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Reinforcement Learning 

 

Welcome to fundamentals of artificial intelligence. We are in the last week of our 

course. Today, we look at reinforcement learning. Having looked at supervised 

learning, which covers learning under labeled data and unsupervised learning, which 

is about finding structures underlying the data without any supervision, we look at the 

third category of machine learning which is learning based on rewards that the agent 

derives from the environment based on his actions. 

 

This lecture today on reinforcement learning is to be seen as a continuation of our 

lectures on decision making particularly the sequential decision problem and the 

lecture on making complex decisions. First, we would introduce the very idea of 

reinforcement and then we would only look at one particular idea of approximating 

the value function using what is called Q-learning. 

(Refer Slide Time: 02:33) 

 

Now, if you recall from our very first discussion on machine learning, we had seen 

that reinforcement learning involves learning action to maximize payoff and 

reinforcement learning is where the data are in the form of sequence of actions, 



observations and rewards and the learner learns how to take actions to interact in a 

specific environment so as to maximize the specified rewards. 

 

In reinforcement learning the information available for training is actually 

intermediate. It is in between supervised and unsupervised learning. So instead of 

training examples that indicate the correct output for a given input, the training data 

are assumed to provide an indication as to whether an action is correct or not. And in 

reinforcement learning, we have an agent which picks up an action and derives a 

reward from the environment. 

 

And based on the payoff, his concept of which actions to prefer is formulated or 

reinforced. 

(Refer Slide Time: 04:10) 

 

Now reinforcement learning is more general than supervised or unsupervised 

learning. You learn from interaction with the environment to achieve a goal. In the 

standard reinforcement learning model, an agent needs to interact with the 

environment as we have seen in the previous slide. Thereafter this interaction takes 

the form of the agent sensing the environment and based on the sensory input 

choosing an action to perform in the environment. 

 

This action that he performs in the environment changes the environment in some 

manner and this change is communicated to the agent again through a scalar 

reinforcement signal which is called the reward. Thereafter, we enter the next step 



which is a t + 1. Learning is based on the reward hypothesis. That is all goals can be 

described by maximization of expected cumulative rewards. 

 

Now we have introduced this idea of what is a Markov decision process or what is a 

partially observable Markov decision problem while we were discussing sequential 

decision making and therefore, here we will only quickly introduce the components of 

a RL agent. A reinforcement agent may include one or more of these components. It 

contains something called a policy which is the agent’s behavior function. 

(Refer Slide Time: 06:26) 

 

And then we have a value function which is about how good is each state and/or 

action and then we have a model which is the agent’s representation of the 

environment. A policy is the agent’s behavior. It is a map from state to action. So you 

could have certain things which are deterministic leading to a deterministic policy. Or 

you could have a stochastic policy. 

 

This we have covered in our lecture on sequential decision problems and while we 

were discussing making complex decisions. The value function if you recall, is a 

prediction of future reward. So it is used to evaluate the goodness or badness of states 

and therefore, to select between actions. And a model is one which predicts what the 

environment will do next. So there would be predictions of the next state or there 

could be predictions of the next reward. 

(Refer Slide Time: 07:43) 



 

We will more closely look at rather the elements of our reinforcement learning 

problem. So by this time you may have come to the realization that reinforcement 

learning involves an agent, environment, an action and some feedback from the 

environment. So the elements of a reinforcement learning problem include the 

environment. Every reinforcement learning system actually learns a mapping from 

situation to actions by trial and error interaction with a dynamic environment. 

 

This environment must be at least partially observable. The observations may come in 

the form of sensor reading, symbolic descriptions, or possibly mental situations. If the 

reinforcement learning system can observe perfectly all the information in the 

environment that might influence the choice of action to perform, then the learning 

system can choose actions based on the true states of the environment. 

 

This ideal case is actually the best possible basis for reinforcement learning and in 

fact is a necessary condition for most of the associated theory. 

