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Lecture – 30 

Support Vector Machines 
 

Welcome to fundamentals of artificial intelligence, we continue our discussion on machine 

learning. Today, we look at support vector machines within machine learning, support vector 

machine is a supervised machine learning algorithm that is used in classification and 

regression analysis. Support vector machines allow creation of hyper planes within a group of 

inputs. 

 

Given a set of training examples which are labelled in one of 2 categories, a support vector 

machine learning algorithm is able to build a model, so as when new examples come, it could 

be categorized into 1 of the 2 categories. A support vector machine is a non-probabilistic 

binary, linear classifier. Support vector machines can also efficiently perform nonlinear 

classification by what is called the kernel trick that is by a mapping of the inputs to a higher 

dimensional space where it is linearly separable. 

(Refer Slide Time: 02:38) 

 

We look at the basic formulation of a linear support vector machine in this lecture. So binary 

classification can be viewed as the task of separating classes in feature space like what is 

shown on your screen here are 2 group of inputs, the blue dots and the red dots and we are 



looking for some form of separation or a decision boundary that can be drawn between them. 

So we could have a number of decision boundaries as shown here. 

 

So, we could have one those are very close to the blues, one those are very close to the reds 

or ones that lies somewhere in between. Question is which of the linear separators is optimal 

and this is what the support vector machine algorithm tries to figure out. 

(Refer Slide Time: 03:42) 

 

So, if we think of the red to be the positive examples and the blue to be the negative 

examples, question is how do we divide the positive and the negative examples and the idea 

in support vector machine is to have a separation using a hyper plane, where the width would 

be as maximum as possible. So, we are thinking of a line in between these examples with a 

view towards putting in the widest street separating the positives from the negative examples. 

 

So, if we are thinking of putting in a line here which separates the positives and the negatives, 

we want that we should be able to put in as large or as wide a street as possible here. Now, 

we are thinking of having 2 parallel hyper planes that separate the 2 classes and the idea is 

that the distance between them is as large as possible and here the examples that are closest to 

the hyper planes like this one here and this one here are referred to as the support vectors and 

this is where it gets its name from. 

 

The margin of the separator is the distance between the support vectors and our idea of 

getting a classification margin here is to get as wide a margin as possible. 

(Refer Slide Time: 05:53) 



 

So, while doing that we want to figure out what would be the widest street that we can 

manage in between these positives and negative examples and therefore, first we assume a 

vector which is constrained to be perpendicular to the median of the widest street possible. 

So, here is W which is the vector constrained to be perpendicular to the median and any 

unknown point, we will refer to by a vector u. 

 

So, u is a vector that points to an unknown, whether the unknown is on the positive side or on 

the negative side, how does one make that conclusion now, in order to look at that what is to 

be done is; we project the unknown vector u onto w which is the vector constraint to be 

perpendicular to the median. So, we take u and let it fall on w, so we project u on w and then 

what actually that means is now we have some form of a measure of the distance of that 

unknown sample in the direction of w, which is perpendicular to the median of the street. 

 

So, in a sense the larger we have that value farther out we go and the closer we will get to the 

positive samples, so even if we do not have a clear idea of whether u refers to a positive or a 

negative sample, taking the projection of u on w and having some idea on what is that 

distance in the direction of w, we will be at least having some notion of whether it is closer to 

the positives or it is closer to the negatives. And if we assume a particular constant c and 

somehow the dot product w dot u is greater than or equal to c, then we can think of it to be 

nearly reaching the positives. 

(Refer Slide Time: 08:54) 



 

So, without loss of generality what we can write is; we can write an equation saying instead 

of c now, we replace with a b and we say if I have w dot u + b > = 0, then I am going to 

classify the unknown u as plus and this could be our decision rule. So, let me repeat what our 

decision rule is and how do we go about getting to that. First, we think of a vector w that is a 

perpendicular to the median of the street that we want to fit in between the positives and the 

negatives. 

 

And u is a vector that is only pointing to an unknown now, we project u on w and we say w 

dot u plus some constant b, if it is greater than or equal to 0, then we are on this side which 

means that the unknown u is a positive sample however, this decision rule that we have stated 

we do not have enough constraints here to fix a particular b or even a particular w for we 

could have many w's perpendicular to the median line, for we have not committed to what 

could be the length. 

 

So, we could have lot of w’s that are perpendicular to the median line because it could be of 

any length further, we have no idea of what constant b to use and therefore, we need to look 

for more constraints, so as to really make our decision rule work. 

