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Lecture-26
Making Complex Decisions
Welcome to fundamentals of artificial intelligence, we are addressing computational issues in
making decisions particularly making complex decisions. In the last lecture we had looked at
sequential decision problems where the utility is based on a sequence of decisions, your solution
IS not a sequence of actions, but rather a policy, a set of situation action pair for each state. We

had focused on accessible environments and looked at a Markov decision problem.

The problem of computing an optimal policy in an accessible stochastic environment with a
known transition model, we have looked at value iteration and algorithm for computing the
optimal policy and also looked at policy iteration and alternate formulation to arrive at the policy
in an inaccessible environment the percepts do not give enough information to determine the
state and the transition probabilities such a problem is referred to as partially observable Markov

decision problem.

Exact solution for partially observable Markov decision problems is difficult and it is possible to
arrive at approximate solutions through the technology of decision networks. This is the focus of
the lecture today.
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POMDP @
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O In an inaccessible environment, the percept does not
provide enough information to determine the state or
the associated transition probabilities; Such problems
are called Partially Observable Markov Decision
Problems, or POMDP.

O Methods used for Markov Decision Problems are not
directly applicable to POMDPs.

O The standard method for solving a POMDP is to
construct a new MDP in which the current probability
distribution plays the role of the state variable.
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So methods used for Markov decision problems are not directly applicable to partially
observable Markov decision problems. The standard method for solving a POMDRP is to actually
construct a new Markov decision problem in which the current probability distribution plays the
role of the state variable.

(Refer Slide Time: 03:04)
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POMDP @

O Resulting MDP is not easy to solve! State space is
characterized by real-valued probabilities; therefore
infinite.

O Exact solution methods for POMDPs require some fairly
advanced tools; Beyond the scope of this course.

O Instead of exact solutions for POMDPs, often obtain a
good approximation using a limited lookahead.

B This can be realized for POMDPs using Dynamic
Decision Networks.

The resulting Markov decision problem is not easy to solve, this is because now the state space is

characterized by real-valued probabilities and therefore is infinite. Exact solution methods for
partially observable Markov decision problems require some fairly advanced tools and therefore
we often obtain approximate solutions using a limited look ahead. Now this can be realized for

partially observable Markov decision problems using dynamic decision networks.



(Refer Slide Time: 03:48)

Decision-Theoretic Agent @

O Outline a comprehensive approach to agent design
for environments with uncertainty.
B It ties together belief and decision networks with
the techniques for sequential decision problems.

O Addresses the problem of large state spaces by
decomposing the state description into a set of
random variables.

B Much as the planning algorithms used logical
representations to decompose the state space
used by search algorithms
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Before we move on to discuss dynamic decision networks let us look first on the formulation of a
decision theoretic agent, we outline a comprehensive approach to agent design for environments
with uncertainty. Now for such an agent it needs to tie together belief and decision networks
together with the techniques for sequential decision problems that we have looked at in the last
lecture. This idea of putting together belief and decision networks address the problem of large

state spaces by decomposing the state description into a set of random variables.

This is something like the planning algorithm where logical representations are used to
decompose the state space used by the search algorithms.
(Refer Slide Time: 04:52)



Decision-Theoretic Agent @
[ Decision Theory = Probability theory
+

Utility theory

The fundamental idea of decision theory is that an agent
is rational if and only if it chooses the action that yields
the highest expected utility, averaged over all possible
outcomes of the action.
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Now kindly recall that we have looked at the very definition of what we meant by a decision
theory in one of our previous lectures where we have seen that the coming together of utility
theory and the probability theory is referred to as the decision theory. The fundamental idea of
decision theory is that a agent is rational if and only if it chooses the action that is the highest

expected utility.

So given some actions on which the utility is to be computed we would love to go via the process
of decision theory where we look at the probability theory and utility theory and we choose the
action that yields the highest expected utility averaged over all possible outcomes of the action.

