
 Fundamentals of Artificial Intelligence 

Prof. Shyamanta M Hazarika 

Department of Mechanical Engineering 

Indian Institute of Technology - Guwahati 

 

Module - 1 

Lecture - 3 

Uniformed Search 

 

Welcome to fundamentals of artificial intelligence. Today we are going to look at uninformed 

search. Usually, in most of the AI techniques that we will explore, we will later look at using 

domain information or what is more commonly called heuristic knowledge which would be 

under the category of informed search. However, as an introduction to search in graphs, we 

would love to look at uninformed search first. So, what we will cover today is:  
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We will very quickly review problem solving as search; look at what we meant by state 

spaces. We would then formally introduce graph searching and introduce a generic searching 

algorithm. Thereafter, we would look at a couple of uninformed search strategies. First, the 

breadth-first search, thereafter the depth-first search, iterative deepening, uniform-cost 

search; and then we will look at something called bidirectional search.  
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Let us look at what we meant by problem solving as search. We define a state space that 

contains all the possible configurations. 1 or 2 configurations I have shown you. We would 

love to define all possible configurations of the relevant objects. We would then look at the 

initial state. That is, specify 1 or more states within that state space as situations from which 

we start. And then, we define something called the goal state; 1 or more states that would be 

acceptable as solutions to the problem. And of course, we need to specify the operators; a set 

of rules that describes the actions or operations available.  
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The state space is what is vital for formulating a problem solving domain as state space 

search. The state space literally consists of all possible configurations. This is also referred to 

as the problem space, for the 8-puzzle game that I have shown you little while ago. Each tile 



configuration is a problem state. The 8-puzzle, we should note has a relatively small space. 

Okay. There could be problems which would have huge state space. And we would look at 

how to search it in order to get to a solution.  
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So, let us look at a problem solving as state space search. And this is the start node which I 

wanted all of you to take note of. This is as with 9 tiles here. One of them is blank and you 

move the blank around to arrive at this goal position. Now, in the last class, we have looked 

at how these expansions can take place given the 4 operations.  
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We will just look at the complete tree of solution. So, given this state, you could have 3 

possibilities of moving the blank. So, the blank is here. You could think of moving the empty 

to the left. It could come here at this point. Or you could think of moving it up to the center or 



you could move it to the right. So, given the start S, this sets, these configurations of tiles are 

the, its successor nodes, successors.  

 

And we can keep on generating the successors. Like, from here, we could get at more 

successors by moving the blank to a newer configuration. Like the blank would go up and 

one could come down. So, we could have 2, blank, 1, 8, 6, 7 and 3, 4, 5. And we could have 

another one and which will be like 2, 8, 3, 1, 6, 4; 7 could go this side. And I would have 

blank here. And I would have 5.  

 

So, we could generate. I had all the successors from 1 node. But one thing to note here is that 

this point here, this node here is a repetition of what I started with here or as my start. So, I 

would avoid it getting expansions of these type of successors. As having said that, I would 

love to get all the successor nodes listed. And then, the idea would be to look for a path that 

takes me from, through this a space of successors as to the configuration that I was looking 

for.  

 

And therefore, this is line of expansions would be the solution to the problem that I was 

looking for. Now, if you look at this very closely, we can have a simile here. This can be 

thought of as a graph.  
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And basically, what were we looking for is given a node, start node of a graph and a goal 

node g. I am looking for some path that takes me from s to g. So, problem solving as state 



space search can be extracted to the mathematical problem of finding a path from the start 

node to the goal node or in a directed graph.  
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So, let us take a look at what we mean by graphs and directed graphs before we proceed 

further into our discussion of problem solving as state space graph. You must have looked at 

graphs before, but for completeness, let me put the definition here. A graph G comprises a set 

V of vertices and a set E of edges. The vertices as can be anything but is most commonly a 

collection of letters or numbers. That’s the representation.  

