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Welcome to fundamentals of artificial intelligence. Today we will be looking at game 

playing.  
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Games have been an integral part of the development of artificial intelligence. The quest for 

writing computer programs that could play games is as old as computers themselves.  
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Starting with Samuel’s checker AI, we have AI chess playing programs to more recently the 

AlphaGo. All of these have pushed the frontiers of AI.  
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One important realization has been that game allows a very good platform for 

experimentation. And that is why there is fascination for looking at games. Games provide a 

well-defined environment in which states are intrinsically discrete. So, that allows one to 

focus entirely on the decision-making strategy.  

 

If we had not taken this games and would have looked at decision-making strategies to be 

evaluated by other means, such as a robot playing with a kid, there would be so much of 

uncertainty involved, so much of probabilities to be taken into account, that we may have lost 

the very purpose of using it to look at our decision making strategy. In games, rules are well 

defined.  

 

And success and failure can be measured easily. That is why we look at games as a medium 

to evaluate the strategies of decision making. Games allow us not only to reason about one 

algorithm or one process. Games in a way allow multi-agent activity. We had only looked at 

one algorithm who’s aim was to find an optimal path to the goal. Bringing in the idea of 

games, we could now involve more than one agent.  

 

And the interaction between agents has mostly been studied by extracting them as games. 

Here we will look at a group of games which are called board games such as chess, checkers 

or more commonly played the tic-tac-toe.  
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Let us now quickly review the characteristics of these board games before we move on to 

talking about how these games are to be dealt with, with an AI. Board games are those which 

you play on a board. We are talking of two person games. That is, we have exactly 2 players. 

These games are zero sum games. Now, zero sum games are those where one player gains, 

the other player loses.  

 

So, it is like A’s gain is B’s loss, if A and B are playing a zero sum game. We are talk of 

here, games which are complete information games. Complete information games are those 

in which both players have access to all the information. That is, they can see the board and 

thus know the options that the other player has. The other important characteristic of board 

games that we will deal with is that we are talking of games which are alternate moves.  

 

That is, the 2 players that is involved in the game takes turn to make their moves. And finally, 

we are talking of deterministic games. Deterministic games are those which does not have 

any element of chance, in the moves that one make. So, in this portion of our course, we will 

be looking at how one has a winning strategy for a board game. But then, the board games 

that we will be talking of would be restricted to two person, zero sum, complete information, 

alternate moves, deterministic games.  

 

Now, let us take a very simple game to illustrate what we mean by these characteristics of a 

game. This game is called the Grundy’s game. Many of you must have played this while you 

were young.  
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The game involves 2 players and we have a stack of pennies; a single pile of objects, either a 

stack of pennies or people will all even put 7 stones one above the another to make one single 

pile. The idea of the game is to then divide the stack into 2 stacks that are unequal. So, you 

start with stacking 7 stones. If it is the opponent’s turn, he will then break it up into 5 and 2. 

So, the first player divides the original stack.  

 

And then, each player alternately does the same to some single stack, when it is his turn. The 

game proceeds until every stack has either just 1 penny or 2. Because, at that point of time, 

you cannot divide the stack into 2 stacks that are unequal. And continuation at that point 

becomes impossible. The player who first cannot play is the looser in this game. So, let us 

look at Grundy’s game.  
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Here, I have 7 pennies in 1 single stack and it is Min’s turn to play. Now, in such game, we 

have a notion of 2 players. One is called the Min the other is called the Max. We will see why 

they are called Min and Max in a moment. But now, let us say the player Min starts to play 

the Grundy’s game with 7 pennies in a single stack. Now, a little thought, if you give, you 

will realize that 7 can be broken up into 2 unequal stacks in 3 ways.  

 

I could have in 1 stack, 6 pennies. In the other stack, a single one. Or, I could have 5 and 2, or 

I could have 4 and 3. This is what has been shown as the next level of the game. So, Min 

starts playing here. And then, breaks it into a stack of 6, 1; 5, 2 and 4,3. It is now Max’s turn 

to play. And he can have the following options. Max could break the 6, 1 into either a 5, 1 

stack and the original 1 stack already there. So, there will be 3 stacks now: 5, 1 and 1.  

