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Welcome to fundamentals of artificial intelligence. In today's lecture, we would look at 

constraint satisfaction problems.  

(Refer Slide Time: 00:51) 

 

Constraint satisfaction is another way of solving problems in AI, where the main idea is to 

get to the goal state by satisfying a group of constraints. Many problems can be posed as 

constraint satisfaction problems. And all the self algorithms or constraint satisfaction problem 

solvers could then be used to get to the solution.  
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While we were doing state space search, we explored the idea that problems can be solved by 

searching in a space of states. In such a situation, this states can be evaluated by domain-

specific heuristics and we tested to see whether they are goal states or not. Most of these 

states that we explored or we have looked at in problem solving as state space search, we can 

think of each state as a black box, which is assessed only by problem-specific routines: the 

successor function, the heuristic function and the goal test.  

 

In contrast to them, in constraint satisfaction problems, we examine problems who’s states 

and the goal test itself confirm to standard and structured representation. Such a 

representation then allows search algorithms to be defined that take advantage of the structure 

of the states and then use general-purpose rather than problem-specific heuristics to enable 

solution of large problems.  
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Formally, a constraint satisfaction problem is a 3 tuple. The set of variables, each variable has 

a non-empty domain of possible values. A set of domains, simplest kind of CSP involves 

variables that are discrete and have finite domains. Then we have a set of constraints.  
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Each constraint is a pair. S 1 is called the scope of the constraint and involves some subset of 

the variables. R i specifies allowable combination of values for that subset. A state of the 

problem is defined by an assignment of values to some or all of the variables. A solution to a 

CSP is a complete assignment that satisfies all the constraints. A complete assignment is one 

in which every variable is mentioned. And an assignment is said to be legal or consistent if it 

does not violate any constraint. A solution is a consistent complete assignment.  
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Now, let us look at a very popular problem from AI that uses constraint satisfaction problem 

solving technique, the N-Queens problem: The N-Queens problem is a problem of placing n 

chess-queens on a n cross n chessboard, so that no queen, 2 queens threaten each other. For 

example, if we are talking of the 4-queens problem, we have 4 queens to be placed on a 4 

cross 4 board.  

 

And we will mark these variables as X 1, X 2, X 3, X 4. And we have 1, 2, 3, 4, the different 

rows. Now, how do you specify constraints in such a scenario is that the constraints could be 

explicitly mentioned. Like, if we start with a queen here and look for what could be the 

position of the second queen; so, we will specify constraints between 1 and 2. Then, a queen 

cannot be here, a queen cannot be here, but we can place a queen here.  

 

So, that is what we are looking for. And therefore, a constraint that says 1 and 3 is satisfied 

between 1 and, the first and the second queen could be explicitly stated. So, we have 1 and 3 

here.  
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Similarly, we could include 1 and 4.  
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And then, we could think of the second row for the first queen. And then, the positions that 

could be possible is also not this, as the only position that would be possible is this. So, we 

could explicitly state that and include 2 4 here.  
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We could then think of going for the third one, in which case this also is not possible. The 

only possibility in the third case is having a queen there. And therefore, we would explicitly 

include 3 1 to be there in the set of R 1 2. Here, 1 and 2 refers to the first and the second 

queen, a relationship between them.  
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Thereafter, we could look at the fourth row and see that these possibilities do not exist, that I 

cannot have a second queen here, I cannot have a second queen here, but I could have a 

second queen at 4 2, which is marked there. And I could have a second queen at 4 1, which is 

marked here. So, as we see here, we could state the constraints that I won between the first 

and the second queen as an explicit list. And this list is the list of allowable values between 

the first and the second queen.  



(Refer Slide Time: 07:11) 

 

Similarly, I could look for values that would be possible between the first and the third; the 

first and the fourth; the second and the third; the second and the fourth; and third and fourth 

variables of this 4-queens problem.  
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An assignment a bar over a scope S satisfies a constraint C if S i is a subset of S. That means, 

the every variable in the constraint has a value. And a projection of that assignment over the 

scope is a subset of R i. Now, we need to take a minute and try to understand what we mean 

by a projection of the assignment. So, let us go back and look at our 4-queens problem once 

again.  