 

And the set of edges is a set of doubleton subsets of V. That is, E is as a group of a subset of 

a, b; where a, b belongs to the vertices and a is not equal to b. U sually, the graph is denoted 

as a 2 tuple G V E. So, if a graph is given and I know its edges, then we say vertices a and b 

are adjacent. And if there is an edge a b that joins them in the graph. And we call a and b 

themselves as the end points of the edge.  

 

2 edges that share a vertex; such as, let us say I have a graph here and have a here and b here. 

And that’s, that’s 1 edge. I have another edge a and c here. That’s another edge. So, if I have 

a b and a c, here they are sharing a common node a. Then they are said to be adjacent to each 

other.  
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So, I am more interested here in finding out the path in a graph. Like if you recall we had this 

8-puzzle tile configurations as where I explored and really got this sort of structure there, as I 

keep on expanding my nodes at every level. Given the 4 operators of the 8-puzzle game to 

me and from a given s as I could arrive at a given g. I am more interested in finding out how 

did I come from s to g or get to know what is a path.  

 

So, the notion of a path in a graph is intuitively very clear. But, it is very difficult to pin down 

it formally. So, suppose I have a graph which is a set of vertices and edges and I have k 

vertices. So, 0, 1, 2, 3 up to k, k + 1; not necessarily this thing. And I have edges as e 1, e 2 

so and so forth up to e to the power sub k; not necessarily this thing. Now, each edge AI is a 

group of vertices.  

 

The alternating sequence that I get of the vertices and edges, starting from the vertice v sub 0 

to v sub k is a path from v sub 0 to v sub k of length k. The length is the number of edges and 

it is not the number of vertices. So, for this path that I have highlighted here, the length of the 

path is 1, 2, 3 and 4. So, here is a 4 length path. And what I wanted to highlight was that this 

path is made up of edges e 1, e 2, e 3, e 4. So, alternatively it had vertices. Let us call this 

vertice as v a, v b, v c. So, the path from the start to the goal for the given graph would be 

something like s, e sub 1, v sub a, e sub 2, v sub b, e sub 3, v sub c, e sub 4 and g. So that is 

the path that is as in the given graph.  
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What we are more interested when we were looking at graph search for solutions to given 

problems is what are called directed graphs or digraphs for short. Here, again it has a set of 

vertices as V. But the set of edges is actually directed edges. So, what are directed edges? 

Directed edges are ordered pair of elements of V. Put another way, if I have a graph of 2 

tuple of V and E; E is a subset of V cross V. It is a digraph if these pair which I get are 

ordered pairs. So, ordering of pairs in E to give each as a direction, namely the edge a b goes 

from a to b.  
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So, here is an example of a digraph. I have a set of vertices, a, b, c, d and pair of edges a b, a 

c, b a, c c, d c. So, if these pairs are directed and arcs rather than just being edges as in the 

general graph that I was talking of, then what we have is a digraph.  
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A tree is a connected graph with no cycle. So here, if you see, if you go back and see the 

directed graph, here we have a arc that starts at c and comes back to c again. Or, if you could 

see here, we go from a to b and then there is a path from b to a. Such a thing is called a cycle. 

So, in a tree, we have a graph which is connected, but they do not have cycles. And this 

something that we will explore in the remainder of this lecture.  
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So, graph searching for problem solving as state space search is to find a sequence of actions 

to achieve a goal as searching for paths in a directed graph. To solve the problem, we define 

the underlying search space and then apply a search algorithm. Searching in graphs therefore 

provides an appropriate abstract model of problem solving, independent of the particular 



domain. And the type of graph we are searching here; one needs to remember is usually a 

directed graph.  
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So, we are in now position to formalize search in state space. So, let us define a state space. A 

state space for us is actually a graph of a vertices and edges where V is a set of nodes and E is 

the set of arcs. Here when I say nodes, the node maybe a simple node or it could be a data 

structure that contains a state description. It could contain other information such as parent of 

the node, operator that generated that node from that parent and other bookkeeping data.  

