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Welcome back to the course on fundamentals of artificial intelligence. We continue our 

discussion on search strategies. Having introduced uninformed search and heuristic functions, 

in this lecture we would cover informed search strategies. Informed search strategies use 

task-dependent information and are also called heuristic search.  

(Refer Slide Time: 01:06) 

 

We would first look at heuristic search. We would thereafter look at the types of heuristic 

search. We would typically do 2 interesting types. First, the best-first search. We will discuss 

algorithm A and thereon define algorithm A *. We would then look at local search and 

discuss hill climbing and simulated annealing.  
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Uninformed search methods that we have discussed so far, whether breadth-first or depth-

first are exhaustive methods for finding paths to a goal node. These methods provide a 

solution, but often are infeasible to use, because search expands too many nodes before a path 

is found. On the other hand, we have informed search methods which use task-dependent 

information to reduce the search. The task-dependent information is called heuristic 

information and search procedures that use it are called heuristic search methods.  
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We are interested not only in minimizing the cost of the path, but also the cost of the search 

required to obtain the path. That is, we are interested in minimizing some combination of the 

two. Search methods that minimize this combination averaged over all populations is what 



we are likely to look at today. Heuristic information is used so that search expands along 

those sectors of the frontier which are thought to be most promising.  

(Refer Slide Time: 03:13) 

 

As I told you before, we call them heuristic search, for they use task-dependent information. 

In a heuristic search, each state is assigned a heuristic value, a value that somehow reflects its 

importance in the search and is used in the search to select the best next step. A heuristic is an 

operationally effective nugget of information and directs the search in a problem space.  
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We have looked at heuristic functions in great detail in our last lecture. We continue here 

with a review. The heuristic function written as h of n, estimates the cost to a goal. The most 

promising states are selected. For ordering nodes for expansion in our search, we need a 

method to compute the promise. And this is done using a real-valued evaluation function. 



Evaluation functions have been based on a variety of ideas. Like for the 8-puzzle, we had 

discussed and defined a evaluation function such as counting the number of misplaced tiles.  
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The best-first search that we will discuss first in our informed search strategies is a way of 

combining the advantage of both the depth-first and the breadth-first search into a single 

method. We need to recall that depth-first is good, as it allows a solution to be found without 

all competing branches having to be expanded. On the other hand, breadth-first is good, 

because it does not get trapped on dead-end paths.  

 

We want to combine this in a best-first search and follow a single path at a time, but switch 

paths whenever some competing path looks more promising than the current one. That is the 

philosophy of breadth-first. Take the best of the depth and the best of the breadth-first 

searches and jump from 1 branch of the search to the other branch to get to the best nodes at 

every point in time.  
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The idea is to use an evaluation function for each node that estimates the desirability and then 

expand the most desirable unexpanded node. We order the nodes in decreasing order of 

desirability. And one of the special case is the A * search.  

(Refer Slide Time: 06:20) 

 

Let us look at an example here. Let us say we have a problem. And where we are searching a 

tree and A node is expanded to give us node B, node C and node D. Let us now try to 

compute some heuristic function that gives us a value of these nodes, the heuristic value of 

this nodes. So, let us say B has a value of 3, C has a value of 5 and D has a value of 1. The 

next thing that we would love to do if these values reflect somehow the distance to the goal, 

we would love to expand node B, for it has the minimum of the distance to the goal.  

 



So, we expand D and let us say we end up having 2 nodes E and F. And let us say these 

heuristic values that I get of all the evaluation function at node E and node F is 4 and 6 

respectively. Now, if you compare the heuristic values at B which is still unexpanded at C 

which is still unexpanded; and the unexpanded nodes E and F, we see that B looks most 

promising. And therefore, a best-first search would expand B rather than expanding E or F as 

it would have been done in case of a depth-first search.  

 

Therefore, the next thing that is expanded is B. And let us say we have a node out of B which 

is G and H. And if we look at their heuristic values, then we have 6 and 5. In that case, 

interestingly, once again the search would jump back to E. Because, if you see, G has a value 

of 6, whereas H has a value of 5. And E looks most promising at this point of time. The 

search would then expand E.  