(Refer Slide Time: 11:08) 



 

What is done is we say that for a positive sample, the decision function gives us value of 1 or 

greater that is something we are going to insist and we say that for negative samples, the 

decision function gives us value of equal to or less than - 1, so all plus sample vectors now 

we have and then if all plus sample vectors refers to as x plus, then w dot x plus which is the 

positive sample vector, plus b is > = 1. So, all positive samples we insist that the decision 

function gives a value which is 1 or greater and for all negative samples we write as w dot x 

of - + b is < = -1, so this is the constraint that we had. So, the constraint and forces that any 

vector that comes to the positive side here, if it comes here then I am going to have + 1 or if it 

stays in the negative samples, then I am going to have less than or equal to – 1. 

(Refer Slide Time: 12:57) 

 

So, these are the functions on the two sides of the hyper plane that I want to fit in or the 

widest street that I want in between the pluses and the minuses, so now we introduce a 



variable yi, this variable is so defined that yi is assumed to be + 1, for all the plus samples 

and - 1 for all minus samples. So, for anything this side of these streets, I consider yi to be + 

1 and on this side of the street yi is considered to be – 1. 

 

Now, once we have this yi, the variable and we multiply each equation by the variable yi, we 

have a very interesting thing happening here; let us look at what that is? If you multiply this 

side by + 1 because here we are talking of the plus samples and for the plus samples, we 

know yi is + 1, so we try to multiply this with + 1 and once we multiply this with + 1, you 

will realize that this very fact that I multiply this by + 1, I have x w dot xi + b > = 1. And if I 

multiply this by – 1, I actually have the same equation, for this portion that I multiply the 

variable with this becomes minus and this becomes plus, so I will end up having the same 

equation which is yi w dot xi + b > = 1 and if I take 1 this side, this is the equation that I will 

end up with. So, multiplying by the variable yi which we have introduced +1 for pluses and – 

1 for minuses, end up reducing the 2 equations that I have to 1. 

 

And now as a special case, if I am talking of points only on the boundary, I would rather 

equate this to 0, so for all points on the boundary what I have is yi multiplied by w dot xi + b 

– 1 = 0, so these are points on the boundary. 

(Refer Slide Time: 16:13) 

 

Now, given the constraint that I have now got by first projecting the unknown along w, 

introducing the fact that anything on the positives must be greater than 1, anything on the 

negatives would be less than - 1 and then introducing a variable yi which is + 1for pluses and 

- 1 for minuses, I finally arrived at this constraint equation. Now, given this constraint what is 



the width that I can get on the classification margin? Now, in order to get this we again fall 

back to looking at the support vectors or the samples that lie on the boundary, so first we take 

a vector x1 which refers to a point which is a positive sample on the boundary and then we 

look at x2, a vector that goes to a negative sample lying on the boundary and then we can do 

the difference of these 2 vectors. So, we have w dot xi + b which is + 1 that is the equation 

because of the vector x1. 

 

And w2 dot x2 + b = -1 because of the vector x2 and now when we look at their difference 

and then we project that along the unit normal to the median line that is you remember, I had 

w which was the normal to the median line and if I divided by the magnitude of w, I would 

have the unit normal to the median and now, if I take the difference and the dot product of the 

unit normal, so I have the difference x1 - x2. 

 

And I take the dot product with the unit normal, what I have actually is what is this length in 

this direction, so, basically I have the width of the margin. So, this values here that I end up 

with which is the difference of these 2 vectors x1 and x2 of the two samples lying at the two 

boundaries, when I take its projection with the unit normal to the median, I end up having the 

width of the margin. 

 

Now, if you look at it more closely, this difference here actually, w dot x1 – x2, if you go 

back and look at it here for the difference between the 2 vectors x1 – x2, then what I will 

have is actually, these b’s, b’s going out and I will have 2 here, when I do x1 – x2, so this is 

interesting that the width of the margin is 2 divided by the magnitude of the normal that I had 

first taken to be normal to the median line. 

 

So, once I have this and now, if I want this width to be maximum so, all I need to look for is 

what would be the value of w, so that this becomes maximum for me. 

(Refer Slide Time: 20:59) 



 

So, to maximize the width of the separation, one would need to minimize w, while still 

honouring the constraints with regards to the values on the edges of the separation and one 

possible approach to finding the minimum now is to use the method devised by Lagrange. So 

that Lagrange multipliers would give us a new expression which we can maximize or 

minimize without thinking about the constraints anymore. 

 

So, maximizing the width is ensured if one minimizes w while honouring constraints on edge 

values, so all we look for minimizing is a term 1/2 w square, so the translation of the previous 

formula into this one with 1/2 and squaring is just a mathematical convenience, one needs to 

realize that from the previous discussion, we can maximize the width of the separation by 

minimizing w. 