 



We could have a queen at the first position. The second queen that I can place is definitely 

either this or this. So, I could place at 4. And the other queen now at position second for the 

variable X 3 is what I can place. So, this assignment could be written as 1, 4, 2. Now, if you 

look at this assignment and if you look at the constraints that I was talking of and look at the 

queen 1 and the queen 2, then I could see that I have 1 4 which is a possibility included in R 1 

2.  

 

Similarly, if I had written the other constraints, I could have seen that I could have covered 

the possibility of having 4 2 between 2 and 3 as well.  
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An assignment is said to be consistent if it satisfies constraints in its scope. Like in the 

previous example that we were looking at, where I had an assignment of 1, 4, 2 for 3 queens 

placed on a 4 cross 4 grid, I could see that it satisfies the constraints. And therefore, that 

assignment is said to be consistent. An assignment that does not violate any constraint is 

called a consistent or legal assignment.  

 

Now, this is interesting to note here that consistent assignments may not lead to a solution. 

Let us look back at this example one more time. We have queen at this position, which is 

perfectly okay with queen at 4 for X 2 and queen at 2 for X 3. But, when we want to have a 

queen for a fourth variable, we are unable to have a queen here, we are unable to have the 

queen at the second location, neither in the third row nor in the fourth row.  

 



So, we are not able to arrive at a solution even if initially this assignment up to the third 

queen was consistent. Such an assignment is called a partial assignment or a partial solution. 

A partial assignment is one that is an assignment only to a subset of the variables. In this 

case, we could assign only up to X 3 and we could not do for X 4.  
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We look at another example from constraint satisfaction problems, called the map coloring 

problem, which is about coloring each region of a map in such a way that no neighboring 

regions have the same color. So here, if you notice, we have 1, 2, 3, 4, 5, 6, 7 variables. And 

let us say we are interested in coloring them in either of 3 colors. So, we would have a 

domain of 3: red, green and blue.  

 

Now, if we look and what is the constraint for this problem, the constraint for this problem is 

that any 2 adjacent regions must have different colors. So, if you look at the first 2, let us say 

this is 1 and this is 2. The possibilities could be that I could have red, green or red, blue or 

green, red or green, blue; blue, red or blue, green. Now, this is how explicitly we could state 

the constraints or we could state what is allowed and the rest of the things are not allowed in 

mapping the regions 1 and 2, map coloring them 1 and 2.  
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So, here is a solution for the map coloring problem, where we could have every region 

colored different. We will come back to this in our course of discussion today.  
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Now, depending on the types of variables, we could have varieties of constraint satisfaction 

problems. The most common of them are the ones with discrete variables. So, they have 

finite domains. The Boolean CSPs including the Boolean satisfiability problems are of this 

nature. We have infinite domains, domains that have integers, strings, etcetera. For example, 

the job scheduling; they need a constraint language and linear constraint are solvable, 

nonlinear are undecidable.  

 



Then, we have continuous variable constraint satisfaction problems, where for example, the 

start end times for the Hubble Telescope observation. Linear constraints are solvable in 

polynomial time for such CSPs.  
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Varieties of constraints may be possible. We may have unary constraints, constraints that 

involve a single variable. Or, we may have binary constraints, constraints that involve pair of 

variables. For example here, I have a constraint between X and Y and the sum of X + Y must 

be < 6. Binary constraints can be represented by constraint graph. Then, we could have 

higher order constraints, constraints over 3 or more variables.  

 

Now, it is interesting to note that we can convert any constraint into a set of binary 

constraints. They may need some auxiliary variables to be introduced. The fourth type of 

constraint that we could have are called preference or soft constraints. Things like, we could 

have constraints stating red is better than green. They are often representable by a cost for 

each variable assignment.  
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As I was telling you, binary constraint satisfaction problem is one in which each constraint 

relates at most 2 variables. We could create a constraint graph where nodes correspond to 

variables and arcs correspond to constraints. Coming back to the map coloring problem here, 

we had 7 constraints: 1, 2, 3, 4, 5, 6, 7. And we could draw a constraint graph here to 

represent relation between the variables on the constraint graph, each of the nodes 

corresponding to the variables. General purpose constraint satisfaction problems use the 

graph structure to speed up search. We would look at this in one of our lectures.  
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While we are talking of higher order constraints, let us focus our attention on a very 

interesting cryptarithmetic puzzle. Cryptarithmetic puzzles are puzzles where you write 

things in letters and operate using mathematical operators and expect that each letter, if it 



stands for distinct digit, we can find some substitution for the letters in terms of the digits, 

such that the sum is arithmetically correct, with the added restriction here, that this leading 

letter should not have a 0.  