 

And each arch corresponds to an instance of one of the operators. So basically, whenever we 

are talking of formalizing search in a state space is we are looking at having whole of the 

state space converted into nodes with each operator giving me some instances that takes me 

to the other nodes. So, finally, we end up having such a directed graph. And searching in this 

directed graph for a path that brings me from s to g is what I mean by getting to the solution.  
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For each arc in such a directed graph has a fixed positive cost associated with it, 

corresponding to the cost of the operator. And each node has a set of successor nodes 

corresponding to all of the legal operators as that can be applied to the applied to the source 

node’s state. The process of expanding a node means to generate all the successor nodes and 

add them to their associated arcs. 1 or more nodes are designated as the start node. And then 

there is a goal test predicate and which is applied to a state to determine if its associated node 

is a goal node.  
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A solution in such a formal framework is a sequence of operators that is associated with a 

path in a state space from a start node to a goal node. And the cost of each solution that I am 

looking for is the sum of the arc costs on the solution path. So, if all the arcs have the same 



unit cost, then the solution cost is just the length of the solution or the number of steps or the 

state transitions that is involved.  
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So, state space search under such a scenario is the process of searching through a state space 

for a solution, by making explicit a sufficient portion of an implicit state space graph. Now, 

one needs to remember that we do not generate the complete graph when we are looking for a 

solution under this idea of problem solving. We keep on generating the graph as we keep on 

exploring for the solution.  

 

So, it is the process by which you search to a space, state space by making explicit only a 

sufficient portion of it; of an implicit state space graph to find a goal node. For large state 

spaces, it is important to realize that it is not practical to represent the whole space. So, you 

initially start with just the start node. And then expand the start node S. Its successors are 

generated and those nodes are added to the set V and the associated arcs are added to the set 

E.  

 

This process continues until a goal node is found. So, instead of having the whole state space 

graph as it is explicitly generated and then looking for a solution, the idea is to make explicit 

a sufficient portion of this as I go on expanding for nodes. And every node that I expand 

answering a question whether that is my goal node; if not, getting its successor nodes and 

keeping the process containing.  
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So, state space search is when each node implicitly or explicitly represents a partial solution 

path. In general, from this node, there are many possible paths that have its partial path as a 

prefix. So, basically what it means is that when I am doing such a state space as exploration 

in a directed graph I have come up to this point. And then I keep on expanding beyond. But 

one needs to remember that whatever I have expanded up to this point, this still forms a part 

of the path.  

 

So, it is still, the partial path is still there as a prefix for me. Beyond this, there would be 

many alternate paths, but this one up to here; if somewhere the goal lies below this node, then 

up to here, this is the partial path that is included already.  
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So, how do we evaluate such start search strategies? It is important to realize that we have 

many such searching techniques that we will discuss as which are uninformed. But, how do 

we evaluate such search strategies? There are 4 this thing matrixes. 1. We talk of 

completeness. Completeness is a guarantee of finding a solution whenever one exists. So, if a 

solution exists and if your searching technique can find that solution and the technique is said 

to be complete.  

 

Next, we talk of time complexity. That is how long does it take to find a solution. This is 

usually measured in terms of the number of nodes that the searching technique expands. 

Next, we talk of space complexity. How much space is used by the algorithm. This is also 

usually measured in terms of the maximum size of the nodes list during the search. And then, 

there is a question of whether this search technique is optimal or admissible.  

 

If a solution is found and is it guaranteed to be an optimal one? And that is, is it the one with 

the minimum cost? If that guarantees there for the given searching technique, then it is said to 

be optimal. We will now look at these searching techniques and then look at the evaluation of 

these techniques along these 4 matrices.  
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So, what are the important parameters that one needs to really look at before we go into 

looking at the search techniques and evaluation of them is as these 3 interesting things that 

needs to be remembered. We talk of a number of successor of any state; the maximum 

number. That is called the branching factor. Then we talk of the length of a path in the state 

space as the minimal length which is the depth of the shallowest goal that is d.  



