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Welcome to fundamentals of artificial intelligence within knowledge representation and 

reasoning we have looked at first order logic resolution as an inference mechanism, resolution 

refutation proofs and answer extraction. Having looked at resolution refutation proofs and the 

success we have had with resolution derivations one should not be mislead into thinking that 

resolution provides a effective reasoning paradigm within first order logic. 

 

One needs to remember that entailment in first order logic is semi-decidable, that is algorithms 

exist that can say yes for every entail sentence. But no algorithms exist that can say no for every 

non entail sentences, resolution is refutation complete. That is for an unsatisfiable set of clauses 

some branch would contain the empty clause. A breadth-first search is guaranteed to show that 

the clause set is unsatisfiable. 

 

However for a set of satisfiable clauses the search may or may not terminate. For many 

application in resolution one is interested in having derivations where it would be possible to 

eliminate unnecessary steps. This is what is done through certain strategies and simplifications 

which are refinement of the resolution process. We will wind up our discussion on knowledge 

representation and reasoning looking at such strategies and simplifications. We start our 

discussion with looking at an infinite resolution branch, here is a small example. 
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Let us suppose our knowledge base consist of a single formula, here this formula is showing that 

the relation R is transitive. One could think of R as a relation that defines relative, so R(x, y) 

could mean x is the relative of y. Now if x is a relative of y and y is a relative of z then we know 

x is a relative of z that is the rule in our knowledge base. Let us now look for the existence of 

someone for everyone who is not a relative. 

 

That is let us have a query like there exist an x for all y not R of x, y, now to remind our self we 

will negate the goal and convert it into clausal form. So if you look at the clausal form here and 

the only available rule you could see that the knowledge base does not entail the query nor it is 

negation. So a resolution should fail, problem is if we pose it as a resolution we end up 

generating an infinite sequence. We never get to the empty clause, so let us look at the resolution 

derivation. 
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So here are my clauses one that comes from the rule in the knowledge base and the other that is 

the negation of the goal. We have a substitution f x for y and that results into the resultant that is 

here. Now if we resolve this further we get an expression which says R of y of f of f of y one step 

further resolving it we will have a disjunction and when this disjunction is resolved further 

remember there are only 2 clauses in the data set to start with. 

 

So when it resolved again to the negation of the goal I have an expression which is now R of y of 

f of f of f of y. So if you take a minute and focus your attention on these 2 subsequent clauses 

that we have obtain the resolvance that we have obtain you could see that after every second step 

this would keep on repeating. And this suggest that we cannot use a depth-first procedure to look 

for the empty clause, we may get stuck on such an infinite branch. 

 

Question is, is that a way to detect when we are on such a branch, so that we can give up and 

look for alternate ways to the empty clause. Unfortunately the answer is no, we are not in a 

position to say which of this path will take us to the empty clause. And when we should give up 

looking for an empty clause in a given path, for first order logic there is no way to detect if a 

branch will continue indefinitely. 
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Now this is because first order logic one needs to realize is a very powerful language, in fact it 

can be use as a full programming language. Therefore just as there is no way to detect when a 

program is looping there is no way to detect if a branch will continue indefinitely. This is quite 

problematic from a knowledge representation perspective. There are no procedures that given a 

set of clauses returns satisfiable when the clauses are satisfiable. 

 

Resolution, however is refutation complete that is it returns an empty clause if the set of clauses 

has unsatisfiable. And when clauses are satisfiable the search as I had mention before may or 

may not terminate. 
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Now that is why resolution is not a panacea, resolution does not provide a general effective 

solution to the reasoning problem in first order logic. Decision on which 2 clauses to resolve that 

this which resolution to perform are made by the control strategy. Now determining the 

satisfiability of clauses may simply be too difficult computational. So we need to consider 

refinements to resolution to help improve search. 

