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Welcome to Fundamentals of Artificial Intelligence. We continue our discussion on 

machine learning. So far we have looked at supervised learning and unsupervised 

learning. And in the last lecture, we had briefly introduced the essence of 

reinforcement learning. 

 

All of these techniques of machine learning that we have looked at so far whether 

learning from observations and getting to the decision trees or for that matter linear 

regression that we have discussed in one of the lectures and the methods of 

unsupervised learning can broadly be put under what is referred to as symbol 

manipulation. 

 

The very idea of using logic or formal systems for reasoning as well as representation 

is based on the concept that some form of symbol manipulation can lead to problem 

solving or what we can refer to as intelligent behavior. In today's lecture and the final 

lecture remaining in this week, we will look at a completely different approach to 

artificial intelligence which is called connectionist AI. 

 

For here, we are more concerned with mimicking the way the human brain functions 

rather than getting to a set of symbols or a formal structure and manipulating it to 

arrive at new knowledge. So this lecture on learning in neural networks, we would try 

to see how the very complex network of neurons in our brain can be copied into an 

electrical system, can be copied and somehow be applied for learning and making 

decisions. 

 

These networks for the very fact of being motivated by the neural structures is 

referred to as neural networks. 

(Refer Slide Time: 04:25) 



 

So neural networks are in fact, some complex network of simple computing elements. 

In fact, in a more strict sense, we need to call them artificial neural networks. They 

are simple arithmetic computing elements, which corresponds to neurons, the cells 

that perform information processing in the brain. So the network as a whole 

corresponds to a collection of interconnected neurons. 

 

And they are capable of learning from examples of course, through appropriate 

learning methods and as I was referring to this whole idea of computation is referred 

to as the connectionist approach. So they exhibit complex global behavior determined 

by the connections between the processing elements and the element parameters. In 

this lecture today, we will look at the very basic of such simple computing element 

and try to understand how they form the basis of computation. 

 

But before we proceed, it would be pertinent to actually look at the structure of the 

human brain and try to understand at least how the brain works. 

(Refer Slide Time: 06:03) 



 

The exact way in which the brain enables thought is one of the greatest mysteries of 

science. The brain, which is a set of interconnected modules, performs information 

processing operation at various levels. It does processing of sensory input that we 

receive. It definitely does memory storage and retrieval. And then, all our rational 

behavior that we exhibit is the result of reasoning that is there in the brain. 

 

The very essence of feelings and consciousness lies in the brain. The neuron is 

actually the fundamental functional unit of all nervous system tissues, including the 

brain. And therefore, all these information processing operations at various levels that 

we have listed here must somehow be happening at the neural level. So neurons, the 

basic computational elements of the brain remain heavily interconnected with each 

other. 
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Here is what the neuron looks like. There is the cell body or soma. And then, we have 

a single outgoing branch, which is referred to as the axon and a number of incoming 

branches, which are referred to as the dendrites. Now a very important junction in this 

neural structure is the junction between the dendrites of one neuron and the axon from 

some other neuron. So this axon here is from a different neuron. 

 

And this junction that we have between the dendrites of one neuron and the axon of 

another neuron is referred to as the synapse. So each neuron form synapse with 

anywhere from a dozen to a hundred thousand other neurons and this is something 

that makes it so very powerful as we will see in a minute. I would emphasize the very 

fact that the very important connection between the dendrite and an axon from 

another neuron that we got to remember is the synapse. 
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Now the basis for learning in the brain lies in what is called the action potential. So 

signals are propagated from neuron to neuron by a very complicated electrochemical 

reaction. And some transmitter substances are released from the synapse and enter the 

dendrite raising or lowering the electrical potential of the cell body. So what happens 

is some form of activation comes and enters the neuron via the dendrites raising or 

lowering the electrical potential. 

 

And when the potential reaches a threshold, an electrical pulse or what is called an 

action potential is sent down the axon. That is the first. And then the second important 

thing is how the pulse spreads out along the branches of the axon. Now these pulse 

that arrive at the dendrites, if the potential reaches a threshold, it is sent down the 

axon and the pulse spreads out along the branches of the axon and eventually reaching 

synapses and releasing transmitters into the bodies of other cells. 