So, we need to understand and something about d and something about b. So, if I have a node 

that is expanded every time into 2 successors; so, here my branching factor is 2. If my goal 

lies here, that is the depth of the minimum length of the path to the shallowest goal, then my 

d is 3. And I could have a maximum depth at which goes on it could be infinite. And then, 

maximum depth of the search state space is m.  
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So, given this parameters to me and given the idea that we could search a directed graph to 

arrive at from a given and state to a given goal. We look at a graph search procedure. So, 

even before I write, there got in for the graph search procedure. I would like to highlight that 

what we literally do is we have the start node s and we have its successors. Let us call this 

successors a and b.  

 

So, we create 2 lists. One called the open and other called the closed. And we first put s in the 

point where it needs to be expanded. So, we create a list called open and we put s in the open 

list. So, we put s here, consisting solely of the start node. And then we pick up s for 

expansion. So, we pickup s. And what we want to really check now is that, is s as the goal 

node itself? If not, we generates its successors.  

 

So, if s is the goal node, we have nothing to do. We must come out and exit. That is what is a 

check here by saying that I create a list, a is called closed that is initially empty. And then, if 

there is nothing in open, I have to exit with failure. But, otherwise I select the first node on 

open and remove it on from open. I take it away from open and put that node in close. Now, 

why do I do that is a way to remember that s has been expanded.  



So then, after that, what I do is I generate the successors of s. So, the successors of s here are 

a and b. So, I take a and b and put it in open. And next, when I look for an expansion, I take 

the node from open. So, a comes to me. Now, one needs to remember that how I add a b onto 

the open list will depend on what criteria do I really follow in order to really arrange this is. 

Later on, we will see that if I am doing a breadth-first search, I would see that everything is 

added to the end of the list.  

 

If I am doing a depth-first search, I would add it to the beginning of the list. Okay. So 

basically, you create a list called closed that is initially empty and you take the first node and 

open. You remove it from open and put it on close. And then, if n is goal node, we have 

nothing to do, we exit immediately. Else, what we do is the following.  
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We expand the node n generating the set M of its successors. So, we install them as 

successors of M in the open list. So, add this members of M to the open list. And then, 

expand them further. Now, if each member of M is already in G, then we can decide whether 

we want to or redirect its pointers. Or, if each member is already in close, that means one of 

the successor is already been expanded.  

 

Then we can redirect its descendants, whatever are there to that pointer. Else we will ignore 

that node to be expanded further. So, how do we reorder the list open? And is very, very 

important to understand and the type of technique that we will have in the graph search. So, 

they are either according to some arbitrary scheme if it is uninformed search. And according 

to some heuristic merit, if it is a informed search.  



Today, our concentration would be only on looking at arbitrary schemes of arrangement and 

of the successor nodes in the open list. So, we look at uninformed search today.  
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And it is important that we really understand what we mean by uninformed here. Uninformed 

search is also called blind search because of the very fact that it does not use any information 

about the likely direction of the goal nodes. We do not have any idea of the problem domain. 

So, informed search on the other hand are also more popularly called heuristic search are 

informed search techniques in the sense that they use information about the domain and to try 

usually head in the general direction of the goal.  

 

Informed search methods and uninformed search methods are distinctly different in only 

either use of no information or use of information about the domain. Few of the uninformed 

search methods are breadth-first search, depth-first search, depth-limited search, uniform-

cost, depth-first iterative deepening and bidirectional search. We will look at few of them 

today. In informed search we have hill climbing, best-first, greedy search, beam search, A 

and A* which we will look at in the next lecture.  
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So, uninformed search strategies; we do not have information from the problem domain. And 

that is how we order the nodes in open using some arbitrary scheme. Today we will look at 

this 5 uninformed search techniques: breadth-first, depth-first, iterative deepening, uniform-

cost search and bidirectional search. So, what is breadth-first search. Let us look at it in more 

closer terms by using a real graph here.  
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So, I have a graph with node a, b, c, d, e, f, g. So, what I expand is the shallowest unexpanded 

node. So, the fringe, if you can see by now is actually a first-in-first-out queue. So, new 

successors all go to the end. So, if you recall, we said we will create 2 lists when we are 

doing graph search; 1, an open list and another a closed list and we will keep the start node in 

open. As we expand, we take A to the closed list and generate the successors of A.  