 

When we are trying to solve such problems, we can see that the small problem of saying 2 + 

2 is 4, we have 6 variable constraints for the above example. This literally means that all 6 

letters that we can think of: T, W, O, R, U and F are together in a constraint. And the 

constraint is that all of them needs to be a different digit. The addition constraints on the 4 

columns of this puzzle: 1, 2, 3, 4; the 4 columns of this puzzle, they also involve several 

variables. All of these create a higher order constraint and they could be represented in a 

constraint hypergraph.  
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So, here is the cryptarithmetic puzzle 2 + 2, 4. On your right is the hypergraph. We could see 

that the 6 variables F, T, U, W, R and O are all together constraint. And this C 1, C 2, C 3, are 

the carryovers possible at these columns.  
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So, when we want to solve them, this could be like 6 placeholders and I could have 4 

placeholders for the answer. And I could have these placeholders for the carries. And the 

constraint hypergraph for this problem shows both the digit constraints as well as the column 

addition constraints. The constraint that all of them needs to be different digit is coming from 

this square box.  

 

And the constraint that F and C 3, if this is the carryover C 1, carryover C 2 and carryover C 

3. If you remember this was F. So, the constraint between F and C 3 is coming here. C 3 and 

F have a constraint. Similarly, and C 2 as well as O here have a constraint. So, T, C 2 and O 

have a constraint, so and so forth. So, the constraint hypergraph for the cryptarithmetic 

problem shows the digit constraints as well as the column addition constraints. And each 

constraint is a square box connected to the variables it constrains.  
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So, how do you look for solutions under such problems. Under standard search formulation, 

we can start with a basic naive approach and then improve it. States are defined by the values 

assigned so far. So, we could have the initial state given by the empty assignment. And then, 

a successor function, like assign a value to an unassigned variable that does not conflict could 

be defined as a successor function.  

 

And the goal test could be if the current assignment is complete. Now, we should know that 

this is same for all CSPs. Every solution appears at depth n with n variables; path is 

irrelevant; so, can also use complete state formulation. And for a domain of size d, we have a 

branching factor b of n – l into d at depth l. So, that leads to factorial n to d to the power n 

leaves. And this is a huge space to search. Could we do better than this?  
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So, we can look for a specialized version of depth-first search. CSPs are solved by this and 

the search is called backtracking search. The key intuition is that we build up to a solution by 

searching through the space of partial assignments. Order in which we assign the variable 

does not matter; eventually they all have to be assigned. If during the process of building up a 

solution we falsify a constraint, we realize that this cannot be on the part of the solution. So, 

we can immediately reject all possible ways of extending the current partial assignment and 

backtrack.  
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Backtracking search is the basic uninformed algorithm for solving constraints satisfaction 

problems. We look at one variable at a time. So, variable assignments are commutative. No 

fixed ordering is there. Only need to consider assignments to a single variable at each step. 



And the second idea is to check for constraints as we go about. That is, we consider only 

values which do not conflict with the previous assignment. For that, we might have to do 

some computation to check the constraints. But then, we get one step at a time, towards the 

goal.  
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Here is the backtracking search algorithm. The only thing I want to focus here or point you 

out is the idea of selecting the unassigned variable. We have a routine to select the 

unassigned variable. That is done in a way that no constraints are violated. Is used for a 

depth-first search. Values for one variable at a time and backtracks when no legal values are 

left to be assigned.  
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So, let us look at our 4-queens problem and try to understand backtracking search. So, here is 

the 4 cross 4 grid. And we start with placing our queen at this location. So, from the 

constraints that we have placed our self that no 2 queens should attack each other, we know 

that this is not a legal position for the second queen, this is not a legal position for the second 

queen, but the third position on the second row is a legal position for the second queen.  

 

So, we put the second queen here and move one step further to look for solution for the third 

row. This is no longer a legal position, this is not a legal position, this is no longer a legal 

position, neither is this a legal position. So, what we have realized at this point is that after we 

have assigned a second queen, we are not left with any legal position for the third queen. We 

have to backtrack.  
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So, we remember what we started with, backtrack and get a new position for our second 

queen. With the new position for the second queen, we start once again with the third row to 

place our third queen. The first position is not legal because we have a queen here which will 

attack. But the second position is a legal position. Therefore, we move forward and look for 

the fourth row.  