 

One option is to explore a way to search for derivations that somehow eliminate unnecessary 

steps as much as possible. And that is what we will focus on today, look for strategies that can be 

used to improve the search in this sense. 
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In fact the most important way of avoiding unnecessary search in first order derivation is to keep 

the search as general as possible. And this is achieved in the unification step by taking help of 

what is called the most general unifier. So we are looking for substitutions that are not overly 

specific the substitution need to unify without making an arbitrary choice that may preclude a 

path to the empty clause. 

 

A substitution that we are looking for is through the most general unifier, we can limit resolution 

to most general unifiers without loss of completeness. 
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Now let us recall what we meant by most general unifiers, when there exist multiple possible 

unifiers for an expression E. There is at least one called the most general unifier which is g here 

that has the property that if s is any unifier for E yielding Es, then there exist a substitution s 

prime such that Es = Eg of s prime and then g is said to be the most general unifier. Let us take 

an example to understand this, so here are 2 expressions P (A, x) and P (y, z). 

 

Now if you are looking for an unifier here then A for y and x for z is a most general unifier. This 

is because I can always have a substitution s prime which is B for x and then we get s which is A 

for y, B for x and B for z. Now if we apply g and then apply the second substitution s prime we 

will get the substitution s. Note that the reverse would not be possible and therefore g is called 

the most general unifier. 
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Now when I have a most general unifier, the most general unifier preserves as much generality 

as possible for a pair of formulas. And using a most general unifier we are actually leaving 

maximum flexibility for the resolvent to resolve with other clauses. So the idea is that having a 

general search would lead me to the empty clause, one needs to however remember that the most 

general unifier is not necessarily unique. 
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The most general unifiers helps immensely in search as it dramatically reduces the number of 

resolvents that can be inferred from 2 input clauses. Now there exist procedures including linear 

time algorithms for efficient computation of most general unifiers for a pair of literals. Most 

general unifiers greatly reduce the search and also can be calculated efficiently. Consequently all 



resolution base systems that have been implemented today use the most general unifiers. Let us 

now focus on the control strategies that could be use for better search during resolution. 
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So the first of them that we will look at is the breadth-first strategy, now the breadth-first strategy 

is complete but is grossly inefficient. We would then look at a strategy called the set of support 

strategy, the set of support strategy have the flavor of a backward reasoning step and we will see 

that it explores or it generates less number of resolvents. The unit preference strategy is actually 

an ordering strategy and it selects a single literal clause to be a parent and takes a very interesting 

decision on which clauses to resolve next. 

 

The linear input from strategy that we will discuss next is one in which at least 1 parent belongs 

to the base set. Then we will look at a strategy called ancestry filtered form strategy where the 

parent is either in the base set or is ancestor of the other parent. We will then mention about a 

couple of combination strategy. 
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Let us take an illustrative example to understand these strategies, now this illustrative example is 

a worked out example from the book by Nilsson and principles of AI, chapter 5 pages 162 to 

163. These are the sentences number 1, whoever can read is literate, dolphins are not literate, 

some dolphins are intelligent. We need to prove some who are intelligent cannot read, let us first 

make our choice of predicates. So I have predicate R(x) to say x can read, a predicate L(x), x is 

literate, D of x, x is a dolphin, I of x, x is intelligent. 
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Now whoever can read is literate, I could write this first order sentence for all x, Rx implies Lx 

and here is the clausal form of that sentence not of Rx or Lx. The next statement is dolphins are 

not literate, so this could be written as for all x dolphin x implies not literate x. And the clausal 



form is not Dx or not Lx, now in order to keep the variables different in all the clauses I would 

write not of the y or not of Ly. 

 

Some dolphins are intelligent is written as there is an x dolphin x an intelligent x, now the clausal 

normal form of this would be that I would introduce a Skolem constant A and there is a 

conjunction n, so I would have 2 clauses D(A) and I(A). Some who are intelligent cannot read 

that is the goal, so we have the goal here saying there exist an x intelligent and not read. Now in 

order to prove this using resolution refutation I would take the negation of the goal which is not 

there exist x, I of x and not R of x. 

