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Lecture-26 

Making Complex Decisions 

 

Welcome to fundamentals of artificial intelligence, we are addressing computational issues in 

making decisions particularly making complex decisions. In the last lecture we had looked at 

sequential decision problems where the utility is based on a sequence of decisions, your solution 

is not a sequence of actions, but rather a policy, a set of situation action pair for each state. We 

had focused on accessible environments and looked at a Markov decision problem. 

 

The problem of computing an optimal policy in an accessible stochastic environment with a 

known transition model, we have looked at value iteration and algorithm for computing the 

optimal policy and also looked at policy iteration and alternate formulation to arrive at the policy 

in an inaccessible environment the percepts do not give enough information to determine the 

state and the transition probabilities such a problem is referred to as partially observable Markov 

decision problem. 

 

Exact solution for partially observable Markov decision problems is difficult and it is possible to 

arrive at approximate solutions through the technology of decision networks. This is the focus of 

the lecture today. 

(Refer Slide Time: 02:37) 



 

So methods used for Markov decision problems are not directly applicable to partially 

observable Markov decision problems. The standard method for solving a POMDP is to actually 

construct a new Markov decision problem in which the current probability distribution plays the 

role of the state variable. 

(Refer Slide Time: 03:04) 

 

The resulting Markov decision problem is not easy to solve, this is because now the state space is 

characterized by real-valued probabilities and therefore is infinite. Exact solution methods for 

partially observable Markov decision problems require some fairly advanced tools and therefore 

we often obtain approximate solutions using a limited look ahead. Now this can be realized for 

partially observable Markov decision problems using dynamic decision networks. 



(Refer Slide Time: 03:48) 

 

Before we move on to discuss dynamic decision networks let us look first on the formulation of a 

decision theoretic agent, we outline a comprehensive approach to agent design for environments 

with uncertainty. Now for such an agent it needs to tie together belief and decision networks 

together with the techniques for sequential decision problems that we have looked at in the last 

lecture. This idea of putting together belief and decision networks address the problem of large 

state spaces by decomposing the state description into a set of random variables. 

 

This is something like the planning algorithm where logical representations are used to 

decompose the state space used by the search algorithms. 

(Refer Slide Time: 04:52) 



 

Now kindly recall that we have looked at the very definition of what we meant by a decision 

theory in one of our previous lectures where we have seen that the coming together of utility 

theory and the probability theory is referred to as the decision theory. The fundamental idea of 

decision theory is that a agent is rational if and only if it chooses the action that is the highest 

expected utility. 

 

So given some actions on which the utility is to be computed we would love to go via the process 

of decision theory where we look at the probability theory and utility theory and we choose the 

action that yields the highest expected utility averaged over all possible outcomes of the action. 

(Refer Slide Time: 05:53) 

 



The schematic agent design for rational agents is what is given here we calculate the updated 

probabilities for the current state and this is done based on available evidence which is including 

the current percept and the previous action, we then compute the probabilities for actions given 

action descriptions and probabilities of the current state and then we select action with the 

highest expected utility given probabilities of outcomes and the utility information. Now the 

processing that is done by an agent at each step is called a decision cycle. 

(Refer Slide Time: 06:42) 

 

The decision theoretic agent has to have a number of basic elements which are the dynamic 

belief network, the dynamic decision network, our filtering algorithm and a couple of decisions. 

The dynamic belief network is about the evolution of the state of the environment over time, a 

belief network with nodes for each state and sensor variable for each time step. The dynamic 

decision network brings together decision and utility for actions. 

 

We have filtering algorithms which incorporate each new percept and action and update the 

belief state representation. Now decisions are made by projecting forward possible action 

sequences and choosing the best action sequence. 

(Refer Slide Time: 07:39) 



 

The current state of the world under such a scenario is described by the state variables as well as 

a belief. The state variable is a set of random variables that refer to the current state of the world. 

For example if I have an agent which is a robot let us say moving in the X-Y plane, then we 

might use Xt ,Yt to refer to the robots position at time T and the belief about the state at time T is 

the probability distribution over the state given all available evidence. 

 

So belief at Xt where Xt is the state variable is the probability of Xt given the evidences a E 1, E 

2 E 3 so on and so forth up to Et. 

(Refer Slide Time: 08:40) 

 



The main assumptions that are required for calculation of the belief are number 1 that the 

problem is Markovian, the problem being Markovian means that the probability distribution for 

the current state of the world depends only on the previous state and action in it. So if I am 

talking of the probability of Xt given X 1 up to Xt - 1 and actions A 1 to A t – 1, then the 

Markovian assumption means that the probability of Xt would only depend on Xt - 1 and A t – 1, 

the state and the action just in the previous time point. 