(Refer Slide Time: 09:20) 



 

The second element of a reinforcement learning problem is the reinforcement 

function. Now the reinforcement system learn a mapping from situations to action by 

trial and error interaction with a dynamic environment. And the goal of the 

reinforcement learning system is defined using the concept of a reinforcement 

function. A reinforcement function is the exact function of future reinforcements, that 

the agent seeks to maximize. 

 

There exist a mapping from state action pairs to reinforcements. After performing an 

action in a given state, the reinforcement agent will receive some reinforcement or 

what we call rewards in the form of a scalar value. The reinforcement learning agent 

learns to perform actions that will maximize the sum of the reinforcements received 

when starting from some initial state and proceeding to a terminal state. 
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The third element of a reinforcement learning problem is the value function. Now 

having the environment defined either as a Markov decision problem or a partially 

observable Markov decision problem and the reinforcement function defined as well. 

The question now is how the agent learns to choose good actions? A policy 

determines which action should be performed in a state. 

 

A policy if you recall is a mapping from states to actions. And the value of a state is 

defined as the sum of reinforcements received when starting in that state and 

following some fixed policy to a terminal state. The optimal policy would be the 

mapping from states to action that maximizes the sum of the reinforcements and the 

value of a state is dependent upon the policy. 

 

Now the value function is a mapping from the state to state values and can be 

approximated using any type of function approximator. So people have used 

multilayered perceptron, memory based systems, radial basis functions or look-up 

tables for the value function approximation. 

(Refer Slide Time: 12:19) 



 

Let us take a moment and look at more closely the reinforcement function. For it is 

the reinforcement function that tells us how the agent proceeds further in an 

environment that he does not know anything about. There are at least three 

noteworthy classes often used to construct reinforcement function that properly define 

the desired goals. The first of them is the pure delayed reward and avoidance problem. 

 

In pure delayed reward class of functions, the reinforcements are all zero except at the 

terminal state. That is, you get the reward only at the terminal state. So the sign of the 

scalar reinforcement at the terminal state indicates whether the terminal state is a goal 

state that is you get a positive reward or a state that should be avoided and you get a 

penalty. 

(Refer Slide Time: 13:30) 

 



Now here is an example of a pure delayed reward in reinforcement function. A 

standard cart-pole or inverted pendulum problem is often one where we would use a 

pure delayed reward and avoidance. Here a cart supporting a hinge inverted pendulum 

is placed on a finite track. And the goal of the reinforcement learning agent is to learn 

to balance the pendulum in an upright position without hitting the end of the track. 

 

So the state is the dynamic state of the cart-pole system. Two actions are available to 

the agent in each state. Either it can move the cart left or move the cart right. Now the 

reinforcement function is zero everywhere except for the states in which the ball falls 

or the card hits the ends of the track in which case we need to penalize the agent and 

therefore, the agent receives a -1 reinforcement. 

 

So the standard pole or inverted pendulum problem is an example where you could 

use pure delayed reward reinforcement function. 

(Refer Slide Time: 15:02) 

 

The second type of reinforcement function is the minimum time to goal function. 

Reinforcement functions in this class actually cause an agent to perform actions that 

generate the shortest path or trajectory to a goal state. 

(Refer Slide Time: 15:22) 



 

An example is one commonly known as the car on the hill problem. Now here the 

problem is defined as that of a stationary car being positioned between two steep 

inclines. And the goal of the reinforcement learning agent is to successfully drive up 

the incline on the right to reach a goal state at the top of the hill. The state of the 

environment is the car’s position as well as the velocity. 

 

Now three actions are available to the agent. He could give a forward thrust, a 

backward thrust or no thrust at all. And somehow the agent need to learn to use 

momentum to gain velocity to successfully climb the hill. Now the reinforcement 

function that returns a reward here is -1 for all state transitions, except the transition to 

the goal state in which case actually a zero reinforcement is returned. So this is the 

minimum time to goal reinforcement function. 