(Refer Slide Time: 05:53)
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Decision Theoretic Agent: Decision (ycle ~

function DECISION-THEORETIC-AGENT( perceptyreturns action

Walculate updated probabilities for current state based on
available evidence including current percept and previous action
Walculate outcome probabilities for actions
given action descriptions and probabilities of current states
lect action with highest expected utility
given probabilities of outcomes and utility information
return action

Schematic agent design for rational agents; The processing done by the agent at
each step is the decision cycle.
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The schematic agent design for rational agents is what is given here we calculate the updated
probabilities for the current state and this is done based on available evidence which is including
the current percept and the previous action, we then compute the probabilities for actions given
action descriptions and probabilities of the current state and then we select action with the
highest expected utility given probabilities of outcomes and the utility information. Now the
processing that is done by an agent at each step is called a decision cycle.

(Refer Slide Time: 06:42)

Decision Theoretic Adent: Basic Elements  ©

O Dynamic Belief Network

The evolution of the state of the environment over time - a
belief network with whe node for each state and sensor
variable, for each time step.

O Dynamic Decision Network
Decision and utility for actions.
0O Filtering Algorithm

E.g. Kalman filtering; incorporate each new percept and action
and update the belief state representation.

[0 Decisions

Made by projecting forward possible action sequences and
choosing the best action sequence.

The decision theoretic agent has to have a number of basic elements which are the dynamic
belief network, the dynamic decision network, our filtering algorithm and a couple of decisions.
The dynamic belief network is about the evolution of the state of the environment over time, a
belief network with nodes for each state and sensor variable for each time step. The dynamic
decision network brings together decision and utility for actions.

We have filtering algorithms which incorporate each new percept and action and update the
belief state representation. Now decisions are made by projecting forward possible action
sequences and choosing the best action sequence.

(Refer Slide Time: 07:39)



Current State of the World @

[ State Variables

Set of random variables X, that refer to the current
state of the world.

For example, if the agent is a robot moving in the X-Y
plane, then we might use"(Xt, Y;) to refer to the
robot's position at time t.
D Behef :,mrli lx:lqu\pr"s l(j||n1d;yn'
The belief about the state at time ¢ is the probability
distribution over the state given all available evidence:
Bel(X ) =P(X | E,.E,4.4.)
where X, is the state variable; £, is the evidence variable

9 & Sunnats M T T T i

The current state of the world under such a scenario is described by the state variables as well as

ualion ts oul of the question
nber ol varables,

a belief. The state variable is a set of random variables that refer to the current state of the world.
For example if | have an agent which is a robot let us say moving in the X-Y plane, then we
might use Xt Yt to refer to the robots position at time T and the belief about the state at time T is

the probability distribution over the state given all available evidence.

So belief at Xt where Xt is the state variable is the probability of Xt given the evidencesa E 1, E
2 E 3 s0 on and so forth up to Et.
(Refer Slide Time: 08:40)

Calculation of Beliei - Assumptions @

1, The main assumption is that the problem is Markovian
— the probability distribution for the current state of
the world depends only on the previous state and the
action taken in it.

v
B, X, X A ) =P | K )

2. Each percept depends only on the state at the time.
Percepts (E,) are causally determined by the state of
the world:

v
‘/[’(E, | Xy X A4, B )= POE LX)



The main assumptions that are required for calculation of the belief are number 1 that the
problem is Markovian, the problem being Markovian means that the probability distribution for
the current state of the world depends only on the previous state and action in it. So if | am
talking of the probability of Xt given X 1 up to Xt - 1 and actions A 1 to At — 1, then the
Markovian assumption means that the probability of Xt would only depend on Xt -1 and At -1,

the state and the action just in the previous time point.

Each percept depends only on the state at the time, so percepts are causally determined by the
state of the world. So if | have a percept Et then the probability of Et would just depend on the
state Xt, this is the second assumption on way to calculation of beliefs.
(Refer Slide Time: 09:56)
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Calculation of Beliei - Assumptions ©

3. A similar equation holds for actions. The action taken
depends only on the percepts the agent has received
to date

#’(A, |44, E B )=P(4, |\fl"'Ev )

This final assertion is valid because of the structure of
the agent itself: its only input from the outside is the
percept at each time step.

