents the pressure
ratio of the turbine. So, now, we will go ahead having said about the temperature rise in a
stage, temperature drop in a stage, turbine work input, turbine efficiency, and go ahead and
discuss about degree of reaction.(refer time: 19:59)

In case of degree of reaction, we know λ is equal to a degree of reaction that is ∆T0|R/∆T0|s.
So it is, T2 - T2 and it is equal to T01 - T03, but let us assume that we are working for a turbine
which has Ca2 = Ca3 = Ca and also C1 = C2.

If you go back and see in the velocity triangle, what we are trying to say is for the first stage
we have C1 which is velocity for the gas entering into the nozzle and C3 is the velocity of the
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gas which is leaving the rotor. If it has to go to the next stage, we would obviously have C1 =
C3.(refer time: 21:14)

That is same kinetic energy for fluid at the entry of each stage. So, this is ∆T0|R/∆T0|s which
is equal to ∆T0|R divided by, we can mention. (refer time: 21:36)
We will talk about degree of reaction. We know that degree of reaction is defined as ∆T0|R/∆T0|s.
We will consider a special case where we have Ca2 = Ca3 = Ca and we have C3 = C1. So, if
you go back and see, we are practically seeing that in the velocity triangle the flow which is
coming with velocity C1 into the nozzle of first stage is leaving the rotor of first stage with
velocity C3.

Now, this C3 = C1, means if there is a next stage, it is receiving the same kinetic energy as
what first stage has received. So, if we say so, we can mention it as ∆T|R/∆T|s. We can bring
it in terms of static temperature. Now, ∆T|s is practically the work done, Wt = Cp ∆T0 which
is equal to Cp(T1 - T3) since C2 = C3, and that is equal to uCa(tan β3 + tan β2).

Having said this, we can consider this for the denominator, but for the numerator we know
enthalpy drop which is Cp(T2 - T3) = change in relative kinetic energy, so V2

3 - V2
2. So,

practically enthalpy drop in the rotor would lead to change in relative velocity and hence the
kinetic energy. So, we have Cp(T2 - T3) is equal to half.
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So, let us see what is V3. If we try to write V3, then V3 is this. And we are talking about in
terms of Ca, we can write in terms of Ca since Ca is constant between the inlet and the outlet.
So, Ca and V3 has an angle β3. So, V3 is equal to Ca sec β3. So, we have it equal to C2

a sec2

β3 -, same way, V2 is equal to C2
a sec2 β2. We know that is equal to Cp(T2 - T3).

We can take C2
a common and the terms in the bracket would remain as it is. So, sec θ we

know the relation, what it bears with tan θ , so we have that relation which is 1 + tan 2 β3 -
1 + tan 2 β2. one one would get cancelled. So, we have Cp(T2 - T3) = 1

2 C2
a (tan 2 β3 - tan 2 β2).

Now we can tell that T2 - T3 = ∆T|R = 1
2

C2
a

Cp
(tan 2 β3 - tan 2 β2). Having said this, we can

represent λ and hence λ becomes 1
2

C2
a

Cp

tan2β3−tan2β2
uCa
Cp (tanβ3+tanβ2)

.

So, Cp and Cp will get cancelled, one Ca would get cancelled. So, we have 1
2

Ca
u

tan2β3−tan2β2
(tanβ3+tanβ2)

.

tan 2 β3 - tan 2 β2 can be split and said as (tan β3 + tan β2) × (tan β3 - tan β2) divided by (tan
β3 + tan β2) and this bracket would get cancelled. So, 1

2
Ca
u (tan β3 - tan β2).

So, let us say that Ca which is axial velocity divided by blade speed is equal to φ , which is
flow coefficient. So, this gives us λ = 1

2 φ (tan β3 - tan β2). (refer time: 28:59)

If we go back and see the derivation for the ψ which is the blade speed ratio, we can define the
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term which is ψ which is called as blade loading coefficient that is defined as Cp ∆T0|s/1
2u2

or this is also equal to Wt /1
2u2. So, this is equal to 2Ca

u (tan β2 + tan β3). So, this ψ is also
equal to 2φ (tan β3 + tan β2).

Considering the equation this and the previous expression this or lambda, we can write down
tan β3 is equal to 1

2φ
(1

2ψ + 2λ ) and tan β2 is equal to 1
2φ

(1
2ψ - 2λ ). Similarly, we can have 1

φ

= u
Ca

= tan α2 - tan β2 = tan β3 - tan α3.