 

That is they now activate the next set of dendrites that is connected to them. Synapses 

that increase the potential are called excitatory and those that decrease the potential 

are called inhibitory. One very important fact that makes such neural structures 

interesting is that the synaptic connections that we have exhibit what is called 

plasticity. That is long term changes in the strength of connections in response to 

pattern of stimulation remains there. 
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So if you compare the computer versus the brain, a crude comparison of raw 

computational resources available to computers and brains would make it clear that 

computer chips execute instructions in tens of nanoseconds, whereas neuron requires 

milliseconds to fire. 

 

However, as I was trying to emphasize, when I was talking about the synaptic 

connections between neurons, one important thing that makes brain more than make 

up for its slow speed is that all neurons and synapses act simultaneously and this is 

what makes the brain so very powerful than any computational resources that we can 

think of. 

 

Even though a computer is a million times faster, in raw switching speed, the brain 

ends up being a million times faster at what it does. And at the very basis of this lies 

the neural network of synapses that constitutes the human brain. 

(Refer Slide Time: 13:12) 



 

Now artificial neural networks are where we put many neuron-like processing 

elements and try to create this structure. We have input and output units that receive 

and broadcast signals to the environment respectively. Internal units call hidden units 

are there which are in contact with only units that are hidden and are not in contact 

with external environment. 

 

And all of these units are connected by weighted links to recreate the very essence of 

the synaptic connections that we have seen in the human brain. A parallel 

computation system is what we end up in, because signals travel independently on 

weighted channels and units can update their states in parallel. But what makes it 

exciting is that most artificial neural nets can be simulated in serial computers. 

(Refer Slide Time: 14:19) 

 



So here is the single computing unit, which is referred to as an artificial neuron. So we 

have links coming to it as if these are the dendrites. And then going out as if that is the 

axon and then we have here an activation function that plays the role of the synaptic 

junction. So it receives n inputs. Now these inputs get multiplied by its weight. And 

then an activation function is applied to the sum of the results and then the output is 

produced. 
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The computation can be seen in two components. The first is a linear component, 

which is the input function that actually computes the weighted sum of the unit’s 

input values. And then there is a second component, which is a nonlinear component. 

And it is called the activation function. The activation function transforms the 

weighted sum into the final value that serves as the units activation value AI. 

 

Now the total weighted input is the sum of the input activation times their respective 

weights. So the input is the sum of the input activations times the weights. 
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And the elementary computation step in each unit computes the new activation value 

by applying the activation function g and this is mapped to the output a i. 
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These artificial neuron allows for a simple learning element, because it need only 

worry about adjusting weights. For the threshold also can be included as an extra 

input step. So even if we said that there must be a minimum threshold in which the 

synaptic connection becomes either excitatory or if it is less than that, then it is 

inhibitory. 

 

Here we replace the threshold with an extra input weight and add an extra input 

activation, which is fixed at -1. So the weight serves the function of the threshold at t. 

So basically, you have the threshold factored in here. And when I have this, I land up 



with having even a more simpler learning element. Because now one need only worry 

about adjusting weights rather than adjusting weights and thresholds as well. 

(Refer Slide Time: 17:39) 

 

So let us take a moment and look at the common activation functions. Different 

models of artificial neural nets are obtained by using different mathematical functions 

for g, the activation function. Three common choices are step, sign, and the sigmoid 

function. The step function, which is shown here has a threshold t. And if the input is 

greater than this threshold, then the output is 1. Otherwise, the output is 0. 

 

So that is the step function. Now the biological motivation of the step function is that 

a 1 represents the firing of a pulse down the axon and a 0 represents no firing. The 

threshold somehow represents the minimum total weighted input necessary to cause 

the neuron to fire. And that is what makes it either pass on the signal to the next group 

or stay inert. 
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The sign function is when it outputs 1 when the input is positive, and 0 otherwise. 

(Refer Slide Time: 19:11) 

 

The sigmoid function is what is shown here. 
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Now one of the original motivations for the design of such individual units, which is 

referred to as the McCulloch and Pitts model was their ability to represent basic 

Boolean functions. Simple neurons can act as logic gates. Some appropriate choice of 

activation function, thresholds and weights can make it realize that we can create 

different basic Boolean functions using the very simple computational element that 

we have shown. 