 

And because it comes with certain constraints, we follow the method devised by Lagrange 

and take help of Lagrange multipliers to get to a new expression, which we can maximize or 

minimize without thinking about the constraints anymore. 

(Refer Slide Time: 22:43) 



 

So, now for the maximum margin for the hyper plane that we are thinking of putting in 

between the positives and the negatives, we have to minimize 1/2 w square subject to the 

constraint that yi w dot xi + b - 1 is > = 0. Now, the Lagrangian is written using Lagrangian 

multipliers and we arrive at new expression without constraints, so each of those constraint is 

going to have a multiplier alpha i. 

 

Basically, we write the Lagrangian L as 1/2 of w square minus, now each of these sample 

points i which have to satisfy the constraint is multiplied by a Lagrangian multiplier which is 

alpha i and then we have this whole equation, which is the Lagrangian. Now, in order to 

realize the extremum’s, we need to find where the Lagrangian has zero derivatives and 

therefore, we look at partial derivative of L with w equal to 0. 

(Refer Slide Time: 24:30) 

 



And partial derivative of L with b equal to 0. So if you derive the Lagrangian with w, so 

partial derivative of L with w, we have w here because of the first term and here w is only 

here, the rest of them are constant, so all will be left, it is summation alpha i yi xi, so this is 

that term and this term will vanish. So, will this final term here and now interestingly, what 

we have is what w is, so we are now in a position to get to w being the linear sum of the 

samples. 

 

For, if you remember alpha i is a Lagrangian multiplier, yi is a variable that we have 

introduced based on whether we are doing plus or minus and xi is the sample, so this decision 

vector w is a linear sum of the samples and when I do partial derivation of L with b, this goes 

away all that I have is here, b there and therefore, I have summation of ai yi = 0. Now, once I 

have this yi can go and plug in this w here as also here. 

 

And this I have not covered in this lecture but once you plug in there and take care of not to 

mess up the subscripts, we will finally arrive at the expression for L as shown on your 

screens, so plugging in w into this L, will finally end up giving us this equation for L here 

that is what we will arrive at. So, finally we have to find a maximum of this expression in 

order to get the maximum width for the boundaries. 

 

Now, this optimization is interesting to note for the very fact that the optimization only 

depends on the dot product of a pair of samples and this is a very, very interesting realization. 

(Refer Slide Time: 27:29) 

 



Now, let us see what the decision rule is; recall that the decision rule was to classify unknown 

use as plus, if we had f of u = w dot u + b > = 0, we are going to plug in the value of w that 

we have got into this equation. So with w equal to the summation of the samples now, the 

decision rule is here so, we see that the decision rule to classify any unknown u as plus again 

depends only on the dot product. 

 

So, the decision rule also depends on the dot product of the sample vector and the unknown. 

Now, as I was referring to in the beginning of this lecture that support vector machines are 

actually binary linear classifiers. 

(Refer Slide Time: 28:58) 

 

But then it can also deal with nonlinear classification like here is a data set, which is not 

linearly separable that is it is impossible to draw a line in the 2D plot which could separate 

the blue from the red sample. Now, the question is under such scenario is it possible for us to 

apply a support vector machine algorithm and this is where the kernel trick plays a very 

important role. 

 

The general idea here is that even if the original feature space is not linearly separable, you 

can always map that feature space to some higher dimensional feature space, where the 

training set then is separable, so given this feature set which is not linearly separable, I can 

think of having a function phi of xi, which will try to map every point in this data set to a 

high dimensional space. 

(Refer Slide Time: 30:40) 



 

And then it would be possible to have linear separation as shown in this diagram. Now, one 

thing that we need to take note of at this point is that when we were talking of the linear 

support vector machine, the optimization as also the decision rule required only the inner 

product, if you remember all it required was the inner product of the samples for the 

optimization. And it required the inner product of a sample and the unknown in the decision 

rule that is if we are even somehow mapping them using phi, then all I will need is phi xi dot 

phi xj for optimization and I will need phi xi dot phi u for the decision rule. So there is a 

requirement of only the inner product, so all that is required is a way to compute the inner 

product or the dot product in the high dimensional space as a function of vectors in original 

space. 

 

This is very interesting for we have something called a kernel function that is a function that 

is equivalent to an inner product in some feature space, so basically we could be given a K xi 

xj, which would be equal to phi of xi dot phi of xj, in that case we just need to know K and 

we need not bother about the mapping function itself. So, we do not need to know what phi is 

given K to us and this is what the kernel trick is. 