 

So, we cannot have a queen here, neither we can have a queen here, nor a queen at the third 

position, nor at the fourth in on the fourth row. That means, after we have assigned this 

queen, we are not left with any legal positions in the next step. So, we have to abandon this 

path and backtrack. So, we backtrack.  
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And now, where do we backtrack. We need to understand that we have already looked at all 

possibilities for the second queen, given the first queen. So, we must backtrack to starting 

with another position for the first queen. So, we backtrack to a point where we put our first 

queen on the second column. Then we have the queen here. The third row, we could have a 

legal position at this.  

 

Given these 3 queens, we could get a legal position for our fourth queen. So, that is our 

solution. So, that is how backtracking search works. Let me repeat this very quickly one more 

time. So, we had some legal positions up to this level. And when we tried for the third level, 

we could not have a legal position. So, we backtracked and started with an alternative in the 

second position.  

 

We could have a third position very nicely. But we could not have a fourth position placed. 

But then, we have realized that we have exhausted all possibilities of our first queen itself and 

therefore backtrack to removing our first queen to a different position. And once we had done 

this, we could arrive at a solution.  
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So, playing backtracking as you have realized is an uninformed algorithm. We do not expect 

it to be very effective for large problems. We remedied the poor performance of uninformed 

search algorithms in our previous discussion of state space search by supplying them with 

domain-specific heuristic functions, derived from our knowledge of the problem.  

(Refer Slide Time: 27:15) 

 

But because constraint satisfaction problems have in themselves some structure or 

representation, we can solve CSPs efficiently, without such domain-specific knowledge. 

General purpose methods that address the following questions improve backtracking search. 

a. Which variables should be assigned next and in what order should these variables be tried? 

b. What are the implications of the current variable assignment for the other unassigned 

variables?  



 

c. When a path fails, a state is reached in which a variable has no legal values. Can the search 

avoid repeating this failure in the subsequent paths?  
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General purpose methods can give huge gains in speed and in improvement of backtracking 

search. Ordering: Which variable should be assigned next? In what order should its values be 

tried? Or, filtering: Can we detect inevitable failures early? Or, structure: Can we take 

advantage of the problem structure? These can lead to improving backtracking search.  
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Let us now look at the variable and value ordering heuristics. The backtracking algorithm 

contains a call to select the unassigned variable. And it simply selects the next unassigned 

variable in the order given by the list of variables. Now, this static ordering would seldom 



result in efficient search. Therefore, the idea is to choose variables with the fewest legal 

values. (Refer Slide Time: 29:08) 

 

Let us try to understand this with the help of our map coloring example. So, on your right, we 

have the map coloring problem with 7 variables. Let us say, after the assignment of WA to 

red, we assign NT as green. Now, there is only one value possible for SA here. And that is 

blue. So, it makes sense to assign blue here, rather than assigning the value for Q. This is 

what the minimum remaining value heuristic does.  

 

Now, it has also been called the most constrained variable or the fail-first heuristic. Because 

it picks up a variable that is most likely to cause a failure soon, thereby pruning the search 

tree.  
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The minimum remaining value heuristic does not help at all in choosing what would be the 

first region to color in our map coloring problem. Because, all of these 7 variables, when we 

start, can be colored in any one of red, blue or green. Now, this is where the degree heuristic 

comes in handy. The degree heuristic lets us to choose a variable with the most constraints on 

remaining variables. And it does attempts to reduce the branching factor by choosing the 

variable that is involved in the largest number of constraints on other unassigned variables.  
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For the map coloring problem, if you look at the 7 variables, SA is the variable with the 

highest degree, which is 1, 2, 3, 4 and 5. The other variables have degree either 2 or 3, except 

TA here, which has a degree 0. So, we choose the variable with the most constraints on the 

remaining variable. That is, we first choose SA. And thereafter, we choose NT, and so on and 

so forth.  

 

Applying the degree heuristic actually solves the problem without any false step. If we keep 

on choosing the consistent color at each choice point, we can still arrive at a solution with no 

backtracking.  
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These 2 heuristics that we have discussed, actually when looking at which variable to select. 