 

Here, we have shown three Boolean functions, the and, or, and the not. A little 

introspection and looking at how you add up these W's and see the threshold whether 

it crosses that or not. And you will have an output here or not, will make you realize 

that given these different threshold values and the different weights as shown, we can 

have these three basic Boolean functions. Now these are units with a step function for 

the activation. 

(Refer Slide Time: 20:41) 



 

Let us now quickly look at what are the different network structures that can be 

possible with these simple computational units. There are a variety of kinds of 

network structures each of which results in very different computational properties. In 

principle, networks can be arbitrarily connected. Now occasionally, networks are 

connected in a way to represent specific structures. 

 

Like we may be interested in recreating certain semantic networks or certain logical 

sentences. But however, this makes learning rather difficult. Most times the network 

structures are layered structures. So the networks are arranged into layers and 

interconnections are mostly between two layers. Some networks may have feedback 

connections as well. 

(Refer Slide Time: 21:50) 

 



So we have what are called the feed-forward networks. In a feed-forward network, the 

links are unidirectional and there are no cycles. So in a way the feed-forward network 

is a directed acyclic graph. The layered feed forward network is one in which each 

unit is linked to only to units in the next layer. And there are no links between units in 

the same layer. 

 

Neither do we have links backward to a previous layer and no links that skip a layer. 

Recurrent networks on the other hand, are those in which the links can form arbitrary 

topologies. 

(Refer Slide Time: 22:40) 

 

So here, we show one of the most simplest of the feed-forward network which is a 

single layer feed-forward network. This is one of the first types of neural networks to 

be developed in the late 1950s. This single layered feed-forward network is called a 

perceptron network and a single perceptron is one where we have a number of input 

units all coming up to one output. 

 

So output is calculated as a step function applied to the weighted sum of the inputs. 

The single layer feed-forward network referred to as the perceptron network is 

capable of learning simple functions and only linearly separable functions. Now recall 

our discussion on linear separability. 
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Linear separability is one where you could separate items using a decision boundary 

like this. So the fact that a perceptron can only represent linearly separable function 

actually follows from the function computed by a perceptron. The perceptron is a step 

function, the perceptron outputs a 1 only if I have the weight and the input greater 

than zero. 

 

This means that the entire input space is divided into two along a boundary, which is 

defined as weight into input equal to zero. So perceptrons can deal with linearly 

separable functions. Some functions which are not linearly separable, such as the 

XOR function is something on which you cannot use a perceptron. Here, we have the 

and function. So 0 and 1 is 0, 0 and 0 is 0, 1 and 0 is 0, and 1 and 1 is 1. 

 

So these two sides are linearly separable. Whereas if you do an XOR, you will see 

that here you have a zero, you have a 1 here, and you have a 1 here. So it is not 

possible for a linear decision boundary to separate them out. 
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Linear separability actually can be extended to more than two dimensions. But then it 

is more difficult to visualize. Nevertheless, we could have separating planes and we 

could create weights and thresholds in such a way that we have linear separability 

beyond what I have shown in the two dimensional space. 
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Perceptrons can learn from examples through a very simple learning rule. It calculates 

the error of an unit as the difference between the correct output and the calculated 

output that is the error of a particular unit. And then all it needs is to adjust the width 

such that the error decreases and this is nothing but a gradient descent search through 

the weight space. 

 



So there was great enthusiasm in late 50s and early 60s with the very introduction of 

the perceptron. However, Minsky and Papert in 1969 analyzed the class of 

representable functions and found the linear separability problem. And then people 

looked beyond perceptrons. 
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Rosenblatt and others, actually described the multilayered feed-forward networks in 

the late 1950s, but concentrated their research on single layered perceptron. This was 

mainly because of the difficulty of finding a sensible way to update the weights 

between the inputs and the hidden units. Research in more complex networks with 

more than one layer was very limited until the 1980s. 