 

Or Max would break it into 4, 2, with the original 1 remaining there. I would like to draw 

your attention to the fact that, at this point, we had 6 in a stack and 2 possibilities of breaking 

it up into unequal stacks is 5, 1 and 4, 2. So, these are the possible moves that Max could take 

if Min had broken it into 6, 1. On the other hand, if Min had actually divided the original 

stack into 5, 2, I could have the possibility of generating 4, 2, 1; because, 5 could be broken 

up into 4 and 1; and I would carry forward the 2 from here.  

 

Or 5 could be broken up into unequal stacks of 3 and 2. So, I would have 3, 2 and 2. Now, if 

Min had gone to 4, 3; then the possibilities for Max would be 4, 2, 1. Because the third could 

be broken up into 2 and 1. Or other possibility could be that the 4 could be broken up into 3, 



1. So, I would have 3, 3, 1. Next it is Min’s turn to play. And from the given possible 

alternate positions, Min could explore the next level of the game.  

 

That is, 5 could be broken up into 4, 1, 1 unequal stack; or 3, 2. The 4, 2, 1 could be broken 

up into 3, 1 leading to 3, 2, 1, 1. And the 3 could be broken up into 2, 1; leaving me with 3, 2, 

1, 1 stack. The 3, 2, 2 stack, if I start breaking this, I will only create equal number. So, all I 

can do is break up the 3 stack into uneven stack of 2 and 1. Proceeding further, Max would 

then be able to break this node into 3, 1.  

 

The second one could be possible to be broken up into 2, 2, 1. And the only possibility now 

left with Min is that he can work on this node. Here it is not possible for Min to break it up 

into unequal stack. Because, if I have 2, 2; even if I think of breaking this stack, all I will 

have is 1, 1 penny in each stack. So, it will not be a legal move according to the rules of 

Grundy’s game.  

 

At this point, Min can play and break it up into 2, 1, 1, 1; at which point, Max will not have a 

possibility of moving any further. So, this is the total tree on the possibilities of Grundy’s 

game with 7 pennies in the initial step.  
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Now, if you look at the winning strategy of Max; what should Max do to ensure that he will 

win this game. We can note that, no matter what Min does in this game, that means, no 

matter what Min tries to follow, Max can always win this game. This is precisely because at 

the first instance, here at the top, Min can follow 3 paths which is either to 6, 1 or to 5, 2 and 



to 4, 3. Once he follows these 3, one of the 3, Max can ensure and come to 4, 2, 1 or to 3, 3, 

1.  

 

Once Max ensures that he has come to either 4, 2, 1 or 3, 3, 1, Min is forced to play and 

divide the step, either it is 3 into 2 and 1; or it is 4 into the 3 and 1. That is, at that stage of the 

game, Min will have to come to this node. Once Min comes to this node, Max ensures that he 

breaks the 3 stack into 2, 1. And at that point, Min does not have a legal move and Max can 

win. So, as we can see, no matter what Min does in this game, Max can always ensure that he 

wins this game.  
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Now, let us take a moment and see if this winning strategy for Max has a similarity to the 

AND-OR graph that we have discussed previously. The AND-OR graph is about having 

AND nodes and OR nodes at alternate levels. So, if you look at the winning strategy of Max, 

at one point, you would see that there is a similarity in the winning strategy for Max and a 

solution graph for an AND arc.  

 

Because, if you look at Min’s next move at any point, then the Min’s next move have 

successors that are like AND nodes. From Max’s perspective, solution must be obtainable 

from all of these nodes. Whereas, if you look at Max’s next move, you will see that Max’s 

next move is something like the OR node. Because, all Max needs to win this game is to 

follow at least one of them. So, this winning strategy of Max is very similar to the AND-OR 

graph that we have discussed previously.  
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So, question is, can we use the search algorithm for AND-OR graph, that is the AO * for 

searching such game trees? Many simple games actually can be handled by such search 

techniques that are analogous to those used for finding AND-OR solution graphs. For more 

complex games such as chess or checkers, the AND-OR search determination is out of 

question.  