But then, once a variable is selected, the algorithm must decide on the order in which to 

examine the values of the variable. This is where the least constraining value heuristic comes 

into play. The least constraining value heuristic allows us to choose the variable that rules out 

the fewest values in the remaining variables.  
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Coming back to our map coloring example, let us see that after a partial assignment of red 

and green to WA and NT respectively, what is our choice for Q. We could now choose to 

color Q, either blue or red. But, we need to understand that blue is a bad choice. Because, it 

would then eliminate the only legal value possible for SA. So, the least constraining value 

heuristic prefers to color Q red, rather than coloring it blue.  
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So far, our search algorithms that we have considered, the constraints on them only looked at 

the variable when it is chosen. It would be a good idea to look at some of the constraints 

earlier in the search or even before the search has started. This can then drastically reduce the 

search space. Let us look at one such idea called the forward checking.  
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The forward checking keeps track of the remaining legal values for any unassigned variable. 

And then, it terminates search if any variable has no legal values to color from. So, let us look 

at this map coloring example to understand forward checking. Here, on your right is the 

constraint graph and we have 7 variables as we have been discussing. To start with, all these 

variables could be colored in any one of the 3 colors.  

 



Now, let us say that we have colored WA red. When WA is colored red, then the variable NT 

and the variable SA, the only legal colors left for them is green, blue. And now, if we color Q 

as green, then the only legal values left for NT and SA is blue, whereas NS could be colored 

red and blue. After we have now decided to color V as blue, we see that we are left with no 

legal colors for SA. And the search must thus terminate.  
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The forward check propagates information, but does not provide early detection for all 

failures, as we will see when we look at this newer idea of constraint propagation. Constraint 

propagation propagates the implications of a constraint onto the variable, other variables to 

detect inconsistency. So, continuing with our map coloring example, we initially have all 3 

colors for each of the 7 variables.  

 

Now, after we color WA red, the only legal values left for NT and SA is green and blue. At 

that point, if we color Q green, the legal values that is possible for NT and SA is blue. But 

because we are propagating this information locally, from one variable onto other variables, 

we now immediately realize that NT and SA cannot both be blue together. And therefore, we 

know we will not be left with a solution, a path to a solution, if we carry forward our coloring 

this way. So, constraint propagation repeatedly enforce constraints locally and could detect 

failure early.  
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We will look at a cryptarithmatic puzzle in order to do this. So, here is a puzzle which says 

send plus more is equal to money. As I had told you earlier, I could think of placeholders for 

S, E and N, D; and I could have placeholders for M, O, R and E, on which I will put my 

guess of digits between 0 and 9. And then, I would have placeholders for M, O, N, E and Y. 

And then, as discussed earlier, we have carryovers 1, 2, 3 and 4, which we call C 1, C 2, C 3 

and C 4.  

 

And we create a placeholder table where the guess for M, O, S, R, Y, D, E, N, the 3 + 3, 6, 7, 

8 variables that I have to identify is to be recorded. Now, the first thing that I must realize in 

this problem to be solved as constraint satisfaction is that, here, only search will not give me 

a solution. I have to do some reasoning along with the search. And when I am doing this, I 

have to think of taking the constraints forward.  

 

When I am making a guess, I make a guess and then take this constraint forward and see if it 

violates or conflicts. If it violates or conflicts, then I should come back and do a search again 

for another value for that variable. So, to start with, we should realize that here C 4 should be 

1. Because the carryover can be either 1 or 0. But a cryptarithmetic puzzle requires that the 

first place holder is not a 0. Therefore C 4 must be 1. And in that case, I have M = 1.  

 

So, my first answer of getting to a constraint being satisfied is the fact that the constraint 

between C 4 and M gives me an answer that M is = 1. Given M is = 1, I update my table by 

putting 1 here and putting 1 again in a place where M is on ring. So, I put a 1 there. And next, 



I focus on looking for an answer to either the second column or the third column. So, if I 

focus on the second column, I could see that I have a constraint between C 3, S and O.  

 

M already is known to me to be 1. And it is required that I have to carry forward a 1. So, the 

number here would be 10 or something more than 10. So, my initial guess could be that, let 

that be a 0. That means, O is a 0, in the sense that this is 10. So, I start with O being 0 and 

take O = 0 and put 0s in this placeholders, 0 and 0. Given O = 0, I then have a interesting 

relationship that I need to understand, third column here.  