 

This is the basic idea of a breadth-first search. To once again reiterate what I have just now 

said. In a breadth-first search, we do go about looking at expanding every node as I did it for 

the first time, but then, out of this, I decided to go and take down D, not B or C, as D looked 

most promising and I expanded its nodes. But while doing so, I jumped back to the node 

which was not expanded and even looked promising.  

 

So, from doing D and not doing E and F, I jumped back from here to expanding C, sorry 

expanding B. And once B was expanded, I realized that nodes G and H are less promising 

than E. I come back and expand E. So, this is what a breadth-first search does. It tries to 

expand the best promising node or while shifting from doing depth-first to breadth-first and 

breadth-first to depth-first again.  
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So, if you recall, we had introduced this graph search algorithm, where we had said that we 

will have 2 lists. One called open and the other called closed on which we shall maintain the 

nodes that are to be expanded and that have already been expanded. So here, continuing that 

discussion, as I am dealing with A B C D and then expanding E and then going back and 

expanding B, the only point in which this algorithm of graph search would make a difference 

is on the reorder of the open list.  

 

When I reorder the open list, I will now order it according to the heuristic merit. And 

therefore, they node that would be expanded next would be at the front, allowing me to take 

the most promising node first.  

(Refer Slide Time: 11:17) 

 



Algorithm A is about avoiding expanding paths that are already expensive. And here, the 

evaluation function can be defined so that its value at any node estimates the cost of the 

minimal cost path from the start node s to the node n. So, that is the minimal cost path. And 

together with it, the cost of the minimal cost path from the node to the goal. So, algorithm A 

is about; like if you, I have a start node here and somewhere down the line, down there you 

have a goal, then the evaluation function that I use for algorithm A is about an estimate of the 

cost that I need to expand to come to this node.  

 

And it is about the cost of coming from here to that particular node; and then, the cost of 

going from this node to the goal. And this estimate gives me the value of the evaluation 

function. Now, if you look at this very closely, you would realize that what I am trying to 

emphasize here is the point that the evaluation function f n is an estimate of the minimal cost 

path that goes through node n at this point of time.  

(Refer Slide Time: 12:45) 

 

So, in order to get this more correctly, let us introduce some notations. Let us say we have a 

function k, n sub i and n sub j that gives the actual cost of a minimal cost path between 2 

nodes n sub i and n sub j. Now, the cost of minimal cost path from node n to some particular 

node t sub i is then given as k of n t sub i. h * n is the minimum of all such paths over the 

entire set of goal nodes, t sub i that I could generate. And that is the heuristic value. So, h * n 

is the cost of the minimal cost path from n to a goal node.  
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That is the cost of an optimal path from a given start node s to some arbitrary node n. So, that 

could be written as k s n. And we write this as g * n. So, g * n is the cost of the optimal path 

from a start node to a node n. And together with h * n, we define f * n which is the actual cost 

of an optimal path from node s to node n plus the cost of an optimal path from node n to the 

goal node. So, it has 2 things that I just now told you in the previous slide.  

 

I have this start node s; and somewhere I have an intermediatory node n. And down the line, I 

have a goal node g. So, I take this as g * n, the cost of coming from the start to n, the optimal 

cost. And I take this, the cost of going from n to the cost of going from n to g which is h * n. 

The evaluation function f * is defined as g * n, h * n.  

(Refer Slide Time: 15:11) 

 



Now, the evaluation function f is an estimate of f *. And this estimate can be written as, f is = 

g of n + h of n, where g of n is the cost so far to reach n and actually is an estimate of g *. h 

of n is the estimated cost from n to goal and is an estimate of h *. And for h, this estimate 

alone, we rely on heuristic information. Given these 2 estimates, we have f of n which is the 

estimated total cost of a path through n to the goal. Any graph search algorithm using this 

evaluation function for ordering nodes is called algorithm A.  

(Refer Slide Time: 16:04) 

 

If now, you take the lower bound of h *; that means, when you estimate h, you take the lower 

bound of the estimate for all nodes. Then algorithm A will find an optimal path to the goal. 

When algorithm A uses such an heuristic function, that is a lower bound on h *, we call it 

algorithm A *. The best-first algorithm that I had little while ago described is a simplification 

of algorithm A *.  

