
Fundamentals of Artificial Intelligence

Prof. Shyamanta M. Hazarika

Department of Mechanical Engineering

Indian Institute of Technology-Guwahati

Lecture - 33

Learning in Neural Networks

Welcome to Fundamentals of Artificial Intelligence. We continue our discussion on

machine learning. So far we have looked at supervised learning and unsupervised

learning. And in the last lecture, we had briefly introduced the essence of

reinforcement learning.

All of these techniques of machine learning that we have looked at so far whether

learning from observations and getting to the decision trees or for that matter linear

regression that we have discussed in one of the lectures and the methods of

unsupervised learning can broadly be put under what is referred to as symbol

manipulation.

The very idea of using logic or formal systems for reasoning as well as representation

is based on the concept that some form of symbol manipulation can lead to problem

solving or what we can refer to as intelligent behavior. In today's lecture and the final

lecture remaining in this week, we will look at a completely different approach to

artificial intelligence which is called connectionist AI.

For here, we are more concerned with mimicking the way the human brain functions

rather than getting to a set of symbols or a formal structure and manipulating it to

arrive at new knowledge. So this lecture on learning in neural networks, we would try

to see how the very complex network of neurons in our brain can be copied into an

electrical system, can be copied and somehow be applied for learning and making

decisions.

These networks for the very fact of being motivated by the neural structures is

referred to as neural networks.

(Refer Slide Time: 04:25)

So neural networks are in fact, some complex network of simple computing elements.

In fact, in a more strict sense, we need to call them artificial neural networks. They

are simple arithmetic computing elements, which corresponds to neurons, the cells

that perform information processing in the brain. So the network as a whole

corresponds to a collection of interconnected neurons.

And they are capable of learning from examples of course, through appropriate

learning methods and as I was referring to this whole idea of computation is referred

to as the connectionist approach. So they exhibit complex global behavior determined

by the connections between the processing elements and the element parameters. In

this lecture today, we will look at the very basic of such simple computing element

and try to understand how they form the basis of computation.

But before we proceed, it would be pertinent to actually look at the structure of the

human brain and try to understand at least how the brain works.

(Refer Slide Time: 06:03)

The exact way in which the brain enables thought is one of the greatest mysteries of

science. The brain, which is a set of interconnected modules, performs information

processing operation at various levels. It does processing of sensory input that we

receive. It definitely does memory storage and retrieval. And then, all our rational

behavior that we exhibit is the result of reasoning that is there in the brain.

The very essence of feelings and consciousness lies in the brain. The neuron is

actually the fundamental functional unit of all nervous system tissues, including the

brain. And therefore, all these information processing operations at various levels that

we have listed here must somehow be happening at the neural level. So neurons, the

basic computational elements of the brain remain heavily interconnected with each

other.

(Refer Slide Time: 07:29)

Here is what the neuron looks like. There is the cell body or soma. And then, we have

a single outgoing branch, which is referred to as the axon and a number of incoming

branches, which are referred to as the dendrites. Now a very important junction in this

neural structure is the junction between the dendrites of one neuron and the axon from

some other neuron. So this axon here is from a different neuron.

And this junction that we have between the dendrites of one neuron and the axon of

another neuron is referred to as the synapse. So each neuron form synapse with

anywhere from a dozen to a hundred thousand other neurons and this is something

that makes it so very powerful as we will see in a minute. I would emphasize the very

fact that the very important connection between the dendrite and an axon from

another neuron that we got to remember is the synapse.

(Refer Slide Time: 09:08)

Now the basis for learning in the brain lies in what is called the action potential. So

signals are propagated from neuron to neuron by a very complicated electrochemical

reaction. And some transmitter substances are released from the synapse and enter the

dendrite raising or lowering the electrical potential of the cell body. So what happens

is some form of activation comes and enters the neuron via the dendrites raising or

lowering the electrical potential.

And when the potential reaches a threshold, an electrical pulse or what is called an

action potential is sent down the axon. That is the first. And then the second important

thing is how the pulse spreads out along the branches of the axon. Now these pulse

that arrive at the dendrites, if the potential reaches a threshold, it is sent down the

axon and the pulse spreads out along the branches of the axon and eventually reaching

synapses and releasing transmitters into the bodies of other cells.