 

I have E here and I have N here. And this is a 0. And we should realize that E + N, there must 

be some relation. The E N is a pair. And I should realize that N cannot be 0 even if E N is a 

pair, because already 0 is taken by O. And the E N pair for E to be different than N, C 2 must 

be at least 1. Otherwise, if C 2 is 0, E + 0 + 0 is actually E. So, E and N will be the same 

number. That gives me a very interesting realization that the carry forward C 2 is 1.  

 

Once I realize the carry forward C 2 is 1, I then take one step further and assume C 3 to be 0. 

Once I take C 3 to be 0, I have done S + 1 is = 10, because that is a carryover. So, S + 1 is = 

10, gives me S is = 9. So, I have my third variable satisfied, S = 9. I update my variables S = 

9 there. And then, now I have to look for R, E, N, D and Y. So, I focus on my fourth column 

and I realize that N + R must be E + 10.  

 

Because, I need to carryover 1 there. So, this value that I get in my fourth column must not be 

E alone, but E + 10. Then only I can carryover C 2. So, I write that N + R is = 10 + E. And 

already from here, my third column, I know the fact that E + 1 is = N, given these 2, I can 

substitute E + 1 for N here. And then, I will have R = 9. But the moment I have R = 9, I 

realize that S is already 9. So, there is a conflict.  

 

At that point of time, C 1 comes to my rescue. So, I say C 1 is actually not 0 but 1. If C 1 is 1, 

then I have C 1 + N + R is = 10 + E. So, this one is like plus 1 here. 1 + N + R is = 10 + E. In 

that case, R will come out as 8 and it does not have a conflict. So, I update this C 1 as 1 and I 

realize R is 8. So, put my 8 value there. Now, it is interesting to note that I have a relation 

between E and N already there as a pair.  

 



But my last column also makes it clear that there is a relation between D and E. But only 

thing that I must realize is that the Y that I have is actually the relationship that D + E is = 10 

+ Y because I have a carry of 1 here. So, once we look at this, then I know that D + E is 10 + 

Y. But we know that Y cannot be 0, because 0 is already taken by O here. So, D + E is not 

equal to 10, neither is D + E = 11, because if D + E is = 11, Y is = 1.  

 

But we already know M is = 1. So, there would be a conflict. So, the only possibility at this 

point of time is that D + E is = 12. If D + E is = 12, then Y is = 2. With Y = 2, I already have 

a carryover 1. So, that is pretty good. So, this is what I populate my placeholder with, Y = 2. 

So now, all I have is to find out the values for D, E and N. Now, it is interesting to note that I 

know E + 1 is N.  

 

And from here, I know that D + E is 12. D + E could be 12 for digits 0 to 9 in a number of 

ways. One could be that I could start with D = 3. But if I start with D = 3, I would have E = 9. 

But S is already 9. So, D = 3 is not a possibility. Then I could start with D = 4. But if I take D 

= 4, U would be equal to 8, in which case it would conflict with R = 8. So, D is not 4. Then, I 

start with D = 5.  

 

I could see that if I take D = 5, I will have E = 7. This is satisfied, no conflict. But then, let 

me check what happens if I have E = 7. E = 7 would mean that N is = 8, in which case it will 

conflict with R. Therefore, I have a realization that, actually D is not 5 but 7 and I have D = 

7, in which case E is = 5 and N is = 6. So, I could populate these numbers there. And now, I 

have all the variables satisfied.  

 

None of the constraints violated. And if you add them now, I have 7 + 5, 12; 2 carry over 1; 6 

+ 1, 7 + 8, 15; 5 carryover 1; 5 + 1, 6; and then, 9 + 1, 10; 0, carryover 1 and 1. So, this is the 

solution for the cryptarithmetic puzzle, send plus more equal to money, with these values for 

the different letters. What one needs to understand here is that, when this puzzle was being 

solved, we have done search and reasoning intermingled.  

 

It is not that I was only searching and trying to satisfy constraints. Searching was done to 

satisfy constraints, but also what was being done was that, I was doing some amount of 

reasoning to understand what should be my next guess.  
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So, these type of things is what is usually done in constraint propagation. Constraint 

propagation is the general term for propagating the implications of a constraint on one 

variable onto other variables. And we want to do this fast. So, it is no good. If I want to 

reduce the amount of search, but if we spend more time propagating constraints, then we 

would have spent doing a simple search.  