(Refer Slide Time: 16:48) 



 

The third reinforcement function is what we encounter in games. And here an 

alternative reinforcement function is used when we have two or more players with 

opposing goals. Now the reinforcement learning system can learn to generate optimal 

behavior for the players finding the minimax. Recall when we were discussing game 

trees, we saw the minimax to be the value that you could get to the top of the game 

tree based on a strategy. 

 

So here the reinforcement learning agent can learn to generate optimal behavior for 

the players finding the minimax or what we call the saddlepoint of the reinforcement 

function. Now the agent would evaluate state for each player and would choose an 

action which is independent of the other players action. Actions are chosen 

independently and they are executed simultaneously under such a reinforcement 

function. 

 

The reinforcement learning agent learns to choose actions for each player that would 

generate the best outcome for the given player in a worst case scenario. 
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Now having discussed the reinforcement function, let us quickly look at how is 

reinforcement learning related to what I have been emphasizing that this is some form 

of continuation of what we covered in sequential decision making or making complex 

decisions. So in our discussion of Markov decision problems, we assumed that we 

knew the agents reward function R and the model of how the world works expressed 

as the transition probability distribution. 

 

On the other hand, in reinforcement learning, we would like an agent to behave well 

in a Markov decision problem. But, here without knowing anything, so we would not 

know anything about the reward function or the transition probability distribution 

when it starts out and this is what makes it interesting. 

 

So we have a Markov decision problem, but we neither know anything about the 

reward function nor we know anything about the transition probabilities when we start 

out in reinforcement learning. So what can best be done is what is referred to as 

parameter estimation. One of the options could be to estimate the next states 

distribution and this could be done by counting the number of times the agent has 

taken an action in a particular state and looking at the proportion of time that s dash 

has been the next step. 

 

So similarly, we could estimate the reward at s by averaging all the rewards you have 

received when you were in state s. 

(Refer Slide Time: 20:22) 



 

So approximating the value function is what is the most difficult of the problems in 

reinforcement learning and this is difficult because the learning system may perform 

an action and it would not be told whether that action was good or bad. Initially, the 

approximation of the optimal value function is poor. In other words, the mapping 

from states to state values would not be valid at all. 

 

The primary objective of learning is to find the correct mapping and once this is 

completed, the optimal policy can easily be executed. So here we would today look at 

Q-learning which is an algorithm of finding a mapping from state action pairs to 

values and this is one of the most successful approaches to reinforcement learning. 

 

Here one thing to take note of before I proceed to discuss Q-learning is the very fact 

that the very idea of introducing this final three lectures in machine learning on 

reinforcement learning thereafter, learning in neural networks and finally, some 

introduction to deep learning is with the view to give an exposure to these topics 

rather than mathematical regard. 

 

For the interested ones we would suggest that they would look up the books that I 

have referred to in my first lecture on machine learning. So here we will give you the 

very fundamental idea of Q-learning and see how reinforcement learning happens. 

(Refer Slide Time: 22:38) 



 

Q-learning is about getting to the mapping, but then what is so problematic about 

value iteration? Let us try to understand that before we move to Q-learning. So 

deterministic Markov decision process, the state transitions are deterministic. So if I 

have an action performed in state x t and it always transitions to the same successor 

state x t1. 

 

Now, in a non deterministic Markov decision process, a probability distribution 

function defines a set of potential successor states for a given action in a given state. 

If the Markov decision process is non-deterministic, then value iteration requires that 

we find the action that returns the maximum expected value. Now this could involve 

the sum of the reinforcement and the integral over all possible successor states for the 

given action. 

(Refer Slide Time: 23:46) 



 

Theoretically, such a value iteration is possible in the context of non-deterministic 

Markov decision problems. However, it is computationally impossible to calculate the 

necessary integrals without aided knowledge or some degree of modifications. Q-

learning solves the problem of having to take the maximum over a set of integrals. 