 

Each percept depends only on the state at the time, so percepts are causally determined by the 

state of the world. So if I have a percept Et then the probability of Et would just depend on the 

state Xt, this is the second assumption on way to calculation of beliefs. 

(Refer Slide Time: 09:56) 

 

The third assumption is that the action taken depends only on the percepts and the agent has 

received today. So if I am talking of an action A t – 1, so all that it will depend on would be the 

percept E 1 E 2 E 3 so on and so forth up to E t – 1. Now this final assertion is valid because of 

the structure of the agent itself it is only input form from the outside is the percept at each time 

step. Now taken together the above equations allow us to simplify the calculation of the current 

state estimate. 

(Refer Slide Time: 10:41) 



 

The calculation of belief have 2 phases, 1 the prediction phase in which we predict the 

probability distribution over states we would have expected given our knowledge of the previous 

state and how actions affect states and calculate it by adding up the probabilities of arriving in a 

given state at time T for each of the state. So the belief at X t would be the probability of 

summations of all state time points. So we add up all the probabilities at time T for each of the 

states we could have been in at time t – 1. And here the X t - 1 ranges over all the state variables 

during t – 1. 

(Refer Slide Time: 11:35) 

 

In the estimation phase once we have a distribution over the current state variables we are given 

everything but the most recent observation. So the estimation phase updates this using the 



percept at time t because both the state variables and the percept refer to the same time this is just 

a Bayesian updating, that is the belief at X t is the probability of Et and Xt and the probability 

distribution of the belief at X t. Now here alpha is a normalization constant. 

(Refer Slide Time: 12:16) 

 

The decision theoretical that we have discussed with its 3 steps, now can be looked at in a more 

detailed way. So here we would take the percept, we would have a belief network and we will 

have a vector of probabilities updated over time from that we could create the probability 

distribution and then the belief itself at X t and then we would take an action based on the 

maximum expected utility. 

 

The action model if you see generalizes the transition model used earlier for sequential decision 

problems. In the sequential decision problems we did not use the sensor model of course we did 

not do that because we assumed an accessible environment in which the percept and the state can 

be equated, here we take help of the sensor model. So the action model here it describes the 

effects of the action and the sensor model describes how the environment generates the sensor 

data. 

(Refer Slide Time: 13:40) 



 

Now sensing in the uncertain world we are talking of a sensor model the probability of E t given 

X t the state variable, this describes how the environment generates the sensor data, the action 

model probability of X t given X t – 1 and E t – 1 describes the effects of action and a stationary 

sensor model is assumed here, that is for all t's we assume that the probability of E t given X t is 

the probability of E given X where E and X are random variables ranging over percepts and 

states. 

 

And this could be used at each time step, so we assume a stationary sensor model in a belief 

network. 

(Refer Slide Time: 14:42) 

 



So let us look at a little bit more detail to understand what we mean by a sensor model in a belief 

network. So here is a belief network fragment showing the general relationship between the state 

variable and the sensor variables. So from the state to the percept we come via the sensor model. 

The sensor model actually is the conditional probability distribution table associated with the 

percept node. If the sensor gives a perfect report of the state then the sensor model will be purely 

deterministic. 

 

So let us recall the burglar alarm network that we have discussed while we were talking of 

Bayesian networks, here John calls and Mary calls can both be seen as sensor nodes for the alarm 

state variable. Their conditional probability tables shown in the figure here show how reliable 

these 2 sensors are. 

(Refer Slide Time: 16:05) 

 

So in order for a system to handle sensor failure the sensor model must include the possibility of 

failure. Now it is possible to use more detailed models of sensor failure by incorporating 

additional state variables representing the condition of the sensor anyone with hands-on 

experience of robotics computerized process control or other forms of automatic sensing and 

control will readily testify to the fact that sensors fail. 

 

When a sensor fails it does not necessarily send a signal announcing its failure instead it simply 

starts sending garbage, this can be dangerous if taken literally. For example a robot's shown on a 



distance sensor might start sending infinity meaning that no object is near its vicinity, this could 

be because the sona's detector is broken. In this case the robot could start crashing into us and 

this is why we need sensor models that allows failure. 

 

A sensor model for the sonar sensor that says that the sensor is accurate within some stated 

distance explicitly disallows the possibility of failure and therefore forces the robot to take the 

sensor reading literally, for any given actual distance the sonar model on the other hand should 

allow the possibility that the observed distance could be infinity. Then the robot can handle 

sensor failure more appropriately. 