That is they now activate the next set of dendrites that is connected to them. Synapses

that increase the potential are called excitatory and those that decrease the potential

are called inhibitory. One very important fact that makes such neural structures

interesting is that the synaptic connections that we have exhibit what is called

plasticity. That is long term changes in the strength of connections in response to

pattern of stimulation remains there.

(Refer Slide Time: 11:37)

So if you compare the computer versus the brain, a crude comparison of raw

computational resources available to computers and brains would make it clear that

computer chips execute instructions in tens of nanoseconds, whereas neuron requires

milliseconds to fire.

However, as I was trying to emphasize, when I was talking about the synaptic

connections between neurons, one important thing that makes brain more than make

up for its slow speed is that all neurons and synapses act simultaneously and this is

what makes the brain so very powerful than any computational resources that we can

think of.

Even though a computer is a million times faster, in raw switching speed, the brain

ends up being a million times faster at what it does. And at the very basis of this lies

the neural network of synapses that constitutes the human brain.

(Refer Slide Time: 13:12)

Now artificial neural networks are where we put many neuron-like processing

elements and try to create this structure. We have input and output units that receive

and broadcast signals to the environment respectively. Internal units call hidden units

are there which are in contact with only units that are hidden and are not in contact

with external environment.

And all of these units are connected by weighted links to recreate the very essence of

the synaptic connections that we have seen in the human brain. A parallel

computation system is what we end up in, because signals travel independently on

weighted channels and units can update their states in parallel. But what makes it

exciting is that most artificial neural nets can be simulated in serial computers.

(Refer Slide Time: 14:19)

So here is the single computing unit, which is referred to as an artificial neuron. So we

have links coming to it as if these are the dendrites. And then going out as if that is the

axon and then we have here an activation function that plays the role of the synaptic

junction. So it receives n inputs. Now these inputs get multiplied by its weight. And

then an activation function is applied to the sum of the results and then the output is

produced.

(Refer Slide Time: 15:06)

The computation can be seen in two components. The first is a linear component,

which is the input function that actually computes the weighted sum of the unit’s

input values. And then there is a second component, which is a nonlinear component.

And it is called the activation function. The activation function transforms the

weighted sum into the final value that serves as the units activation value AI.

Now the total weighted input is the sum of the input activation times their respective

weights. So the input is the sum of the input activations times the weights.

(Refer Slide Time: 16:07)

And the elementary computation step in each unit computes the new activation value

by applying the activation function g and this is mapped to the output a i.

(Refer Slide Time: 16:23)

These artificial neuron allows for a simple learning element, because it need only

worry about adjusting weights. For the threshold also can be included as an extra

input step. So even if we said that there must be a minimum threshold in which the

synaptic connection becomes either excitatory or if it is less than that, then it is

inhibitory.

Here we replace the threshold with an extra input weight and add an extra input

activation, which is fixed at -1. So the weight serves the function of the threshold at t.

So basically, you have the threshold factored in here. And when I have this, I land up

with having even a more simpler learning element. Because now one need only worry

about adjusting weights rather than adjusting weights and thresholds as well.

(Refer Slide Time: 17:39)

So let us take a moment and look at the common activation functions. Different

models of artificial neural nets are obtained by using different mathematical functions

for g, the activation function. Three common choices are step, sign, and the sigmoid

function. The step function, which is shown here has a threshold t. And if the input is

greater than this threshold, then the output is 1. Otherwise, the output is 0.

So that is the step function. Now the biological motivation of the step function is that

a 1 represents the firing of a pulse down the axon and a 0 represents no firing. The

threshold somehow represents the minimum total weighted input necessary to cause

the neuron to fire. And that is what makes it either pass on the signal to the next group

or stay inert.

(Refer Slide Time: 19:02)

The sign function is when it outputs 1 when the input is positive, and 0 otherwise.

(Refer Slide Time: 19:11)

The sigmoid function is what is shown here.

(Refer Slide Time: 19:16)

Now one of the original motivations for the design of such individual units, which is

referred to as the McCulloch and Pitts model was their ability to represent basic

Boolean functions. Simple neurons can act as logic gates. Some appropriate choice of

activation function, thresholds and weights can make it realize that we can create

different basic Boolean functions using the very simple computational element that

we have shown.