 

It is not possible to generate the whole game tree. Complete game tree for chess has 

approximately 10 to the power 40 nodes. And, you can see from the volume that it is not 

feasible to have the complete tree generated. It would take some 10 to the power 22 centuries 

to generate the complete checker tree, if a successor could be generated every one third of a 

nanosecond. So, what do we do when we have to search for solutions in such complex 

games?  
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For complex games, search to termination is impossible. So, our goal in searching such a 

game might be just to find a good first move, rather than the best move possible, that would 

take me to a win. So, we could make the move, the best possible right now and wait the 

opponent’s reply. And then, we could search again to find a good first move from this new 

position. So, extract from the first graph best-first move.  

 

That is what we want to do. This estimation, we can make by applying some evaluation 

function to the leaf nodes of the search graph. In order to do that, let us introduce a couple of 

concepts before we move on to talk about an algorithm to do whatever we have highlighted 

about searching complex games.  
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We introduce the concept of a game tree. A game is represented by a game tree. A game tree 

is actually a layered tree. That is, at each alternate layers, we have the 2 players playing. So, 

at this layer, Max would be playing. The next layer, it is Min playing. Thereafter, it is Max 

again. So, a game tree is a layered tree in which at alternate level, one or the other player 

makes the choice.  

 

And we have what are called the Max layer and the Min layer. Now, a game starts at the root, 

here, with the Max player starting the game and ends somewhere at the leaf nodes. The 

leaves of the game tree are labelled with outcomes of the game and the game ends there. Let 

us look at a game tree more closely.  
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So, here is a game tree with the first being the Max level, then the Min level. Here it is Max; 

then Min; Max again; Min; and Max again. Recall that we are talking of board games which 

have 2 players game. So, 2 players are involved. And the game is alternate moves. That 

means, one player makes a move. And then, the next player makes a move. So, in this game 

tree, the leaf nodes actually chose the possibility of win, loss or draw formats.  

 

So, now you should recall that we are talking of a zero sum game. That is a game where one 

can win; then the other must lose; or it could be a draw. So here, L refers to the loss for Max; 

D refers to the draw; and W refers to a win for Max. So, each of that leaf nodes could be 

given values; either one of the 3, either W, D or L. And they will tell weather following that 

rule, Max wins, loses or there is a draw.  
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Now, let us also introduce a very important concept called the minimax value before we 

proceed further. So, the minimax value of a game is the backup value of the root from all the 

leaves; and represent the outcome when both the players play perfectly. That is, let us say we 

have a game tree and Max moves. He will try to choose the best possible value for himself. 

So, Max chooses a move that gives the value of 1, if available; else, 0 if available.  

 

And we will choose a – 1, only if all the children are labeled – 1. Now, it is important for us 

to recall that such zero sum games, either we mark the leaves as W for win, D for draw and 1 

for loss. Equivalent to that, we can either mark them as 1 for win, 0 for a draw and – 1 for a 

loss. Now, when Max wants to make a move, every time his idea would be to choose 1, to 

choose the maximum of the next labelable successors to him.  

 

So, you try to get 1, if available; else 0, if available. And Max will choose a – 1 only if all the 

children are labeled – 1. So, backup rule for Min is exactly the opposite of this. And the 

minmax value of the game is the backup value of the root from all the leaves.  
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So, here is example for understanding what the minmax rule does. The minmax rule backs up 

values from the children of a node. So, for a Max node, it backs up the maximum values for 

the children. For a Min node, it backs up the minimum. Like, here is the root node and Max is 

playing at the game. Now, we have a leaf node marked L and we have another leaf node 

marked D. There are leaf nodes marked D and L respectively here.  

 

Now, remember that this level, it is Min who is playing. At his level it is Max who is playing 

the game. So, when given their children L and D, Min has to backup this value. So, it will 

take the minimum of the values and back it up as L. Now, this one here, is Max’s start. And 

Max wants to maximize the value of the children. And therefore, it will try to get a backup 

value of D.  

 

So, in terms of its equivalent numbers like – 1 for loss, 0 for a draw, the Min player playing 

here would back up the minimum value, which is – 1. Given – 1, – 1 and 0, the Max player 

would love to back up the maximum value which is 0.  

 

 

 

 

 

 

 



(Refer Slide Time: 25:26) 

 

So, here is a game tree and we have marked all the leaf nodes as shown. Now, we would love 

to back up the values. That is, identify the best move for each player. Given L and D here, the 

backup value at this point will be an L. So, the backup value at this point is an L again. The 

backup value here is an L, because this is the Min’s level. Now, at this point, it is Max's play. 