O Taken together, above equations allow us to simplify
the calculation of the current state estimate .
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The third assumption is that the action taken depends only on the percepts and the agent has

received today. So if | am talking of an action At — 1, so all that it will depend on would be the
percept E 1 E 2 E 3 so on and so forth up to E t — 1. Now this final assertion is valid because of
the structure of the agent itself it is only input form from the outside is the percept at each time
step. Now taken together the above equations allow us to simplify the calculation of the current
state estimate.

(Refer Slide Time: 10:41)



Calculation of Belief - Phases @

O Prediction phase:

1. Predict the probability distribution over states we
would have expected, given our knowledge of the
previous state and how actions affect states.

2. Calculate it byVédding up the probabilities of arriving

in a given state at time t for each of the states we
could have been in at time t-1.

!

A J
JBL‘](/Y,):ZP(X’ IX! l='\‘/ l’Ar 1)Bel(X 1='\',- 1)
"‘I\ \/
“x, ,ranges over all possible values of X,
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The calculation of belief have 2 phases, 1 the prediction phase in which we predict the

probability distribution over states we would have expected given our knowledge of the previous

state and how actions affect states and calculate it by adding up the probabilities of arriving in a

given state at time T for each of the state. So the belief at X t would be the probability of

summations of all state time points. So we add up all the probabilities at time T for each of the

states we could have been in at time t — 1. And here the X t - 1 ranges over all the state variables

duringt — 1.

(Refer Slide Time: 11:35)
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Calculation of Belief - Phases @

O Estimation phase:

1. Now we have a distribution over the current state
variables, diven everything but the most recent
observation.

2.The estimation phase updates this using the
percept't,. Because both the state variables and the
percept refer to the same time, this is a simple
matter of‘fsayesian updating

VBel(X,)= aP(E | X, Bel(X,)

a is a normalization constant
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In the estimation phase once we have a distribution over the current state variables we are given

everything but the most recent observation. So the estimation phase updates this using the



percept at time t because both the state variables and the percept refer to the same time this is just
a Bayesian updating, that is the belief at X t is the probability of Et and Xt and the probability
distribution of the belief at X t. Now here alpha is a normalization constant.

(Refer Slide Time: 12:16)
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Decision Theoretic Aent: Detailed Design ¢

Function DECISION-THEORETIC-AGENT(Z, ) returns an action
inputs:‘lf,, the percept at time ¢
static:"éN, a belief network with nodes X
el(X), a vector of probabilities, updated over time

\K" The action todel deseribes
e[(X’) (—z" P(X’ |X‘ (=X l)Be[(X, (=X, 1) the effect of actiors
8 The seasor model deseribes how the cavironment

‘f{@l(X’) (—-(ZP(f'[ | X/ ) B/‘e]()(‘) genertes fae sensor data,

action ¢ argmax , Z\-. [Bel(X, =x, )Z\, PX, =5, X =5, 4)U(x,)]

return action
The action model‘{enemljzes the transition model used earlier for sequential decision problems. The
sensor model was not used for sequential decision problem, of course. because we assumed an
accessible environment in which the percept and the state can be equated.
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The decision theoretical that we have discussed with its 3 steps, now can be looked at in a more
detailed way. So here we would take the percept, we would have a belief network and we will
have a vector of probabilities updated over time from that we could create the probability
distribution and then the belief itself at X t and then we would take an action based on the

maximum expected utility.

The action model if you see generalizes the transition model used earlier for sequential decision
problems. In the sequential decision problems we did not use the sensor model of course we did
not do that because we assumed an accessible environment in which the percept and the state can
be equated, here we take help of the sensor model. So the action model here it describes the
effects of the action and the sensor model describes how the environment generates the sensor
data.

(Refer Slide Time: 13:40)



Sensing in Uncertain Worlds @
O, gensor model: P(E | X,)

geSCribes how the environment generates the sensor
ata.

OvAction model: P(X, | X, ,4.,)
Describes the effects of actions

[0 Stationary sensor model.’/\'/t P(E | X,)=PE|X)

where E and X are random variables ranging over
percepts and states

dvantage: P(E|X)can be used at each time step.