Here, we have shown three Boolean functions, the and, or, and the not. A little

introspection and looking at how you add up these W's and see the threshold whether

it crosses that or not. And you will have an output here or not, will make you realize

that given these different threshold values and the different weights as shown, we can

have these three basic Boolean functions. Now these are units with a step function for

the activation.

(Refer Slide Time: 20:41)

Let us now quickly look at what are the different network structures that can be

possible with these simple computational units. There are a variety of kinds of

network structures each of which results in very different computational properties. In

principle, networks can be arbitrarily connected. Now occasionally, networks are

connected in a way to represent specific structures.

Like we may be interested in recreating certain semantic networks or certain logical

sentences. But however, this makes learning rather difficult. Most times the network

structures are layered structures. So the networks are arranged into layers and

interconnections are mostly between two layers. Some networks may have feedback

connections as well.

(Refer Slide Time: 21:50)

So we have what are called the feed-forward networks. In a feed-forward network, the

links are unidirectional and there are no cycles. So in a way the feed-forward network

is a directed acyclic graph. The layered feed forward network is one in which each

unit is linked to only to units in the next layer. And there are no links between units in

the same layer.

Neither do we have links backward to a previous layer and no links that skip a layer.

Recurrent networks on the other hand, are those in which the links can form arbitrary

topologies.

(Refer Slide Time: 22:40)

So here, we show one of the most simplest of the feed-forward network which is a

single layer feed-forward network. This is one of the first types of neural networks to

be developed in the late 1950s. This single layered feed-forward network is called a

perceptron network and a single perceptron is one where we have a number of input

units all coming up to one output.

So output is calculated as a step function applied to the weighted sum of the inputs.

The single layer feed-forward network referred to as the perceptron network is

capable of learning simple functions and only linearly separable functions. Now recall

our discussion on linear separability.

(Refer Slide Time: 23:53)

Linear separability is one where you could separate items using a decision boundary

like this. So the fact that a perceptron can only represent linearly separable function

actually follows from the function computed by a perceptron. The perceptron is a step

function, the perceptron outputs a 1 only if I have the weight and the input greater

than zero.

This means that the entire input space is divided into two along a boundary, which is

defined as weight into input equal to zero. So perceptrons can deal with linearly

separable functions. Some functions which are not linearly separable, such as the

XOR function is something on which you cannot use a perceptron. Here, we have the

and function. So 0 and 1 is 0, 0 and 0 is 0, 1 and 0 is 0, and 1 and 1 is 1.

So these two sides are linearly separable. Whereas if you do an XOR, you will see

that here you have a zero, you have a 1 here, and you have a 1 here. So it is not

possible for a linear decision boundary to separate them out.

(Refer Slide Time: 25:42)

Linear separability actually can be extended to more than two dimensions. But then it

is more difficult to visualize. Nevertheless, we could have separating planes and we

could create weights and thresholds in such a way that we have linear separability

beyond what I have shown in the two dimensional space.

(Refer Slide Time: 26:09)

Perceptrons can learn from examples through a very simple learning rule. It calculates

the error of an unit as the difference between the correct output and the calculated

output that is the error of a particular unit. And then all it needs is to adjust the width

such that the error decreases and this is nothing but a gradient descent search through

the weight space.

So there was great enthusiasm in late 50s and early 60s with the very introduction of

the perceptron. However, Minsky and Papert in 1969 analyzed the class of

representable functions and found the linear separability problem. And then people

looked beyond perceptrons.

(Refer Slide Time: 27:08)

Rosenblatt and others, actually described the multilayered feed-forward networks in

the late 1950s, but concentrated their research on single layered perceptron. This was

mainly because of the difficulty of finding a sensible way to update the weights

between the inputs and the hidden units. Research in more complex networks with

more than one layer was very limited until the 1980s.

Because learning in such network is much more complicated. And the problem is to

assign here the blame for an error to the respective units and their weights in a

constructive way. The back propagation learning algorithm was one that facilitated

learning in multilayer networks.