 

So, the successors of A that I get, I have B and C. Then, the next time I take B for expansion. 

Take B here and keep it in close. And when I get the successors of B; so, the successors of B 

equal C are D and E. So, those successors will go to the end of the list. So, D and E will come 

here. So, that the next node that I take for expansion is C rather than end D. So, this is how 

the breadth-first search works.  

 

I expand the slowest unexpanded node. The fringe is a first-in-first-out queue. That is, the 

new successors go at the end. So, first I check if A is a goal state.  
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If A is not a goal state, I get its successors which is B and C. So, the fringe for me is B C 

now. So, next I check if B is a goal node.  
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If not, I get its expansion which is D E. But then, the next node to be expanded is C and not 

D. That that is something that one needs to really understand here, when I am doing a 

breadth-first search.  
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And then, next node to be expanded becomes D; and so on and so forth. So, a few questions 

that I want to answer about the properties of the breadth-first search. 
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The first question is: Is breadth-first search complete? We can see that the breadth-first 

search always guarantees that it will reach the goal if the branching is finite. So, if I have a 

state space search to be done starting at a given s to some given g and I know that this is the 

state space within which I have all the configurations for those states. And then, if branching 

is finite for this search; so, at some point, somewhere, I will definitely arrive at g.  

Why would that happen intuitively is because I would be expanding everything at every 

level. And that will guarantee that no state is missed for a finite B. And therefore, breadth-

first search is complete. The number of nodes that we will generate is at this level, it is 1. 

And if I have b branching at this it is b, at this level it will become b square, then b cube. So, 

I would have an order of b to the power d.  

 

This is the number of nodes we will generate. What about space complexity? Because of the 

very fact that the breadth-first search generates every node at every level, it has to keep all 

the nodes in it, that it had expanded. In case it keeps every node in the memory, either in 

fringe or on a path to the fringe. And therefore, the order is of b to the power d. Whether 

breadth-first search is optimal; now this depends if we guarantee the deeper solutions are less 

optimal, that is if step-cost is 1.  

 

If we assume that every step it just costs 1 and there is no other cost involved. So, then, it 

would mean that, if I have some solution which is deeper down there and if I have a solution 

which is somewhere at a shallower node, I will get the shallower one first. And therefore, 

every time I am guaranteed to get the minimum cost solution. So, it is optimum.  
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Next, we will look at the depth-first search. So, you expand the deepest unexpanded node. 

That is what the clue is for depth-first search. And if you have realized by this time, I am, the 

fringe that I am talking of is last-in-first-out queue. That is, you put successors at the front 

and those are what is expanded. So, you first check if A is a goal node.  
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Or, if not, you get the successors which are B and C and check if B is goal. If not, you expand 

that and you have D E. But the point here that I want to make is D E would be put in the front 

of the open list rather than at the end of the list in open.  
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So, I have D. I checked if D is a goal state. And then, I get its successor H I.  
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So, I put its successors H I in the front. So, here is the queue. If you go back 1 slide there, I 

had D which I expanded and D gave me 2 successors which was H and I. H and I would 

come to the front of the list rather than to the back of the list. So, I check and continue the 

search.  
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Go on doing I;  
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And then go on doing everything till I expand at every level.  
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So, the questions of properties of depth-first search: Is depth-first search complete? You 

could see from these explanations that at depth-first search is not complete. Because, what 

can happen is that, if I have infinite depth space and I could be stuck in an allay, I could go 

on expanding down there a line and nowhere on this line a solution would exist. So, first 

important realization depth-first search is not complete.  

 

What about the time complexity of depth-first search? If I have m which is the maximum 

depth and b being the branching factor, then the number of nodes that I need to do is b to the 

power m. And terrible if m is much larger than b. But if solutions and dense, may be much 

faster than breadth-first search. But, if I have a huge m, then it would be terrible time 

complexity. In terms of space, is definitely, we only need to remember a single path of 

unexpected and unexplored nodes.  