Now sensing in the uncertain world we are talking of a sensor model the probability of E t given
X t the state variable, this describes how the environment generates the sensor data, the action
model probability of X t given X't —1 and E t — 1 describes the effects of action and a stationary
sensor model is assumed here, that is for all t's we assume that the probability of E t given X t is

the probability of E given X where E and X are random variables ranging over percepts and

states.

And this could be used at each time step, so we assume a stationary sensor model in a belief

network.
(Refer Slide Time: 14:42)

Sensor Model in a Belief Network
.

-~ SENSOR MODEL

Belief network fragment showing the general :
relationship between state variables and sensor i : Sensor‘
variables, nodes

The sensor model itself is the CPT associated with the percept node. Tf the sensor gives a perfect
report of the state, then the sensor model (the CPT) pill be purely deterministic, In the burglur-ularm
network, both Johncalls and Marvealls can be viewed as sensor nodes for the Alarm state variable.
Their conditional probability tables shown in the figure above show how reliable they are as sensors.
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So let us look at a little bit more detail to understand what we mean by a sensor model in a belief
network. So here is a belief network fragment showing the general relationship between the state
variable and the sensor variables. So from the state to the percept we come via the sensor model.
The sensor model actually is the conditional probability distribution table associated with the
percept node. If the sensor gives a perfect report of the state then the sensor model will be purely

deterministic.

So let us recall the burglar alarm network that we have discussed while we were talking of
Bayesian networks, here John calls and Mary calls can both be seen as sensor nodes for the alarm
state variable. Their conditional probability tables shown in the figure here show how reliable
these 2 sensors are.

(Refer Slide Time: 16:05)

Sensor Failure @

In order for the system to handle sensor failure, the sensor model must include the
possibility of failure
It 15 possible o use more detailed models of sensor

fiwlure By incerporting additional state varubles
Teprezeniing the vondition of the sensor

\/{ sensaes securavy s direetly affected by rain /

and en vneven wad sutace. Furticmore, wia \an filue b o afteers the
tight alse cause the sensor il by danging sensor's aceuracy. Tis kind of mode! i

the clectzonics, as might a bumpy road. / capable of sone quite subsle zcasoniag.

A really serious discrepancy would raise the posterior probability of sensor failure;
hence this kind of network can perform "diagnosis\",eff the sensors.
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So in order for a system to handle sensor failure the sensor model must include the possibility of
failure. Now it is possible to use more detailed models of sensor failure by incorporating
additional state variables representing the condition of the sensor anyone with hands-on
experience of robotics computerized process control or other forms of automatic sensing and

control will readily testify to the fact that sensors fail.

When a sensor fails it does not necessarily send a signal announcing its failure instead it simply

starts sending garbage, this can be dangerous if taken literally. For example a robot's shown on a



distance sensor might start sending infinity meaning that no object is near its vicinity, this could
be because the sona's detector is broken. In this case the robot could start crashing into us and

this is why we need sensor models that allows failure.

A sensor model for the sonar sensor that says that the sensor is accurate within some stated
distance explicitly disallows the possibility of failure and therefore forces the robot to take the
sensor reading literally, for any given actual distance the sonar model on the other hand should
allow the possibility that the observed distance could be infinity. Then the robot can handle

sensor failure more appropriately.

For example if the robot is in a room and reports infinity then the most likely conclusion would
be that the sensor has failed, furthermore if the robot has more than one distance sensor the
sensor fusion process will automatically discount the reading of the field sensor. The figure here
on your screen shows a model of a reason based lane position sensor, such sensors are used in

autonomous vehicles to keep them in the centre of their lane.

They also could be used to sound a warning in a human driven car when it starts to move away
from its desired course. So the sensors accuracy in this case that is being shown here is directly
affected by an uneven road surface furthermore rain might also cause the sensor to fail by
damaging the electronics as might a bumpy road. So we are talking of sensor failure which

would depend on whether or on tearing.

And all of this would somehow impact sensor accuracy. The sensors failure affects the sensors
accuracy, we know that the sensor accuracy would impact the position sensor and the lane
position would be dependent on the position sensor. This kind of model is capable of quite
certain reasoning. For example if the system believes that it is raining then it will alter the sensor

accuracy variable raising the likelihood of larger error in the lane position sensor.