(Refer Slide Time: 28:09)

So here I have a two-layer network, which is of the input units here, the input units

here and there are the hidden units and finally the output unit. Now the input unit is

not counted as a separate layer. And therefore, this is referred to as a two-layered

network. Usually, all nodes of one layer have weighted connections to all nodes of the

next layer as shown here.

(Refer Slide Time: 28:49)

The back propagation algorithm, which allows learning in such networks proceeds the

same way as for perceptrons. If there is an error, that is a difference between the

output and the target, then the weights are adjusted to reduce this error. Now the trick

here is to somehow assess the blame for an error and divided among the contributing

weights. So you assign blame to individual units in the respective layer.

This is essentially based on the connection strength. So you proceed from the output

layer to the hidden layer and update the weights of the units leading to the layer. You

essentially perform here what is called the gradient-descent search on the error

surface. And this is relatively simple, since it relies only on local information from

directly connected units. However, such learning has convergence and efficiency

problems.

(Refer Slide Time: 30:03)

Now multi-layer networks beyond 1980s have come in a big way after the slump in

research in neural networks between late 60s and early 80s. Let us try to understand

how does these multi-layer network match up with other forms of representation and

reasoning that we have covered in this course or that is available for looking at

problems with an artificial intelligence.

So multi-layer networks in terms of its expressiveness are actually weaker than

predicate logic. They are good for continuous inputs and outputs. In practice, they

have actually surpassed a lot of other representation formalism or for that matter

learning methods. However, if you look at the computational efficiency, the training

time can be exponential in the number of inputs.

So depends critically on parameters like the learning rate and local minimas are

known to be problematic. Now these can be overcome by certain methods like

simulated annealing at additional cost. Recall our discussion on simulated annealing

when we had introduced problem solving by search. In practice time to convergence

is highly variable and a vast area of techniques have been developed to try to speed up

the process using an assortment of tunable parameters.

In terms of generalization, it is seen that multilayered networks works reasonably well

for some functions or classes of problems. However, there are no formal

characterization of these functions.

(Refer Slide Time: 32:38)

One very interesting thing that makes artificial neural nets popular is that they are

very tolerant to noise. In terms of sensitivity to noise, they are perhaps one of the best

and they perform nonlinear regression. In terms of transparency, that is knowing what

is happening and how it is happening, possibly neural networks are essentially black

boxes. There is no explanation or trace for a particular answer.

Tools for analysis of neural networks are very limited. Of course, we should point out

here that some limited methods are there to extract rules from networks or to get to

the decision tree for a given network. But then generally neural networks are known

to be non transparent. In terms of integrating prior knowledge into the systems, it is

very difficult to integrate prior knowledge into artificial neural networks since the

internal representation of the network is not easily accessible.

In fact, if you look at the multilayered neural network, the network works by taking a

group of inputs, weighing them, passing on to the next layer, use some weights to

adjust themselves and then finally arriving at an output. So there is hardly any way

that we can think of integrating prior knowledge in such internal structures of the

network.

(Refer Slide Time: 34:42)

In terms of applications, domains and task where neural networks are successfully

used are across many areas of our daily life. Handwriting recognition, lot of work has

been done in terms of recognition of handwritten characters using artificial neural

networks. A number of control problems such as the juggling problem, the track

backup problem have been solved using artificial neural nets.

Perhaps one of the largest use of artificial neural networks have been in the area of

weather and financial forecasting. One area that ANN has widely been used is in

categorization or sorting of items. Now what we have covered here today is a very

basic introduction to artificial neural networks.

Rather I would say we have tried to show you the simile of how the neural structure

of the brain the very simplest computational element the neuron could have an

artificial counterpart and then we could arrive at the perceptron and we have just

made a mention of how multiple layered networks then can be created. And we could

have learning using the back propagation algorithm.

Neural networks actually provide more human like AI. Takes rough approximation

and hard coded reactions out of AI design. However, they require a lot of fine tuning

during development. One needs to be very clear at this point that artificial neural

networks the very approach of computation using an ANN and the approach of AI

that I have taken in most of the lectures until today, are distinctly different.

One could be referred to as symbolic AI. And the other is more to do with what is

called connectionist AI. Thank you very much.