 

Now, it is interesting to note that if we take h = 0, which is certainly a lower bound on h *, 

we end up having breadth-first search, finding minimal length paths. The breadth-first search 

therefore finding minimal length paths follow as a special case of this.  
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So, let us try to understand the * algorithm. The evaluation function f of n is written as g of n 

+ h of n, where g of n is the cost from the starting node to reach n. Whereas h of n is the 

estimate of the cost of this cheapest path from n to the goal. So, here h of n is an estimate, is a 

heuristic value. So, if you see, we can be very sure of g n, whereas h n is an estimate.  

(Refer Slide Time: 17:32) 

 

Let us try to understand this by solving our favorite 8-puzzle using the A * algorithm. Here is 

a start state and here is the end state that I want to reach. Now, just to remind you of the 8-

puzzle game that we want to solve here, we want a path from the start to the goal. Now, when 

we want a path, we are able to operate on this blank space. Given a blank space, we could 

lead this state to newer states.  

 



So, let us see how many states we can end up doing. So, on moving 1 down, we have one 

state; on moving 4 out, we have another state; moving 7 up, we have a third state. Now, the 

question is, given this 3 states, which is the state that I expand next? Recall that the A * 

algorithm uses an evaluation function which is written as f is = g + h at every node n. So, we 

start computing g, the cost of reaching the nth node; and h the estimate of going from n to the 

goal node.  

 

Let us do it for each of the nodes that we have expanded. So, at the first node to start with, g 

is obviously 0. We have not expanded anything to come to this node as of yet. And let us take 

h, the heuristic which we will try to count the misplaced tiles, the number of misplaced tiles. 

So, we want to count the number of misplaced tiles as our heuristic function h. So, in here, if 

you compare it with the goal state, we could see that 1, 2, 3 are in its place.  

 

4 is not in its place. Then 6 is in its place. 7 is in its place. 5 is not in its place and 8 is not in 

its place. So, the number of misplaced tiles here counts as 3. Given the fact that I have not 

expanded anything to come to the node and my heuristic value which I have stated as number 

of misplaced tiles as some heuristic or estimate of going from n to the goal node; I have 

counted as 3. The evaluation function will have a value of f = g + h, which is 3.  

 

I compute the other heuristic values here. So, at this point g is = 1 and h is = 4 and I end up 

having f = 5. At this point, I have g = 1, h = 2, f = 3. And at this point, h is = 4. And f is = 

therefore 5. Just for a cross check, I just want to show you one more time, counting of the 

misplaced tile heuristics. Here, if you look at the number of misplaced tiles; 1, 2, 3 are in its 

place; 4 is in its place, 6 is in its place, 7 is in its place.  

 

Only tiles which are not in its place is 5 and 8. Therefore, I have an h of 2 and leading to an f 

of 3, depending on the value of f, I pick up this middle state there. And we expand this node 

to get 3 newer nodes. And then, compute the heuristic values of each of them. Note that at 

this point g becomes 2 and I count the number of misplaced tiles to know about h. That leads 

to f = 3, f = 5 and f = 5 again for the last node here.  

 

Therefore, I decide to expand this node at the start. When I do this, I end up having 2 nodes, 

either moving 7 to the blank or moving 8 to the blank. And the, one of them is the goal node. 

That you can still see by computing the heuristic function. And you would have g = 3 at this 



point of time. You would have 2 misplaced tiles here. And therefore, f is 5. In this node, we 

have g = 3, h = 0 and f therefore is 3.  

 

And this is what I would ideally take for expansion. But then, I will realize that that is the 

goal node and my algorithm length. So, what we have realized is that this A * algorithm 

could take me to goal in such a nice directed way.  

(Refer Slide Time: 23:18) 

 

The g that I am using in the A * algorithm lets us choose which node to expand next on the 

basis not only of how good the node itself looks as measured by the heuristic function, but 

also on the basis of how good the path to the node was. Therefore, g carries a lot of weight. 

The estimator of h *, the distance of a node to the goal is another interesting observation. If h 

is a perfect estimator of h *, A * will converge immediately to the goal without no search.  

 

Better the estimate of h, closer we would be to the direct approach. On the other hand, if h is 

0, the search would be controlled by g. And if g is 0, we would end up having random search. 