When an unexpected reading occurs the system will be less likely to assume that the car is out of
position conversely a large discrepancy between the expected and observed position can on the

other hand increase the system's believed that it is raining without perhaps any other sensors



involvement. Now a really serious discrepancy would raise the posterior probability of sensor
failure. Hence this kind of networks can perform some diagnosis of the sensor.
(Refer Slide Time: 20:46)

Dynamic Belief Networks (%)

Markov Chain

O The agent is passively monitoring and predicting a
changing environment, rather than acting on it.

O The agent is concerned with a sequence of X, values,

where each one is determined solely by the previous
one:

Ovihis sequence is called a state evolution model or
Markov chain.

B Monitoring and prediction is important in its own right,
and it also makes the explanation simpler.

B An agent can use  to make decisions and take action.
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Now let us look at what we mean by dynamic belief networks, first we shall talk of a Markov
chain. Now an agent can be passively monitoring and predicting a changing environment rather
than acting on it. So the agent is concerned with a sequence of state variable X t values where
each one is determined solely by the previous one. Now this sequence is called a state evolution
model or a Markov chain. Monitoring and prediction is important in its own right and it also
makes the explanation simpler. The agent can use such a model to make decisions and take
actions.

(Refer Slide Time: 21:45)
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Dynamic Belief Network

Dynamic Belief Network

O A belief network with one node for each state and sensor
variable for each time step.

In a real network, the state and percept nodes

walld he replaced by several nades each, with STATE EVOLUTION MODEL
appropriale connectons.
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Both tasks can be camied out using the standard
SENSOR MODEL algorithms. But a dynamic belief network shown above
could be exremely lange. so the helief net algorithms.
Two tasks of the network: could be extremely inefiicient
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A dynamic belief network is a belief network with one node for each state and sensor variable
for each time step. So in a real network the state and the percept nodes would be replaced by
several nodes each with appropriate connections and there would be 2 tasks for the n network
one you need to calculate the probability distribution for state at time T and next it would be

concerned with how the state will evolve into the future that is called the probabilistic projection.

Now both this task can be carried out using standard algorithms but the dynamic belief network
that we have shown here could be extremely large. So the belief that algorithms could be
extremely inefficient.

(Refer Slide Time: 22:50)
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Prediction, Roll-Up and Estimation @

e Calculate the bellet vestor. This Is actually the —
D\ﬁred |ct|0n standard belief network updating process. / S
Slaleli Slatel
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*a 1 / Peroept 1>
I:M{ollup: —
% Requires acding a pricr probability table for the =
remove slice t-1  state variabies attime 1 (\Smte.l >
Apolying standard belic nelwork updaling lo s B

caloulate Bel(X,), the prababllity distrbution aver

D \Est' m atl on: Ihe current state. We then add the slice for L +1 (E@D
Bel(X,)=aP(E, | X,) Bel(X,)

Naw we vill see the benefit af all the wark that went Inta the equations. Implement the
prediction and estimation phases as operations on the belief network. This orocess
Implements the formal algorithm spectfledt In the detalied design tor a decision thearetic
agent, using the belief network inference machinery for 21l calculations.
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This is where the idea of using beliefs to estimate and come to the best possible sequence of
actions is what is important. So we have prediction roll up an estimation and now we will see the
benefit of all the work that went into these equations. We implement the prediction and
estimation phase as operations on the belief network. So this process actually implements the
formal algorithms specified in the detail design for a decision theoretic agent using the belief

network inference machinery.

So first you predict and thereafter you remove some slices at t - 1 and then formally arrive at the
estimation. So you calculate the belief vector and this is actually the standard belief network
updating process, thereafter at a prior probability table for the state variable at time T and
applying standard belief network updating calculate the belief at X t. The probability distribution
over the current state, we then add the slice for T + 1.

Let us repeat the process of prediction roll up an estimation one more time, | will particularly
emphasize that we implement the prediction an estimation phases as operations on the belief
network, further we need only structure to represent the 2 time steps referred to here as the 2
slices, on the right of your screen you can see the prediction estimation process in operation each

cycle of the process go through the steps of prediction, ready roll up an estimation.