So, the backup value would be D.  

 

Here, the backup value would be W. And at this point, the backup value is D again. This 

point here, it is Min’s choice. So, given a choice between D and W, Min would love to 

backup D. At this node, it is interesting to note that the only available backup value for Min 

is W and it is forced to backup to W. It would have loved to backup to L first, then D. But, 

having no other children except W, it has to backup to W.  

 

So, it backs up to D. And then, finally we have Max with W. So, what this game is showing 

here is that Max wins this game, because the backup value under the current scenario of leaf 

nodes is W.  
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So now, let us understand what do we mean by strategy of playing a game. Given the game 

tree, the strategy is a subtree. But then, which subtree are we talking about? We are talking 

about the subtree where Max has only one choice. But for Min, I must explore all choices. 

So, a strategy is a subtree of a game tree that has one choice for Max and all choices for Min. 

Once we have a strategy, it actually means that the choice for the player is frozen.  

 

And, the outcome of the game therefore would depend on the opponent. So, most game 

playing programs produce moves for the player, traditionally Max. Our minimum values 

determine the best that we can have for the Min player. Maximum values of the children 

determine what we can have for the Max player. So, the idea of strategy is about doing 2 

things. You traverse the tree starting at the root.  

 

If you are at the Max level, then you choose one branch below it. And if you are at the Min 

level, then you choose all the branches below it. And you return the subtree so constructed. 

And the subtree gives you a strategy.  
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So, here is the game tree that we have been looking at. And the dark arcs that I have marked 

here with one choice for Max, all possible choices for Min and again one choice for Max is a 

strategy for Max. So now, having defined what strategy is, how do one ensures to find out an 

optimal strategy. 
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Selection of the optimal strategy requires solving the game tree. And as we have seen for a 

very simple game like Grundy’s game, search techniques analogous to those used for finding 

AND-OR solution graph is good enough. But, this is true only for games with very small 

trees. So, games with small trees can be solved completely and we can apply AND-OR 

solution graph, searching techniques to find out the best strategy.  

 



This is true for even a game like tic-tac-toe. So, a tic-tac-toe game, we can always ensure a 

draw when both the players play perfectly. So, let me remind you what the tic-tac-toe game 

is, if you have forgotten from your school days. So, you are supposed to create a matrix and 

you give and X. Your opponent gives an 0. Thereafter, you give an X and your opponent 

gives a 0. You give an X. And at that point, you win the game.  

 

So, such small games like the Grundy’s game and games like tic-tac-toe; we can always 

ensure draw when both players play perfectly for tic-tac-toe. But for complex games like 

chess, checkers, it is not feasible to have the complete game tree. For more complex games 

AND-OR search to termination is therefore out of question. Complete game trees, as we have 

seen for games like chess, involves 10 to the power 40 nodes.  

 

Therefore, there must be some other trick that I need to apply to get to an optimal strategy for 

finding out a winning move. This is where we take help of evaluation functions. As we 

cannot inspect the complete game tree and compute the minimax value, we resort to other 

means to select the best move. 
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In fact, we do not select the best move. We select the move that appears to be best for the 

current move. And then, as we get more information, we revise and take the next best move. 

So, we use a function to evaluate the goodness of a state. This function is something like the 

heuristic function for informed search. And this function is called the evaluation function. 

Evaluation function is applied to the intermediate nodes and they allow us to pick up nodes 

that appears best.  
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So, let us go back to our game of tic-tac-toe and try to understand the use of an evaluation 

function. Let us say this is the current position of a game of tic-tac-toe. So, I now have to 

give an X. So, the possibilities of Max is that he can give an X at this corner or an X at the 

middle. There is a possibility of Max putting his cross here; and at this location or at this 

location. So, we have 5 possibilities for Max in this current scenario. Question is, which is 

the best move for Max to go from here?  
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In order to answer that question, we will use an evaluation function for tic-tac-toe. So, let us 

look back at this tic-tac-toe node. We defined an evaluation function which is the number of 

directions open for Max minus the directions open for Min. Now, in this position shown on 



your screen, you have directions open for Max as this one: 1, 2, 3, 4, 5 and 6. So, the 

directions open for Max are 6.  