 

You are given the kernel and once you are given the kernel, it means that you are given the 

inner product in that feature space, once you have the inner product in the feature space we 

know we do not need the explicit function that has map from one feature space to this feature 

space that we are currently dealing with. 

(Refer Slide Time: 32:52) 



 

So, the kernel trick avoids the explicit mapping to get the linear learning algorithms to learn a 

nonlinear function or decision boundary and this is very, very important. For now, you can 

think of taking something in a nonlinear space, a space which is not linearly separable and 

you can get to a feature space where you could apply SVM but then you would not need the 

explicit mapping, all you would need is the kernel function. Now, we have a number of 

kernels I would just mention 3 here for the sake of introduction to the idea of having kernel 

functions and how they look or what is their behaviour. So we have something called a linear 

kernel; the linear kernel is the same as what we have discussed, it is just the inner product of 

xi and xj. Now, linear kernel is used when the data is linearly separable that is the data is 

something like the example that we saw in the lecture today. 

 

We can separate the plus and the minus using a single line now, the linear kernel is one of the 

most common kernels to be used, linear kernels are also something that can be used when 

there are a large number of features in a particular data set. The second kernel is called 

polynomial kernel; so the polynomial kernel is what is shown here, it is 1 plus the inner 

product of the ith and jth sample whole to the power m. 

 

Now, this polynomial kernel actually represents similarity of vectors in a feature space over 

polynomials of the original variables that is the kernel actually does not look only at the given 

features of input samples but also it looks at combinations of this, one of the most popular 

support vector machine kernels is the Gaussian kernel referred to as the radial basis function. 

 



So, the Gaussian kernel is an exponentially decaying function in the input feature space and 

the maximum value of this is attained at the support vector and they decay uniformly in all 

directions around the support vector leading to some hyper spherical contours of the kernel 

function and the Gaussian function or the radial basis function is one of the most popular 

kernel functions used in support vector machines. 

(Refer Slide Time: 36:25) 

 

Now, let us quickly recall what is the main idea of the support vector machine that we have 

covered in today's lecture, we had actually looked at 3 very fundamental ideas today, the first 

of the idea is about the maximum margin classifier, so we have formalize the notion of the 

best linear separator. Now, the best linear separator is the one that represents the largest 

separation or the margin between the 2 classes. 

 

That is when we were looking at the plus and the minus samples, our interest was to get to the 

distance between the 2 classes and make that distance as large as possible. So we were 

looking at the distance to the nearest data points on each side to be maximized. In a problem 

if such a hyper plane exists, then it is known as the maximum margin hyper plane and the 

linear classifier it defines is the maximum margin classifier. 

 

So, in a way the support vector machine that we were trying to arrive at today is a maximum 

margin classifier. The second idea, that is very vital and have changed the way we look at 

optimization is the concept of the Lagrangian multipliers, where we had a way to convert a 

constrained optimization problem to one that is easier to solve bring in a new expression 

using the multipliers without having any constraints any longer. 



 

So, the constraints are factored into the new expression. The third of the ideas that we have 

explored today is the idea of kernels. Now, one needs to take note that the very idea of 

kernels have changed the way support vector machines have been put to use. As I have 

explained earlier support vector machines are non-probabilistic binary linear classifiers 

therefore, when I have problems that are with data which are not linearly separable 

application of a support vector machine is made possible only because of the kernel trick, 

which is about projecting data into higher dimensional space and makes it linearly separable. 

We have looked at the linear kernel, we have mentioned what is the polynomial kernel and 

also the Gaussian or the radial basis function kernel.  
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Now, finally to conclude the original support vector machine algorithm was invented by 

Vladimir Vapnik in 1963. However for almost 30 years, nobody had noticed this for until 

someone in the Bell Laboratories found Vapnik’s work and Vapnik immigrated to the US and 

thereafter, he also worked on the kernel trick further. The kernel trick had a mention in his 

thesis but with the use of kernel trick in big way, the support vector machines gained 

increasing popularity in the 1990’s. 

 

The support vector machines are possibly currently the best or among the best performers for 

a number of classification tasks which range from text to genomic data. In fact, for anyone 

who claims to have worked in machine learning or any literate in machine learning, the 

support vector machine needs to be in his toolbox, support vector machines can be applied to 

complex data types beyond the feature vectors such as graphs, sequences, relational data by 



designing kernel functions for such data and kernel tricks hold huge promise. Support vector 

machine techniques have also been extended to a number of tasks such as regression, 

principal component analysis which we have not covered in this lecture, thank you very 

much.  