So, we have tan α3 = tan β3 - 1
φ

and tan α2 = tan β2 + 1
φ

. So, if we take a particular case of λ

is equal to 0.5 or 50% reaction turbine, then we have 1
φ

= tan β3 - tan β2. Then, u
Ca

is equal
to 1

φ
tan α2 - tan β2 = tan β3 - tan α3, and hence we have β2 = α3 and α2 = β3. We will move

ahead and discuss about the T-s diagram.(refer time: 32:37)

So, if we try to plot T-s diagram, then first we have P01, the gas expands till P2, this is an
isentropic expansion, but from 2 it goes to 3. Initially, gas is at state 1. If that state is isen-
tropically compressed to P01, then this temperature is T01. This gas expands till state 2 and
then it responds further till P3, but in P2 we can isentropically again compress, then we will
have this as P02 and the same temperature we will come in that is T02 is equal to T01. This is
P03.
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This is 0. This is 1. This is 2. This is 3. Here, we are having nozzle. Here we are having
rotor. Now, we will talk about the nozzle which we have discussed, that is free vortex design.
In case of free vortex design we have seen that Cwr = constant. So, we have Catan α2r =
constant, but Ca is again itself a constant, so our number of constants increase. r tan α2 =
constant.

Let α2m is the mean angle at the inlet of the absolute velocity. So, we have rm tan α2m = r tan
α . Here, this is alpha. This r is any radius r at which α2 is measured. This is the mean radius
and this is the mean angle. So, we have tan α2 = rm

r (tan α2m). Similarly, tan α3 = rm
r (tan α3m).

Further, we know that u
Ca

= tan α2 - tan β2. So, we have tan β2 = tan α2 - u
Ca

. So, we have tan
β2, we know this is tan α2, it is rm

r (tan α2m) - u
Ca

. This u is going to vary at different r. So,
we know that u =πDN

60 . So, we know u is equal to some constant into r. So, um is equal to that
constant × rm.
So, we have u

um
is equal to r

rm
. So, tan β2 = rm

r (tan α2m) - u
Ca

. So, we can now say it as um
Ca

r
rm

, that is u
Ca

. Similarly, tan β3 = rm
r (tan α2m) + r

rm

um
Ca

. So, this is the thing what we know
from the free vortex design which we have seen, that for free vortex design where we had
considered radial equilibrium of the flow element and then we assumed that the work done at
all the heights is same.
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So, we have got Cwr as constant, but now this is not the sole philosophy in which the turbines
are designed. (refer time: 39:10)
Apart from free vortex theory turbine design has one more constraint or method which is
constant nozzle angle. Let us try to find out the derivation which is similar to Cwr = constant,
but it is for constant nozzle angle design. We know from the vortex equation or vortex flow
equation we have Ca

d
dr Ca + Cw

d
dr Cw + C2

w
r = dh0

dr .
So, we have dh0

dr = 0 with the fact that work done at all the heights is same. So, we have Ca
d
dr Ca + Cw

d
dr Cw + C2

w
r = 0. We know that Ca2

Cw2
= cot α2 from the velocity triangle, okay?

Then, let us say that this is constant. Since we are considering constant nozzle angle and this
is inlet angle at the nozzle, so we have Ca2 = constant × tan α2 × Cw2.

So, we have d
dr Ca2 = tan α2, sorry this is cot α2, this is also cot α2 × dCw2

dr . So, we can write
down dCa2

dr = dCa2 by, sorry this is dr, × cot α2. We can use this for this expression and we

can mention it as Ca2(cot α2
dCw2

dr ) + Cw
d
dr Cw + C2

w
r = 0.

We know Ca2 is equal to Cw2 cot α2, so we have Cw2 cot α2(cot α2
dCw2

dr ) + Cw2
d
dr Cw2 + C2

w2
r

= 0. So, we have Cw cot2 α2
dCw2

dr + Cw
d
dr Cw2 + C2

w2
r = 0. So, we can divide this expression

by Cw2, so we have dCw2
dr (1 + cot2 α2 ) + Cw2

r = 0.
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So, we have dCw2
Cw2

(1 + cot2 α2 ) = -dr
r . Having said this, this cot2 α2 can be written as cos2α2

sin2α2
.

So, we have sin2α2+cos2α2
sin2α2

which is 1
sin2α2

which is actually going to get replaced here, dCw2
Cw2

1
sin2α2

= -dr
r .

So, dCw2
Cw2

= - sin2 α2
dr
r . We can integrate both sides and then we can get Cw2rsin2α2 = constant

and this is the constraint for constant nozzle angle design of turbine blades. Further, we know
that Ca2 is directly proportional to Cw2, so we can write down this as Ca2 = constant.

So, these two are the expressions of nozzle design with constant angle or constant nozzle
design angle for the turbines. So, we will see some examples related to this in one of the
lectures. Here, we have seen, if given an axial turbine, how to find out the velocity triangle,
from the velocity triangle how to find out the blade loading coefficient, turbine work output,
∆T0 or temperature drop in a stage, and also degree of reaction.

We have seen how they can be calculated for the axial turbine. Further, we have seen what are
the different design criteria for designing an axial turbine. So, there are two ; one is vortex
flow theory, another is constant nozzle angle. So, we have seen the expressions for both from
fundamental equations. Regarding axial turbine examples we will see in one of the classes.
Thank you.
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