 

And I would finally end up having the clausal form not I of z or R of z, so we have 5 clauses and 

now let us look at the refutation proof for this. 
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So here are my clauses, I then start with resolving from the goal well formed formula itself the 

clause that come because of the negation of the goal. And I have R of A that resolves with this 

clause here to give me L of A which then can be resolved with the clause not Dy or Ly to give 

me not D of A. And now once I have not D of A and D of A in my original clauses I have the 

empty clause and therefore the statement is proved. 

 



Now with this illustrative example let us try to look at the different strategies that we have 

identified for discussion here today. And try understand how does one arrive at the empty clause 

in each of the strategies. Now, one needs to realize when I am using this proof that the proof of 

these example had taken me from the original clause to the first level resolvents to the second 

level resolvents, I generated the third level resolvents and I got my empty clause only at the 

fourth level. 
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Let is now look at the breath-first strategy, in breath-first strategy all of the first level resolvents 

are computed first then the second level resolvents are computed thereafter the third level and so 

and so forth. A first level resolvent is one between 2 clauses in the base set, in fact I define 

something i-th level resolvent and i-th level resolvent is one whose deepest parents is an i – 1-th 

level resolvent. 

 

So the breath-first strategy is complete but is grossly inefficient, now one needs to understand 

that when I say a control strategy for a refutation system is complete. It is in the sense that it is 

use results in a procedure that will find a contradiction whenever one exists. 
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So let us take our original problem with these 5 clauses and look for the empty clause but while 

doing so we would love to generate all of the resolvents at every level. So we first have the 

original clauses, we resolve them to generate our first level resolvents, so here are our 4 first 

level resolvents I(A) resolve it not of I(z) or R(z). So I have an R(A) then here I have a 

complementary pair R(z) and not R(x), so I could resolve them, resolve this and this to generate 

my second resolvent at the first level, I generate my third resolvent at the first level and my 

fourth resolvent. 

 

So I have my first level resolvents once I have generated the first level resolvents I then try to 

resolve these with other clauses in the knowledge base. And get my second level resolvents as 

marked here, so one thing that needs to be noticed here is that for each of the resolution that I am 

performing at least one parent is from the first level resolvents set. So these are my second level 

resolvents and then once I have my second level resolvents I start generating my third level 

resolvents. 

 

So one interesting thing that now we can notice is that I get an empty clause in a breath-first 

search in the third level resolvents at itself. Whereas if you remember in the proof of the 

illustrative example the refutation tree that I had, had to at least move to the fourth level 

resolvents to get to the empty clause. 
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Next let us focus our attention on another of the strategies called the set of support strategy. Now 

a set of support refutation is one in which at least one parent of each resolvent is selected among 

the clauses which resolve from the negation of the goal well-formed formula or from their 

descendants. So in fact it has the flavor of a backward reasoning step because you are resolving 

with clauses that results from the goal well-formed formula or from descendants of the goal well-

formed formula. So each of the resolvents might actually correspond to a subgoal. 
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Let us look at set of support in our illustrative example and the 5 clauses now in set of support I 

should resolve using clauses that result from negation of the goal well-form formula or it is 

descendants. So I have to start resolving from this which is the negation of my goal, so in the 



original clause set I start resolving from there and resolve with I of A to get R of A. Now the 

next is that this statement which is descendant of the goal well-form formulas resolution step is 

to be use or the goal well-form formula itself could be use. 

 

So I take the well goal well-form formula and resolve with its second possibility here and then I 

resolve R(A) with not of R(x) or L(x). So I have an L(A) now I resolve this descendant that has 

come from the goal well-form formula with a clause from the original clause set. And have not 

of I(y) or not of D(y) and then I could resolve this with the original clause set to have not to have 

L(A), I have my second level resolvents. 

 

And then I can think of generating my third level resolvents which is not of D(A), now one thing 

to observe here is that in breath-first strategy that I had shown immediately before this. We had 

arrived that the empty clause while we were generating our third level resolvents. But the set of 

support strategy was unable to get to the empty clause in it is third level resolution. So third level 

resolvents do not generate in this case the empty clause in contrast to the breath-first strategy. 