 

Because learning in such network is much more complicated. And the problem is to 

assign here the blame for an error to the respective units and their weights in a 

constructive way. The back propagation learning algorithm was one that facilitated 

learning in multilayer networks. 
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So here I have a two-layer network, which is of the input units here, the input units 

here and there are the hidden units and finally the output unit. Now the input unit is 

not counted as a separate layer. And therefore, this is referred to as a two-layered 

network. Usually, all nodes of one layer have weighted connections to all nodes of the 

next layer as shown here. 
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The back propagation algorithm, which allows learning in such networks proceeds the 

same way as for perceptrons. If there is an error, that is a difference between the 

output and the target, then the weights are adjusted to reduce this error. Now the trick 

here is to somehow assess the blame for an error and divided among the contributing 

weights. So you assign blame to individual units in the respective layer. 

 



This is essentially based on the connection strength. So you proceed from the output 

layer to the hidden layer and update the weights of the units leading to the layer. You 

essentially perform here what is called the gradient-descent search on the error 

surface. And this is relatively simple, since it relies only on local information from 

directly connected units. However, such learning has convergence and efficiency 

problems. 
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Now multi-layer networks beyond 1980s have come in a big way after the slump in 

research in neural networks between late 60s and early 80s. Let us try to understand 

how does these multi-layer network match up with other forms of representation and 

reasoning that we have covered in this course or that is available for looking at 

problems with an artificial intelligence. 

 

So multi-layer networks in terms of its expressiveness are actually weaker than 

predicate logic. They are good for continuous inputs and outputs. In practice, they 

have actually surpassed a lot of other representation formalism or for that matter 

learning methods. However, if you look at the computational efficiency, the training 

time can be exponential in the number of inputs. 

 

So depends critically on parameters like the learning rate and local minimas are 

known to be problematic. Now these can be overcome by certain methods like 

simulated annealing at additional cost. Recall our discussion on simulated annealing 

when we had introduced problem solving by search. In practice time to convergence 



is highly variable and a vast area of techniques have been developed to try to speed up 

the process using an assortment of tunable parameters. 

 

In terms of generalization, it is seen that multilayered networks works reasonably well 

for some functions or classes of problems. However, there are no formal 

characterization of these functions. 
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One very interesting thing that makes artificial neural nets popular is that they are 

very tolerant to noise. In terms of sensitivity to noise, they are perhaps one of the best 

and they perform nonlinear regression. In terms of transparency, that is knowing what 

is happening and how it is happening, possibly neural networks are essentially black 

boxes. There is no explanation or trace for a particular answer. 

 

Tools for analysis of neural networks are very limited. Of course, we should point out 

here that some limited methods are there to extract rules from networks or to get to 

the decision tree for a given network. But then generally neural networks are known 

to be non transparent. In terms of integrating prior knowledge into the systems, it is 

very difficult to integrate prior knowledge into artificial neural networks since the 

internal representation of the network is not easily accessible. 

 

In fact, if you look at the multilayered neural network, the network works by taking a 

group of inputs, weighing them, passing on to the next layer, use some weights to 

adjust themselves and then finally arriving at an output. So there is hardly any way 



that we can think of integrating prior knowledge in such internal structures of the 

network. 
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In terms of applications, domains and task where neural networks are successfully 

used are across many areas of our daily life. Handwriting recognition, lot of work has 

been done in terms of recognition of handwritten characters using artificial neural 

networks. A number of control problems such as the juggling problem, the track 

backup problem have been solved using artificial neural nets. 

 

Perhaps one of the largest use of artificial neural networks have been in the area of 

weather and financial forecasting. One area that ANN has widely been used is in 

categorization or sorting of items. Now what we have covered here today is a very 

basic introduction to artificial neural networks. 

 

Rather I would say we have tried to show you the simile of how the neural structure 

of the brain the very simplest computational element the neuron could have an 

artificial counterpart and then we could arrive at the perceptron and we have just 

made a mention of how multiple layered networks then can be created. And we could 

have learning using the back propagation algorithm. 

 

Neural networks actually provide more human like AI. Takes rough approximation 

and hard coded reactions out of AI design. However, they require a lot of fine tuning 

during development. One needs to be very clear at this point that artificial neural 



networks the very approach of computation using an ANN and the approach of AI 

that I have taken in most of the lectures until today, are distinctly different. 

 

One could be referred to as symbolic AI. And the other is more to do with what is 

called connectionist AI. Thank you very much. 

  

 