 

There is no point of propagating the constraint. So, you want to have very fast propagation of 

constraints. A very fast method of constraint propagation, that is substantially stronger than 

the forward checking that we have discussed today is arc consistency.  

(Refer Slide Time: 49:42) 

 



Let us now try to understand the idea of how arc consistency provides a fast method of 

constraint propagation that is substantially stronger than forward checking. So here, an arc 

refers to a directed arc in the constraint graph. An arc X to Y is consistent. If for every value 

v x of X, there is some value v y for Y.  
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So, let us say, in our example of the map coloring, the current domains of SA and NSW are 

blue and red blue respectively. Given the current domains of SA and NSW, we could see that 

there is a consistent assignment for SA = blue, I could always speak up NSW = red and I can 

therefore have a consistent assignment from SA to NSW. Whereas, if I am looking for arc 

consistency from NSW to SA, if I pick up red, I could have a legal value blue here. But if I 

pick up blue, I do not have a legal value in SA.  

 

Therefore, the arc from SA to NSW is consistent, whereas NSW to SA is not. All that the arc 

consistency tells me is that I have an consistent arc from SA to NSW.  
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Arc consistency can be used as a lookahead to search for space reduction. And the idea is in 2 

ways. Either we look for full arc consistency lookahead or we look for directed arc 

consistency lookahead. The full arc consistency lookahead is about considering all pairs of 

future variables and then removing values from one domain for which a consistent value in 

the other domain does not exist.  

 

The directional arc consistency lookahead is about considering only directional arc for the 

future variable. Like in the example that we were discussing for the map coloring problem, 

SA to NSW the arc, is a directional arc consistency. Arcs that become inconsistent could be 

made consistent by deleting the inconsistent values. Like, if here, we think of making arc 

consistency, we can think of deleting certain value from NSW. That is the value blue and we 

would end up having consistency from NSW to SA.  
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But the problem is, if I delete a value from some variable’s domain, a new inconsistency 

could arise in arcs pointing to that variable. So, arc consistency must be applied repeatedly 

until no more inconsistencies remain. This is what we will try to understand in this example 

here. So, on your right is the constraint graph. Let us assume the current domains that we 

have for the different variables NT, SA, V and NSW as shown.  

 

So, as you can see, there is consistency from SA to NSW, because for a value from SA, I can 

pick up a value from NSW. But the other way, it is not correct. So, I can delete the blue 

value. And then, what I will have is a consistent arc between NSW and SA. But then, if you 

have realized this, earlier, the arc between V and NSW was consistent. But because of 

deletion of blue, if I now pick up red this side, I will have inconsistency.  

 

Because, I will have no legal value for NSW available. And therefore, to maintain arc 

consistency, I need to delete red from here. And then, I have enforced arc consistency 

between NSW and V one more time. This has to be applied repeatedly until I have no more 

inconsistencies in the constraint graph. Now, if you look at these 2 domains of NT and SA, if 

I somehow apply arc consistency between them. 
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Then I would need to delete blue from NT in order to have arc consistency between SA and 

NT. So, enforcing arc consistency from the arc from NT to SA would make the domain of 

NT empty. And this is how arc consistency could detect failures earlier than forward 

checking.  
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Now, we will focus our attention in a couple of backtracking strategies. We will work 

through 2 important backtrackings. The chronological backtracking is the simplest of them. It 

is about going back to the latest choice point and try another choice when a partial solution 

cannot be extended. So, here is what the chronological backtracking does. We look at this 

through our 4-queens problem.  

 



So, we place our first queen. And then, the only possibility is here now, to place either in the 

third or in the fourth column in the second row. So, we place it here. And then, we realize 

that we are not left with any legal choice for our third queen. According to chronological 

backtracking, we would now need to backtrack from here to the point where we could get the 

second choice.  

(Refer Slide Time: 57:01) 

 

So, we would backtrack from here and we will look for using the other choice at this choice 

point which enables us to have a legal value for our third queen. But if we go one step 

forward, we realize that now it is no longer possible to have any legal position for our fourth 

queen. So, we would need to backtrack again. But that backtracking would be to the last 

choice point, which we have not yet exhausted.  

 

So, this one is already exhausted. So, we will go back here. And that would be chronological 

backtracking. This is something that we have also looked at when I was talking to you about 

the backtracking algorithm.  
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Now, we will look at one of a slight variance of this called the back jumping. So, the back 

jumping, whenever we arrive at a dead end, it backs up to the most recent variable that 

eliminated a value in the current domain. So, let us try to understand that with a 6-queens 

example. So, here is our 6 cross 6 grid. Let us place our first queen in row 2. Then, we place 

our second queen in row 5.  