If we consider g at every step to be 1, we would end up having a breadth-first search.  
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Now, we talk of admissibility of A *. The A * algorithm depending on the heuristic function 

finds or not an optimal solution. If the heuristic function is admissible, optimization is 

guaranteed. A heuristic function is admissible if it satisfies the following property. For every 

n, the h n is bonded by 0 and h * n. That means, h n has to be an optimistic estimator. On the 

other hand, it never has to overestimate h * n. Using admissible heuristic function guarantees 

that a node on the optimal path never seems too bad and that it is considered at some point in 

time.  

(Refer Slide Time: 25:10) 

 

A * guarantees an optimal solution if h n is an admissible heuristic and the search space is a 

tree. Now, h n is admissible as I told you in the previous slide, if it never overestimates the 

cost to reach the destination node. A * generates an optimal solution if h n is a consistent 



heuristic and the search space is a graph. Now, h n is a consistent heuristic. If for every node, 

n sub i and for every successor node n sub j of n sub i, we have h n less than equal to c of n i 

and j + h of n j.  

 

This is what I mean that the estimate that I make of reaching n j, the estimate about n j to the 

goal and about n i to the goal should take into account the cost of coming from n i to n j. If 

that happens, then we have a consistent heuristic.  

(Refer Slide Time: 26:19) 

 

A * expands nodes in order of increasing f then. And what really happens is that, it gradually 

adds the f-contours, one after another into its search space. And as it encounters gradually f-

contours of nodes, it goes towards more promising nodes.  

(Refer Slide Time: 26:47) 

 



We would now look at the optimality of A * and prove it by an intuitive method. Let us say 

we have a suboptimal goal G 2 in the fringe and we have a node n which is not yet expanded. 

Let n be in the fringe as well and let it be on a shortest path to the optimal goal G. Now, A * 

is optimal if the heuristic value at n is less than the heuristic value at G, f, the heuristic value 

at G 2. Now, we know that the f of G 2 is = g of G 2 because G 2 is a goal and h of G 2 is 0.  

 

Further, G also being a goal, f of G is = g of G, since h of G is 0. Now, we have been told that 

G 2 is suboptimal. That would mean that the cost of coming to G 2 which is g of G 2 is 

greater than the cost of coming to G. Now, we know that g of G 2 is f of G 2. Therefore, f of 

G 2 is greater than f of G. Now, since we are talking of an admissible heuristic, we know that 

h of n is less than equal to h * n.  

 

And therefore, from this, we could write that g of n + h of n would be less than equal to g of n 

+ h * n. Now, just to recall that g of n + h of n is nothing but the heuristic function and value 

of the evaluation function f of n. And g of n + h * n is f of G. So, we could write here that f of 

n is less than equal to f of G. And given that f of G 2 is greater than f of G, we can conclude 

that f of n is less than equal to f of G 2. So, that is how we could say that A * is optimal.  

 

Because, any node that it picks up for expansion, the evaluation function at that node is going 

to be less than a sub optimal goal. Now, we will focus on other interesting portion of today's 

lecture, which is about local search. So, what are local search algorithms?  
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In many optimization problems, the state space is the space of all possible complete 

solutions. Objective functions tells us how good a given state is. Find the solution by 

minimizing or maximizing the value of this function. These algorithms do not systematically 

explore all the state space. Heuristic or evaluation function reduce the search space which are 

not worth being explored. Algorithms do not usually keep track of the path. The memory cost 

is minimal therefore.  

 

But one thing to be noted here is, that the total lack of memory at times can be a problem, 

because we may end up having cycles. Never the less, these are popular search algorithms.  
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The local search uses single current state and move to neighboring states. The idea is to start 

with an initial guess at a solution and incrementally improve it until it is one. The advantages 

of local search is, as I told you, uses very little memory, find often reasonable solutions in 

large or infinite state spaces. It is useful for pure optimization problems; find or approximate 

best state according to some objective function.  
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We will look at one such local search algorithm called the hill climbing search. The idea is 

similar to climbing a hill. So, the surface looks like something of a hill with lot of ups and 

downs. And let us say we are here in our search. We can be using 2 different types of 

heuristic functions. We may estimate the distance from a peak to arrive at the peak. For such 

a heuristic estimate, the smaller is the better or we may be using the height defined by the 

evaluation function. And as you can guess, in a hill climbing search, if I am talking of height, 

greater is better.  