 

So let us see which was the path taken by my initial proof of the illustrative example. So the 

darken edges are the one which have been a part of the initial refutation proof. 
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Now if you focus here attention only on the set of support and the proof that I have obtained you 

can see that the set of support produced the empty clause at the fourth level was unable to get 

today empty clause at the third level for this problem. However, it did produce fewer clauses at 

each level then the unconstraint breath-first strategy. 
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Now let us look at an ordering strategy like well I was looking for the modification of the set of 

support instead of feeling out each level in breath-first fashion what if one could try and select a 

single literal clause, that is a unit to be a parent in a resolution. Every time such units are use 

resolvents would have fewer literals then do their other parents. So using a unit clause together 

with a clause of length k would always produce a clause of length k – 1 and then you could focus 

the search towards producing the empty clause. 
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So the original refutation tree that has been produce for this illustrative example has the flavor of 

unit preference strategy. Let us select a unit literal clause first, so it could be my I(A) that is a 

single literal clause, a single unit you resolve with the complementary at this point. And generate 

R of A, R of A is again a unit so you select R of A and resolve with its complement in this 

clause, so you have L of A, you resolve with this clause which has a complement of L of A. 

 

And you arrive at a D(A), now D(A) also is a single literal clause and in the base set you have a 

D(A) and you could arrive at the empty clause. Now the unit preference strategy every time the 

units are use you could see that the resolvents have fewer literals then do their other parents. And 

by just having an order on which clause to select and making a very interesting rule that you will 

select only the single literal clauses could take me to the empty clause without generating 

number of clauses as was required in breath-first or set of support. 
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The next strategy that is our focus here is the linear-input form strategy, the linear-input form 

strategy is one in which each resolvent has at least one parent belonging to the base set. The first 

level resolvents therefore are same as a breath-first search, at subsequent levels a linear-input 

form strategy does reduce the number of clauses produced. Now one interesting thing to note 

about linear-input form strategies that they are not complete like in the sense the breath-first 

strategy is complete. 
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So here are my clauses from the illustrative example and let us try a linear input form strategy 

here, recall that the first level resolvents because everything is in the base clause I would 

generate as good as the breath-first strategy. But thereafter I would generate fewer clauses 



because I would have to have parents which are in the base set. So I take R and here is a clause 

in the base set that has a complement of R, so I have L of A. 

 

Thereafter I have I of z or L of z and I look for a complement which is I of A in the base set, so I 

have my second level resolvent. Here there is a complement of L in the base set so I have not of 

I(z) or not of D(z) and here I have a complement of R here is not R and here is R, so I would 

have here not of I(y) or not of D(y). So these are my second level resolvents and then I look for 

third level resolvents by looking at again the clauses in the base set. 

 

Now if you recall the original proof for this illustrative example here the darken edges is a part of 

the original proof. 

(Refer Slide Time: 31:23) 

 

Now, one needs to understand that there are cases in which are refutation exist but a linear input 

from refutation does not exist. So this makes linear input from strategy not complete, in order to 

understand that let us take an example here. So here I have 4 clauses Q of u or P of A, not Q of w 

or P of w, not Q of x or not P of x, Q of y or not P of y. 

(Refer Slide Time: 32:04) 



 

Now if you look for a refutation of these set of clauses you can see that you have set of clauses 

clearly unsatisfiable. The refutation tree on your right shows that I could arrive at the empty 

clause and therefore the set of clauses is clearly unsatisfiable. But then one needs to realize that I 

cannot have a linear input form resolution for these example. Now for a linear input form 

refutation of this example one of the parents of these empty clause that I have here need to be a 

member of the base set. 

 

For that to happen one must either resolve 2 single literal clauses or 2 clauses that collapse to a 

single literal. Neither of these conditions are met by the base case members and therefore this 

example even if it has a refutation does not have a linear input form refutation. And is enough to 

show that linear input form strategy is not complete. However, in spite of their lack of 

completeness linear input form strategy is used because of their simplicity and efficiency. 