We begin with prediction, we have a 2 slice network the slices are t - 1 and t we have already
computed the belief of X t - 1 incorporating all evidence up to and including the precept E t — 1.
The slice t - 1 has no connection to previous slices, the state variables in t - 1 have prior
probabilities associated with them we then calculate the belief vector at t, this is actually the

standard belief network updating process applied to evidence t — 1.

The next stage is of roll-up where we remove the slice of t — 1, this requires now adding a prior
probability table for the state variables at time t. Now this prior is just what we have calculated in
the previous step. Finally we arrive at estimation when we add the new percept U of T applying
standard belief network updating to calculate the belief involving X t, the probability distribution

over the current state.



We then add the slice for t + 1 and now the network is ready for the next cycle, one needs to
realize at this point that this process that we have highlighted here actually implements the
formal algorithm that we had specified in the detailed design of the decision theoretic agent
using the belief network inference mechanism for all the calculations. Notice that as in the

formal algorithm the percent history is summarized in the belief vector for the current state.

Now probabilistic projection is also straightforward we take the network and we add slices for
the future times and we then apply a belief network inference algorithm to calculate the posterior
probability distribution for the future states given the current percept. Now one thing to note here
is that unlike the update cycle this might be expensive because here it involves inference in a

temporarily extended network.

However a very interesting property of this network that one needs to know is that none of the
future nodes has any evidence associated with it, this means that a simple stochastic simulation
technique will work well because every run can be consistent with the evidence.

(Refer Slide Time: 28:28)

Example: Dynamic Belief Network )
We can;xtend the model of a lane-position sensor into a DBN by adding

State evolution models for state variables Weather, Terrain and
SensorFailure, as well as for the principle state variable LanePosition.

.“/ o The model of interesl is foe SensurFailure.
J Lat .;‘j Lare . The mode! 15 quite simple: ones a sensor
. flosition.t "--9,?‘”“_'7,*.? : has broken, it usually slays bioken.

\WWhat happens over time is that as ihe . ’
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! This is esoecially true if there are other sensors
¢ through  which the  netyork  ¢an  infer
.“‘ LanePosifion  indirectly. will even work,
however, ust using the state evolution mode! for
LanePosition, which will usually put limits on how
much lateral motion we can expect for a vehicle,
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Now as an example of the application of dynamic belief networks consider again the sense of
failure model that we have seen earlier, this can be extended into a dynamic belief network, the

figure here shows a 2 slice fragment of a dynamic belief network for continuous monitoring of



the lane positioning of an automated vehicle. Focus on the model of the lane position sensor that

we have shown while we were talking of sensor failure.

And extend the model into a dynamic belief network, in order to extend that into a dynamic
belief network we need to have state evaluation models for static variables which were the
weather, the terrain and the sensor failure as well as for the principle state variable which was
lane position. Now the model of interest for us here is sensor failure and the model is quite
simple, we say once a sensor is broken it usually stays broken.

What happens over time is that as the sensor continues to send nonsense signals it becomes more
and more likely that they are incorrect. This is especially true if there are other senses through
which the network can infer lane position indirectly. Now it will even work however just using
the state evaluation model for lane position which will easily put limits on how much lateral
motion we can expect for a vehicle. And this is how we could take decisions on what is
happening to lane position vis-a-vis our percepts.

(Refer Slide Time: 30:45)
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agent, using the belisf network inference machinery for &l calculations.
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Now dynamic decision networks add utility nodes and decision nodes for action into the dynamic

belief network. So the general structure of a dynamic decision network for a sequential decision
problem where the terminal states are 3 steps ahead is shown here. The decision problem

involves calculating the values of E t that maximizes the utility over the remaining state



sequence, thatisatt+ 1,t+2andt+ 3. So Et - 1 is treated as evidence because it has already

happened.

And the final utility would be computed as the sum of the expected rewards that would come out
from 1, 2 and 3. Now here we have not shown the reward nodes just to make the diagram simple.
(Refer Slide Time: 32:02)

Dynamic Decision Networks @

O The evaluation algorithm for DDNs is essentially the
same as that for ordinary decision networks.