 

For example if the robot is in a room and reports infinity then the most likely conclusion would 

be that the sensor has failed, furthermore if the robot has more than one distance sensor the 

sensor fusion process will automatically discount the reading of the field sensor. The figure here 

on your screen shows a model of a reason based lane position sensor, such sensors are used in 

autonomous vehicles to keep them in the centre of their lane. 

 

They also could be used to sound a warning in a human driven car when it starts to move away 

from its desired course. So the sensors accuracy in this case that is being shown here is directly 

affected by an uneven road surface furthermore rain might also cause the sensor to fail by 

damaging the electronics as might a bumpy road. So we are talking of sensor failure which 

would depend on whether or on tearing. 

 

And all of this would somehow impact sensor accuracy. The sensors failure affects the sensors 

accuracy, we know that the sensor accuracy would impact the position sensor and the lane 

position would be dependent on the position sensor. This kind of model is capable of quite 

certain reasoning. For example if the system believes that it is raining then it will alter the sensor 

accuracy variable raising the likelihood of larger error in the lane position sensor. 

 

When an unexpected reading occurs the system will be less likely to assume that the car is out of 

position conversely a large discrepancy between the expected and observed position can on the 

other hand increase the system's believed that it is raining without perhaps any other sensors 



involvement. Now a really serious discrepancy would raise the posterior probability of sensor 

failure. Hence this kind of networks can perform some diagnosis of the sensor. 

(Refer Slide Time: 20:46) 

 

Now let us look at what we mean by dynamic belief networks, first we shall talk of a Markov 

chain. Now an agent can be passively monitoring and predicting a changing environment rather 

than acting on it. So the agent is concerned with a sequence of state variable X t values where 

each one is determined solely by the previous one. Now this sequence is called a state evolution 

model or a Markov chain. Monitoring and prediction is important in its own right and it also 

makes the explanation simpler. The agent can use such a model to make decisions and take 

actions. 

(Refer Slide Time: 21:45) 



 

A dynamic belief network is a belief network with one node for each state and sensor variable 

for each time step. So in a real network the state and the percept nodes would be replaced by 

several nodes each with appropriate connections and there would be 2 tasks for the n network 

one you need to calculate the probability distribution for state at time T and next it would be 

concerned with how the state will evolve into the future that is called the probabilistic projection. 

 

Now both this task can be carried out using standard algorithms but the dynamic belief network 

that we have shown here could be extremely large. So the belief that algorithms could be 

extremely inefficient. 

(Refer Slide Time: 22:50) 

 



This is where the idea of using beliefs to estimate and come to the best possible sequence of 

actions is what is important. So we have prediction roll up an estimation and now we will see the 

benefit of all the work that went into these equations. We implement the prediction and 

estimation phase as operations on the belief network. So this process actually implements the 

formal algorithms specified in the detail design for a decision theoretic agent using the belief 

network inference machinery. 

 

So first you predict and thereafter you remove some slices at t - 1 and then formally arrive at the 

estimation. So you calculate the belief vector and this is actually the standard belief network 

updating process, thereafter at a prior probability table for the state variable at time T and 

applying standard belief network updating calculate the belief at X t. The probability distribution 

over the current state, we then add the slice for T + 1. 

 

Let us repeat the process of prediction roll up an estimation one more time, I will particularly 

emphasize that we implement the prediction an estimation phases as operations on the belief 

network, further we need only structure to represent the 2 time steps referred to here as the 2 

slices, on the right of your screen you can see the prediction estimation process in operation each 

cycle of the process go through the steps of prediction, ready roll up an estimation. 

 

We begin with prediction, we have a 2 slice network the slices are t - 1 and t we have already 

computed the belief of X t - 1 incorporating all evidence up to and including the precept E t – 1. 

The slice t - 1 has no connection to previous slices, the state variables in t - 1 have prior 

probabilities associated with them we then calculate the belief vector at t, this is actually the 

standard belief network updating process applied to evidence t – 1. 

 

The next stage is of roll-up where we remove the slice of t – 1, this requires now adding a prior 

probability table for the state variables at time t. Now this prior is just what we have calculated in 

the previous step. Finally we arrive at estimation when we add the new percept U of T applying 

standard belief network updating to calculate the belief involving X t, the probability distribution 

over the current state. 