 

And now, the legal positions possible for our queen: We pick up one and place it in row 3. 

You should realize at this point that either I could place my fourth queen here or somewhere 

down there, here. So, I take that option and place my fourth queen here. Now, I am left with 

only one legal position for my fifth queen. I cannot place it here, because this queen will be 

in direct attack.  

 

I cannot place it here, it will be attacked by this queen. I cannot place it here, because this 

will be then attacked by the third queen. I have only possibility of placing it is in this position 

and which is on the fourth row. Now, I am looking for a position for the sixth queen. If I go 

for the first row, that is not a legal position, because this queen will then attack. If I go for the 

second, this first queen will attack.  

 

If I go for the third row, I already have a queen sitting on the third row. I cannot use the 

fourth row neither can I use the fifth or the sixth row. So, I now do not have a legal move for 

my sixth queen. I do not know which position to place, because I now have an empty domain. 



Now, when I want to back up on this and go back, I would rather love to go to the most 

recent variable that eliminated a value in the current domain.  

So, how do I go about doing that is, I try to look at the earliest queen that conflicts with the 

squares for the sixth queen. Like, let me see what I mean by this in the given example. So, if I 

want to now place something in this square, I would love to identify which is the queen that 

conflicts with the square for the sixth queen. So, if I do this, I realize that it is my second 

queen sitting there, which is actually not allowing a queen in the first position on the sixth 

column.  

 

Next, if you look for the second position, you see it is the first queen. So, I try to identify the 

queens that do not allow me these positions and try to record each of the earliest ones. So, the 

third position is covered by the third queen. The fourth position is covered by the fourth 

queen sitting here. So, that is the earliest queen that conflicts with the square for the sixth 

queen. Then, for the fifth square, I have the second queen.  

 

And for the final, I have the third queen. I record all these queens the earliest of them. And 

then, I take the largest of these values. The largest of these values actually gives me the latest 

variable that conflicts with making the current domain empty. So, I take this value which is 4. 

And now, I know that if I have to jump back, changing 5 would not help. I have to go back 

and look for making changes at the variable level 4. This is back jumping.  
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Now, back jumping works only when the dead end is encountered during search. That is 

sometimes called the leaf dead end. If, by chance, if you go there and you are not able to get 



an alternate value at the culprit variable, in our case, the fourth variable here itself. That is 

called an internal dead end. Beyond that point, backjumping only does chronological 

backtracking.  
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Now, we will look at one more variant of back jumping called the conflict-directed back 

jumping. We will simply introduce the idea here and working through an example I leave it is 

an exercise for the readers. The conflict directed back jumping is an algorithm that is aware 

of the underlying constraint graph. It determines where to jump back to based on the actual 

conflict that is, it has recorded.  

 

So, it uses an ordering on the constraints and identifies the earliest constraint that violates it. 

And it maintains a conflict set for each variable. That is, list of previously assigned variables 

that are related by constraint.  
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When we hit a dead end, it back jumps to the most recent variable in the conflict set. 

Interesting is that it learns from a conflict by updating the conflict set of the variable we jump 

to. When a contradiction occurs, conflict directed back jumping which remembers the 

minimum set of variables from the conflict set that was responsible for the problem and takes 

a decision. In fact, it says no-goods variables as new constraints. This is better than simple 

back jumping which had no such memory.  
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So, to conclude, we had looked at constraint satisfaction problems which are an alternate 

formulation of problem solving. Each problem is represented as set of variables, set of 

constraints which together specify a relation on all the variables. Solution is a specification of 

the allowable values for the variables. We have confined our discussion to only finite CSPs, 



CSPs whose domains are finite set. There are many interesting problems that have infinite or 

real domains. We have not looked at them.  
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We have looked at backtracking which is a depth-first search with one variable assigned per 

node. And then, we add to it consistency checking. Variable ordering and value selection 

heuristics, we have seen helped significantly. We have looked at the idea of forward checking 

that prevents assignments that guarantee later failure. And then, we have looked at constraint 

propagation including arc consistency that does additional work to constrain values and 

detect inconsistencies. Thank you very much. 