 

So, the time complexity is b m which is linear. And it may find a non-optimal goal first. But, 

in terms of optimality, it could be possible intuitively that there are goals here somewhere at 

lower levels, which will definitely be missed by any depth-first search technique. So, it is not 

an optimal search technique.  
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Next, we come to a modification of depth-first search which is depth-limited search. To avoid 

the infinite depth problem that I was showing you in the previous slide of depth-first search, 

we can decide to only search until a depth L; that is, we do not expand beyond depth L. But 

then, what will happen is that, if we keep that limit L, we may have a goal which lies just 

little well beyond L and we will never be able to find this.  

 

So, a better idea would be that, what if I keep on changing L and interactively iteratively keep 

on increasing L. So, this is the idea of the next search technique that we will discuss called 

the iterative deepening search.  
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So, iterative deepening search, I looked at level 0 first.  
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Then I look at level 1 for the goal.  
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Then level 2.  
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Level 3, so on and so forth.  
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So, the idea of iterative deepening is, let me repeat it. So, I start with it level 1, then I go to 

level 2, level 3, level 4. So, the idea is that I take this level. I did not find things here. So, I 

thought of doing a little bit more deeper level. I did not find things there. I may think of going 

even down. I did not find things there. I may think of going even down. So, this is what is 

iterative deepening search, where I increased the depth bound at every iteration.  
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So, properties of iterative deepening, very quickly it is complete. The order of a time 

complexity is O, b to the power d. Space is O bd. And it is optimal if step cost is 1 or 

increasing function of depth.  
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Next, we concentrate on something called a uniform-cost search. If you remember breadth-

first is optimal. But this is optimal if step-cost is in; if only optimal if step-cost is increasing 

with depth. That is, it remains constant. Can we guarantee optimally for any step cost? For 

that, we look at something called the uniform-cost search. We expand node with the smallest 

path cost. So, here is a small graph.  

 



This is a graph to find a path from s to g. So, here is my start and here is my goal. So, first 

when I expand s, I have then its successors A, B and C. But the question is, which one do I 

expand next. As when I look at this, I could see that the cost to A was 1, the cost to B was 5 

and the cost to C was 15. So, I would rather expand the node with the smallest cost. So, I 

expand A.  

 

So, my next expansion is of A where I get to G. And I know that the cost is A to G is 10 + 1 

here. So, 10 + 1, 11. That is what I mark at G. And the other nodes that I have is B with a 

cost of 5 already there. And C with a cost of 15 already from the previous expansion. So, next 

which node to expand? If I ask the same question, then I go to expand the nodes in the 

smallest path. And therefore, I go and expand B.  

 

So, once I expand B, I have here on this mark B to G. So, I get G. But the path cost is 5 and 

5. That makes 10. So, the G cost is 10. And here it was 11. And now C 15. So, the next node 

that I want to expand is this node. And that, when I see that, I know that this is the goal node 

and I stop; but I pick up this. So, this path, that I got is the path which is with the minimum 

cost.  
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So, uniform-cost search, implementation wise, the fringe that I am looking for is definitely 

queue. But then, they are ordered by the path cost. So, this is equivalent to breadth-first if all 

step costs were all equal. The question is whether they are complete. Yes, they are. And the 

number of nodes with path cost is always less than equal to cost of optimal cost number of 

nodes on path with path cost is greater than equal to cost of optimal cost. And whether it is 



optimal or not. Yes, for any step cost the uniform-cost search is an optimal graph search 

technique.  
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So, let us now look back again and illustrate these uninformed search strategies that we have 

learnt today. So, we have we looked at breadth-first search, we have looked at depth-first 

search, we have looked at iterative deepening and we have looked at uniform-cost search. So, 

here is a small graph that I want all of you to look at. And over this we will try to explain and 

illustrate all of these search strategies. So, here is S; A, B, C its successors; D, E; then and B 

successor is G and C. So, I have put the cost of every path in red there besides each of the 

arcs.  
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So, first let us look at breadth-first search. So, if you were looking at breadth-first search 

here, we know that we start with S 0. Here, S in that place. And then we generate its 

successors. So, we put this so in terms of the arcing that I was talking of. We call this node 

list is open and we call this node list closed. So, we create a list called closed and we create a 

list called open. In open, we have S 0 to start with.  