(Refer Slide Time: 31:59) 

 

So, the hill climbing procedure, if you allow me to put, is very simple. You just initialize a 

state called current to the starting state. And then, you initialize a state called next, which 

takes the highest valued successor of current. If the value of next is value of current the value 



of current, we will return current; else, we will let current equal to next. And this continues. 

So basically, if I am looking for reaching this point from here, I will look at my neighborhood 

and move to this point, which is possibly the best.  

 

And then, make this my next point and increase my search space. So, pick up this, move here, 

make my search space here. And I will slowly but surely x reaching the height. But, is it that 

simple? We will look at it in a minute. There are variants to the hill climbing algorithm. The 

simple hill climbing is a basic method in which the first state that is better than the current 

state is selected, as I was trying to explain this. There is other called the steepest-ascent hill 

climbing where we consider all moves from the current state and select the best one as the 

next thing.  
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So, let us take our 8-puzzle game once more and see and understand hill climbing. Let us take 

this to be our start state and here is our goal state. We will use again our heuristic function of 

the number of misplaced tiles. So, we will try to expand this node and get the newer nodes, 

but then compute the number of misplaced tiles for each one of these nodes. So, this has 5 

misplaced tiles; this has 6; this has 4 and this has 5.  

 

So, I would love to expand the one with the lowest number of misplaced tiles. I expand that 

node and end up having 2 more nodes here. And then, we compute the heuristic values 5 and 

3. Therefore, we opt to expand this node. This node is expanded and ends up in 3 more 

nodes. We compute the heuristic values. This node with the lowest heuristic value is 

expanded next. We end up having this node and then that is expanded to reach to the goal.  



 

So, if you give some thought to the whole process, this search that I was trying to do was 

about moving in a way in which the distance to the goal node was decreasing. And I did not 

take any other path. So, that is the hill climbing search.  
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The properties of the hill climbing search is that it terminates when a peak is reached; does 

not look ahead of the immediate neighbors on the current state and this is what is important. 

Every time I was expanding the next level, I was only concerned at what are its successors 

and did not use any estimate of some measure of how far I am from the goal. It chooses 

randomly among the set of best successors if there is more than one and does not backtrack. 

Since, if you remember, it does not remember where it has been. It does not keep a track of 

which state it came from.  
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So, this is good if your search space is really looking like a hill. But then, it is not that. Search 

space features could be very complex as shown in this figure. I have an objective function 

and the state space. And the state space versus the objective function curve is with many 

interesting properties. Here is the global maximum. Apart from the global maximum, we 

have local maximums.  

 

And then, more interestingly, we have flat local maximums as well. Under such a state, if you 

are searching for just moving towards maximizing your return on the claim and you are 

somewhere here in the current state and your movement is towards this side rather than this, 

one would end up having this as the maximum. And we will miss the global maximum. This 

is a very, very serious problem with hill climbing.  
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So, drawbacks of hill climbing is that, peaks that are in the highest point in the local space, 

the local maxima, we tend to get stuck there. States that is better than all its neighbors, but is 

not better than some of the other states farther away, would be one with the stuck end. 

Plateaus: the spaces that has a broad flat region that gives the search algorithm no direction. 

The whole set of neighboring states that have the same value not possible to determine the 

best direction.  

 

Like, if you go back and look at that slide, here was a flat region completely and here was 

another flat region. Now, if I am somewhere here or I do not know which state side to go to 

when I am on a flat region like this. So, this is another drawback. And then, there are drops 

off to the sides. Steps to the north, east, south and west may go down. But a step to one of the 

combinations may go up.  

 

So, orientation of the high region, compared to set of available moves and direction in which 

they move, make it impossible to traverse ridges. So, with this drawbacks, it is better that we 

now focus on one of the methods to overcome these. And that method is simulated annealing.  
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Simulated annealing, the premise of it, the motivation of having it is because hill climbing 

algorithm that never makes a downhill is guaranteed to be incomplete. What it means is, if I 

keep on thinking of only climbing up and never think of climbing down again, then I will 

miss this global maximum. So, what can be done is that, we can think of random walks. But 

then, purely random walk, that is moving towards successor chosen uniformly at random 

from the set of successors may guarantee completeness, but is extremely inefficient.  