Rather than finding a mapping from state to state values as done in value iteration, Q-

learning finds a mapping from state action pairs to Q-values. 

 

So these values that I get from state action pairs, these are called the Q-values. So Q-

value is in fact the sum of the reinforcements received when performing the 

associated action and then following the given policy thereafter. 

(Refer Slide Time: 24:52) 

 



The Q function is actually the expected discounted future reward for starting in state s 

taking action a and continuing optimally thereafter. That is, we have some way of 

choosing actions. So we are now going to focus on finding a way to estimate the value 

function directly and that is done by the Q function. So the Q value of being in state s 

and taking action a is the immediate reward R s plus the discounted expected value of 

the future. 

 

So we get the expected value of the future by taking an expectation over all possible 

next states. In each state, we need to know the value of behaving optimally. We can 

get that by choosing in each state the action that maximizes this value of Q. 

(Refer Slide Time: 26:06) 

 

So what actually we have done here is replaced the very essence of getting to the 

value function by getting to a value which is referred to as the Q value. So if you 

know Q star, the optimal Q, then it is easy to compute the optimal action in a state. 

Take the action that gives the largest Q value in that state and recall when using 

optimal value and the value function, it required the knowledge of the transition 

probabilities to compute the optimal action. 

 

So computing optimal action in Q learning is considerably simpler. And it will be 

effective when the model is not explicitly known. 

(Refer Slide Time: 26:59) 



 

So Q learning which estimates the optimal Q function directly without estimating the 

transition probabilities, let us find the best way to behave in a given environment. And 

the learning algorithm deals with individual pieces of experience with the world. So 

one piece of experience is a set of the current state s, the chosen action a, the reward r 

and the next state s prime. So each piece of experience will be folded into the Q 

values and then they would not be used again. 
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So here is the Q learning algorithm. I have a piece of experience in the world which is 

state s, action a, reward r, and the next state s prime. And I initialize arbitrarily, so as 

in value iteration, we initialize the Q function arbitrarily. So zero is usually a 

reasonable starting point. And thereafter, each experience you update Q. So here, 

when you update Q, the basic form of the update looks like this. 



 

The parameter alpha that we have here is called the learning rate. And it is usually 

something like 0.1. So we update our estimate of Q to be most like our old value of Q, 

but adding in a new term that depends on r and the new state, which is a s prime. Now 

this small q(r, s) is an example of the value of taking action a in state s. The actual 

reward r is a sample of the expected reward function. 

 

And the actual next state s prime is a sample from the next state distribution and the 

value that state s is the value of the best action we can take in it which is the 

maximum over a prime of all Q’s, which are in s prime and a prime. Now such a 

learning algorithm is guaranteed to converge to optimal Q, if the world is really a 

Markov decision process. 
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The Q learning algorithm requires that the states and action be drawn from a very 

small set that we can store the Q function in a table. Large or even continuous state 

spaces make the direct representation approach impossible. We can try to use a 

function approximator such as a neural network to store the Q function rather than a 

table. Q-learning can sometimes be very slow to converge. And therefore, there are 

more advanced techniques in reinforcement learning aimed at addressing this 

problem. However, as just a basic introduction to reinforcement learning, we do not 

delve into those. 
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So to conclude our lecture today, we have looked at reinforcement learning, which is 

appealing because of its generality. Any problem domain that can be cast as a Markov 

decision process can potentially benefit from this technique. Reinforcement learning 

is a promising technology, but possible refinements that will have to be made before it 

has truly widespread application. 

 

Two points to take note of before we sign off is that reinforcement learning is an 

extension of classical dynamic programming, in that it greatly enlarges the set of 

problems that can practically be solved. Combining dynamic programming with 

neural networks, many are optimistic of solving a large class of problems. Thank you 

very much. 

  

 