 

And we pick up S 0, take S 0 here to close and get its successors into open list. So, I have 

successors A, B and C. So, I put A, B and C in that list. Then, the next node that I expand is 

of course A. And therefore, I move A here to this and I have now B, C. But, because it is a 

breadth-first search therefore I include its successors D, E and G to the end of the list. So, 

here is where D, E and G comes to the end of the list.  

 

And the next node that is taken up for expansion is B. And its successors which is G is added 

to the end of the list here; so on and so forth. So, finally I have expanded E. And then, the 

next node that I get is this E. So, I have a solution because G is the goal node. So, the solution 

path that I am talking of is very simple S to A to G. So, that is the solution. And the cost of 

the solution is 3 + 15 = 18. Number of nodes expanded including the goal is that we could 

expand 1, 2, 3, 4, 5, 6, 7 nodes. So, we had expanded 7 nodes including the goal node.  
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The depth-first search is what we will try to expand now. So, in this, we take S, put it in this 

list. And next, we take the successors which are A, B and C and put it in the list called open. 

Take S 0 to close. Next, we take A 3 for expansion. Its successors D, E and G. Now, this is 



something that we need to take care of. We put it in the beginning of the list, here. So, as we 

put it in the beginning of the list, the fringe movement is along this line.  

 

So, the next thing that comes to be expanded is D. And that is what, how it happens. And the 

solution path that I get here are also is S A G, the same solution path. But, what is more 

interesting is, because I took this path and then this was the maximum depth, I came back and 

expanded E again. And then I came back and got G. So, the number of nodes that I expand is 

only 5 including the goal node is only 5. This is depth-first search.  
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Now, we just highlight 1 idea of simultaneously searching from the forward from S and 

backward from G. So, stop when both meet. So, we have an node S here and we have a G 

here. We are looking for a solution from S to G. So, you keep on expanding and looking for a 

fringe. So, the fringe keeps on coming here. And from G you keep on going this side. And we 

stop when these 2 fringes come and meet.  

 

So only point that needs to be now discussed or understood is, what does it mean to search 

from backwards form G. It basically means that we need to specify the predecessors of G. At 

times this could be difficult. Like in chess, what is the predecessor of checkmate. What if 

there are multiple goal states, there is a problem. What if there is only 1 goal test, no explicit 

list, so what do I do?  
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So, basically a bidirectional search as is an alternate searching from the start state towards the 

goal and from the goal towards the start. You stop when the frontiers intersect. Works well 

only when they are unique start and goal states.  
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Requires the ability to generate predecessor states. That is something very important. And 

can sometimes lead to finding a solution more quickly. Here are the time and space 

complexities.  
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So, only thing that is important to realize when I am doing uninformed search over graphs for 

problem solving a state space search is failure to detect repeated states. Because, if I am, 

some failure to detect repeated states, this can turn a linear problem into an exponential one.  
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And there are 2 interesting solutions. In the first method which suboptimal but very practical, 

is I do not create paths containing cycles. This is what I highlighted in the beginning. And in 

the second method the idea is to never generate a state which is generated before. So, but 

then, this would require that you keep track of all possible states. So, it uses a lot of memory. 

For a very simple game like 8-puzzle, you would require something like factorial 9 states in 

such a case.  

 



But then, and these solutions work very well because then you do not create exponential 

problems of the state space. So, this is all that we have in uninformed search. In the next class 

we will look at information from the problem domain being used to direct these searches; 

which are more commonly called the heuristic search techniques. Thank you. 