 

So, we want to do better than this; neither remain incomplete nor wanted to have extreme 

inefficiencies. So, we combine hill climbing with a random one, in some way to get both 

efficiency and completeness. Simulated annealing is one such algorithm.  
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Intuitively, what happens in simulated annealing; let me try to explain to you with this curve. 

So, here is the state space and the evaluation function. Now, if you see if I, my starting point 

is here and I was coming down this path. And if only I was looking at the evaluation 

function. Then, after this point, I will have no more motion taking me out of this. And I will 

miss this global minimum. So, what can be done at this point of time is that:  
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I will occasionally take steps in different direction from which the increase or the decrease, as 

the case may be, is maximum. So, if I am here with some probability, I may be allowed to 

come up. And then, there is the chance that I may end up going down this path and arriving at 

the global minimum. So, this is what is done in simulated annealing.  
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It is a stochastic hill climbing algorithm. So, a successor is selected among all possible 

successors, according to some probability distribution. Now, the successor can be worse than 

the current one. But that is what I want. I do not want to monotonically only go towards 1 

path and get stuck in a local maximum or local minimum. Random steps are taken in the state 

space. And it is interesting to know that this point, that this is inspired by the physical process 

of controlled cooling, crystallization or metal annealing.  

 

And that is why it is called simulated annealing. Metal annealing or crystallization: a metal is 

heated up to a high temperature and then is progressively cooled in a controlled way. If the 

cooling is adequate, the minimum energy structure a global minimum is obtained. This is 

what we want to achieve in simulated annealing.  
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The goal of annealing therefore, is to produce a minimum energy final state. But there is 

some probability that a transition to higher energy state will occur. This probability is given 

by this function here. Now, properties of physical annealing is used to define an analogous 

process of simulated annealing. Delta E here, the energy function, is generalized to reflect 

change in the value of the objective function.  

 

Analogy for kT is slightly different than the physical one. In the physical sense, k describes 

correspondence between the units of temperature and the units of energy. Here, these units 

are artificial. And therefore, the k is factored into T. And we use a more simplified equation 

like this.  
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The best way to select an annealing schedule or change in temperature as we want to do this, 

is to try several schedules and observing the effect on both the quality of the solution that is 

found and the rate at which the process converges. It is important to realize 2 things. As T 

approaches 0, the probability of accepting a move to worse goes to 0 and simulated annealing 

becomes identical to simple hill climbing.  

 

What matters in computing the probability of accepting a move is the ratio of the energy to 

the temperature. Thus, it is important that the value of the temperature is scaled, so that this 

ratio is meaningful. And this is something that one needs to really work on.  
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Terminology from the physical problem is used here as you have noticed. The temperature T 

is the control parameter. The energy E or often written also as f is the heuristic function about 

the quality of a state. The function f decides about the selection of the successor state and 

depends on the temperature. And the difference between the quality of the nodes; that is, 

something that I select at one temperature.  

 

What is evaluation function? minus What is the value of the evaluation function at a new 

temperature? The lower the probability of selecting worse successors. The cooling strategy 

determines the maximum number of iterations in the search process. The temperature 

decrease steps and the number of iterations for each step.  
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So, here is the simulated annealing procedure. While the temperature is not 0, I would love to 

do a predefined number of iterations. Okay. I generate the successor of the current successor 

and look at their f values. Okay? Find that it is still greater than 0. Then I take the actual to be 

the new one. And the temperature is decreased and this process is continued further.  
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So, the main idea is that I take steps in random direction. But step taken in random direction 

do not decrease the ability of finding a global optimum. The disadvantage is: the very 

structure of the algorithm increases the execution time. However, the random steps possibly 

allow to avoid small hills; and that is a great advantage. The temperature: it determines 

through a probability function, the amplitude of the steps, long at the beginning and then 

shorter and shorter.  

 

An annealing here is when the amplitude of the random step is sufficiently small, not to allow 

to descend the hill. The result of the algorithm is said to be annealed.  
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So, it is suitable for problems in which the global optima is surrounded by many local 

optima. It is useful for problems in which it is difficult to find a good heuristic function. 

Determining the values of the parameters can be quite difficult and often require 

experimentation. We have now covered the examples that we wanted to talk of in informed 

search. In our next lecture, we would be covering constraint satisfaction problems. Thank you 

very much. 