 



We then add the slice for t + 1 and now the network is ready for the next cycle, one needs to 

realize at this point that this process that we have highlighted here actually implements the 

formal algorithm that we had specified in the detailed design of the decision theoretic agent 

using the belief network inference mechanism for all the calculations. Notice that as in the 

formal algorithm the percent history is summarized in the belief vector for the current state. 

 

Now probabilistic projection is also straightforward we take the network and we add slices for 

the future times and we then apply a belief network inference algorithm to calculate the posterior 

probability distribution for the future states given the current percept. Now one thing to note here 

is that unlike the update cycle this might be expensive because here it involves inference in a 

temporarily extended network. 

 

However a very interesting property of this network that one needs to know is that none of the 

future nodes has any evidence associated with it, this means that a simple stochastic simulation 

technique will work well because every run can be consistent with the evidence. 
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Now as an example of the application of dynamic belief networks consider again the sense of 

failure model that we have seen earlier, this can be extended into a dynamic belief network, the 

figure here shows a 2 slice fragment of a dynamic belief network for continuous monitoring of 



the lane positioning of an automated vehicle. Focus on the model of the lane position sensor that 

we have shown while we were talking of sensor failure. 

 

And extend the model into a dynamic belief network, in order to extend that into a dynamic 

belief network we need to have state evaluation models for static variables which were the 

weather, the terrain and the sensor failure as well as for the principle state variable which was 

lane position. Now the model of interest for us here is sensor failure and the model is quite 

simple, we say once a sensor is broken it usually stays broken. 

 

What happens over time is that as the sensor continues to send nonsense signals it becomes more 

and more likely that they are incorrect. This is especially true if there are other senses through 

which the network can infer lane position indirectly. Now it will even work however just using 

the state evaluation model for lane position which will easily put limits on how much lateral 

motion we can expect for a vehicle. And this is how we could take decisions on what is 

happening to lane position vis-a-vis our percepts. 
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Now dynamic decision networks add utility nodes and decision nodes for action into the dynamic 

belief network. So the general structure of a dynamic decision network for a sequential decision 

problem where the terminal states are 3 steps ahead is shown here. The decision problem 

involves calculating the values of E t that maximizes the utility over the remaining state 



sequence, that is at t + 1, t + 2 and t + 3. So E t - 1 is treated as evidence because it has already 

happened. 

 

And the final utility would be computed as the sum of the expected rewards that would come out 

from 1, 2 and 3. Now here we have not shown the reward nodes just to make the diagram simple. 

(Refer Slide Time: 32:02) 

 

Dynamic decision networks the evaluation algorithm for dynamic decision networks is 

essentially the same as that for ordinary decision networks, in the worst case the dynamic 

decision network calculates the expected utility of each decision sequence by fixing the decision 

nodes and applying probabilistic inference to calculate the final same. As in our discussion of 

sequential decision problems we must also be careful to take into account the fact that for each 

future decision the agent does not currently know what information will be available at the time 

the future decision is made. 

(Refer Slide Time: 32:54) 



 

In our earlier discussion we handle this by iteratively computing a policy that associates a 

decision with each state, with dynamic decision networks we do not have this option because the 

states are represented implicitly by the set of state variables and in inaccessible environments the 

agent will not know what state it is in anyway, what we must do in sit there for is to consider 

each possible instantiation of the future sensor variable as well as possible instantiation of the 

future decision variable. 

(Refer Slide Time: 33:42) 

 

And the expected utility of each decision sequence is therefore the weighted sum of the utilities 

computed using each possible percept sequence, in a way the dynamic decision networks provide 

approximate solutions for partially observable Markov decision problems, where the degree of 



approximation as we have seen in our illustration depends on the amount of look ahead. So just 

as we use their limited horizon in game playing and with value iteration and policy iteration we 

can limit the extent of forward projection in dynamic decision networks in order to reduce the 

complexity. 
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In evaluating an action one must consider not only its effect on the environment, but also it 

affects on the internal state of the agent via the percepts it generates. So limited horizon 

combined with a heuristic estimate for the utility of the remaining steps can provide a reasonable 

approximation to rational action. 

(Refer Slide Time: 35:02) 

 



And thus dynamic decision networks promise potential solutions to many of the problems that 

arise in AI systems as we move from static accessible and above all simple environments to 

dynamic inaccessible complex environments that are closer to the real world. Dynamic decision 

networks does provide a general concise representation for large partially observable Markov 

decision problems. 

 

Overall the potential payoff of combining dynamic decision network like techniques with 

planning methods is enormous. The technical and mathematical problems involved in getting it 

right are difficult, but it is a very important area with an AI, in our next module we should be 

looking at machine learning, thank you. 

 