® In the worst case, the DDN calculates the expected
utility of each decision sequence by fixing the
decision nodes and applying probabilistic inference
to calculate the final state.

O As in our discussion of sequential decision problems,
we must also be careful to take into account the fact
that, for each future decision, the agent does not
currently know what information will be available at
the time the future decision is made

& Z Sy areets Mk AT T Sumdasi

|
Dynamic decision networks the evaluation algorithm for dynamic decision networks is

essentially the same as that for ordinary decision networks, in the worst case the dynamic
decision network calculates the expected utility of each decision sequence by fixing the decision
nodes and applying probabilistic inference to calculate the final same. As in our discussion of
sequential decision problems we must also be careful to take into account the fact that for each
future decision the agent does not currently know what information will be available at the time
the future decision is made.

(Refer Slide Time: 32:54)
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O In our earlier discussion, we handled this by iteratively
computing a policy that associates a decision with
each state.

O With DDNs, we do not have this option because the
states are represented implicitly by the set of state
variables. Furthermore, in inaccessible environments,
the agent will not know what state it is in anyway.

O What we must do instead is consider each possible
instantiation of the future sensor variables as well as
each possible instantiation of the future decision
variables.

In our earlier discussion we handle this by iteratively computing a policy that associates a
decision with each state, with dynamic decision networks we do not have this option because the
states are represented implicitly by the set of state variables and in inaccessible environments the
agent will not know what state it is in anyway, what we must do in sit there for is to consider
each possible instantiation of the future sensor variable as well as possible instantiation of the
future decision variable.

(Refer Slide Time: 33:42)
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O The expected utility of each decision sequence is then
the\)ﬁeighted sum of the utilities computed using each
possible percept sequence, where the weight is the
probability of the percept sequence given the decision
sequence.

0O The DDN provides approximate solutions for
Partially Observable Markov Decision Problems,
where the degree of approximation depends on the
amount of lookahead.

B Just as we used a limited horizon in game playing and with
value iteration and policy iteration, we can limit the extent of
forward projection in the DON in order to reduce complexity.
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And the expected utility of each decision sequence is therefore the weighted sum of the utilities

computed using each possible percept sequence, in a way the dynamic decision networks provide

approximate solutions for partially observable Markov decision problems, where the degree of



approximation as we have seen in our illustration depends on the amount of look ahead. So just
as we use their limited horizon in game playing and with value iteration and policy iteration we
can limit the extent of forward projection in dynamic decision networks in order to reduce the
complexity.

(Refer Slide Time: 34:35)

Dynamic Decision Networks @

O In evaluating an action, one must consider not only its effect
on the environment, but also its effect on the internal state of
the agent via the percepts it generates
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Vimited horizon combined with a heuristic estimate for the
utility of the remaining steps, can provide a reasonable
approximation to rational action.
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In evaluating an action one must consider not only its effect on the environment, but also it
affects on the internal state of the agent via the percepts it generates. So limited horizon
combined with a heuristic estimate for the utility of the remaining steps can provide a reasonable
approximation to rational action.

(Refer Slide Time: 35:02)

Final Comments @

O Dynamic Decision Networks promises potential
solutions to many of the problems that arise as Al
systems are moved from static, accessible, and above
all simple environments to dynamic, inaccessible,
complex environments that are closer to the real world.

O Dynamic Decision Networks provide a general, concise
representation for large POMDP, so they can be used
as inputs for any POMDP algorithm including value and
policy iteration methods.

O Overall, the potential payoff of combining DDN-like
techniques with planning methods is enormous.

B The technical and mathematical problems involved in getting
it right are difficult, but it is an important area within Al
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And thus dynamic decision networks promise potential solutions to many of the problems that
arise in Al systems as we move from static accessible and above all simple environments to
dynamic inaccessible complex environments that are closer to the real world. Dynamic decision
networks does provide a general concise representation for large partially observable Markov

decision problems.

Overall the potential payoff of combining dynamic decision network like techniques with
planning methods is enormous. The technical and mathematical problems involved in getting it
right are difficult, but it is a very important area with an Al, in our next module we should be

looking at machine learning, thank you.