 

Now, let us take a moment and see what are the directions possible for Min. When I say 

directions possible for Max or Min, I mean here directions that could ensure a win for the 

player. So, we have one direction in which Min could be in this game; 2, 3 and 4. So, the 

number of directions which are open for Min is 4. And therefore, we would evaluate this 

current state configuration as 2 for Max.  

 

Now, there are 2 interesting values that one needs to understand. I say the value of the 

evaluation function is positive infinity if it ensures that I have a win for Max. And if there is a 

win for Min, I say that evaluation function evaluates to negative infinity.  
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Given this definition of an evaluation function and given the fact that I am looking for the 

best-first move for my Max player, given a state configuration as shown; and want to 

evaluate the 5 configurations one after another, let us try to play for Min. So, once I have 

come to this location marked with a circle on the screen, let us see what are the different 

moves possible for Min.  

 

So, as shown here, Min could have 0 at this extreme left; or a 0 in the middle bottom row, 0 

at the bottom of the right; or a zero at the middle of the right. Using the evaluation functions 

that we have defined, we would compute the values. So, number of positions open for Max at 



this location is 1 and 2. So, we have a 2 there. Number of directions which is open for Min at 

this location is this.  

 

So, we have 2 – 1, 1 as the value of the evaluation function. The number of directions open 

for Max is 1, 2 and 3. The number of directions open for Min is only this, which is 1. And 

therefore, the evaluation function is 2. So, continuing in similar way, I have 2 directions open 

for Max and only a single direction open for Min. So, that evaluates to 1. Here I have 3 

directions open for Max: 1, 2 and 3.  

 

Whereas, I have only a single direction open for Min. So, it evaluates to 2. So, these are the 

evaluation functions. Now remember, after I have given this move here, that means after Max 

moves here, it is Min’s move. And Min would love to minimize the value of the successor 

node. So, of these evaluated values, Min would pick up 1 that gives it a value of 1. So, Min 

would either move here or it would move here.  

 

So, for our evaluation of which is the best move for me, or which is the best move for Max; 

when I say me here, I mean the player Max. So, which is the best move for Max at this point. 

I would try to figure out which is the best possible allowable value once I have moved there 

by Min. So, we see that the value that I get for that particular position that I move to is 1.  
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I could then move to the second node. And it is interesting to see that at this node, the 

moment I allow Min to play, Min could mark this position and it would be in the game. So, 

the evaluated value is – infinity. I could evaluate the different values for the different moves 



of the Min node to be 1, 0 and 1; as I have explained in the previous move. But then, Min 

would love to pick up the value that has the minimum. And therefore, this node here would 

be – infinity.  
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We can move ahead and look at the next node which again gives you the value of – infinity. 

As you can see if Max do not fill up this, Min would immediately fill that up and ensure a 

win. And this will have a – infinity value for the evaluated function. Whereas, rest of them 

could be 0 or 1.  
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We compute for the fourth option and we see similar values, because this is left out. If this is 

left out, we will see that there is a win for Min.  
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And similarly, for the fifth move. Now, it is interesting to note that, if I start with a move that 

does not block this winning position for Min, the next move that Min would give is to ensure 

a win. And the backed-up value for all these nodes will therefore be – infinity. 
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This is what I have shown in the slide. The backed-up values for each of them based on 

Min’s next move. The only possibility of Min not winning is when I close this position in my 

next move. And that gives me an evaluated value of 1. So, it is Max’s move and I want to 

Maximize the value of the evaluation function. So, under this scenario I would love to place 

an X in this particular position.  

 



This is what is done by computing the evaluation function. Now, we have not looked at what 

is the best path to take to ensure win for Max. But what we have done is computed some 

value for the next level and somehow backed up those values to see what is the current best 

possible move.  
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And this is what we will deal with in the next lecture, where we will be talking of a procedure 

called the minimax procedure. So, for complex games such as chess or checkers, we have 

been emphasizing that it is not possible to extract the best move. So, a good first move is all 

that I can extract. And this I do by a procedure call minimax. What we do in this is, we 

backup values on the evaluation of the tip nodes; and continue to backup values level by level 

until finally the successor of the start node are assigned backed up values.  

 

The entire procedure actually rests on the assumption that the backup values that I get are 

more reliable measure, rather than directly applying the static evaluation function. This is 

what we will see in the next lecture. Thank you very much. 