 

Let us now focus our attention on the last of the strategies that we are discussing which is called 

the ancestry filtered form strategy. 

(Refer Slide Time: 33:54) 



 

In this form of refutation each resolvent has a parent that is either in the base set or that is an 

ancestor of the other parent. So this is much like the linear form strategy. Control strategy is 

guaranteed to produce all ancestry filtered form proofs is complete. So completeness is preserved 

in ancestry filtered form strategy if the ancestor that are used are limited to merges. Now recall 

that merge is a resolvent that inherits a literal each from the parent such that literal is collapsed to 

a singleton by the most general unifier. 
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So let us take the example that we have use for the linear input form strategy and look at the 

same refutation proof towards the empty clause. Now you could see that the refutation tree on 

the right is produce by an ancestry filtered form strategy. Because here this clause not of p of x 



could be considered an ancestor while I am resolving for P(A), I am looking for the parent of Q 

which is P of x. 

 

And therefore the clause P of x is used as an ancestor and this is the ancestry filtered form 

strategy. Now there could be strategies that are combinations set of support with either linear 

form or ancestry filter form is a common option. You can view that as backward reasoning from 

goal to subgoal to sub-subgoal and so on. Now occasionally combinations can be let to slower 

growth of the clause set. 
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Then would either strategy alone, one interesting point to note at this time is that the ordering 

strategies of which we have only discuss one the unit preference can prevent the generation of 

large number of unneeded clauses. So order in which resolution is perform is crucial to the 

efficiency of the resolution system and therefore the unit preference strategy has it is own 

importance. 
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Now let us look at a couple of simplification strategies, we will discuss 2 simplification 

strategies one the clause elimination and the other procedural attachment. The clause elimination 

strategy the idea is to keep the number of clauses generated as small as possible without giving 

up completeness. So we exploit the fact if there is a derivation to the empty clause there is one 

that does not use at least 3 type of clauses one the pure clauses, 2 the tautologies and 3 the 

subsumed clauses. 

 

So we could eliminate this and still be able to reach the empty clause, procedural attachment on 

the other hand is about evaluating or interpreting a literal by attach procedures and coming down 

on the size of the clauses, let us look clause elimination first. 
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So we have 2 very important eliminations one is the elimination of tautologies and the other 

elimination by subsumption. Any clause which contains a literal and its negation that is a 

tautology maybe eliminated. Now this is because any unsatisfiable set which contains a tautology 

is still unsatisfiable after removing it and conversely. So you could eliminate tautologies to 

reduce down search. Elimination by subsumption is more interesting. 

 

We look for a clause Li which subsumes a clause Mi if there exist a substitution s prime such 

that L of s is a subset of M. Let us take a couple examples to understand this, here is P of x it 

subsumes Py or Qz, P of x subsumes P of A, P of x subsumes P of A or Q of z, P of x or Q of A 

subsumes P of f of A or Q of A or R of y. 
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So if you have sums clauses that subsumes another clause in the set then it can be eliminated 

without affecting the unsatisfiability of the rest of the state. So these eliminations lead to 

substantial reduction in the number of resolutions to find refutation. 
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Procedural attachment is another possibility, in fact the more convenient one where the idea is to 

evaluate the truth value of literals rather than to include these literals or their negations in the 

base set. Now here evaluation refers to interpretation of the expression with reference to a model, 

so for example I could have a expression saying equals 7, 3. Now this can be evaluated by 

attaching a procedure that somehow computes or checks the equality of 2 numbers. 

 



So given such a program for the above predicate equals 7, 3 evaluates to false. 
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So it is possible to attach procedures to functions symbols as well and then one needs to establish 

connection or procedural attachment between the executable computer code and the predicate 

calculus expressions. How does the clause set gets simplified by such evaluations, there is a 2 

step process if a literal in a clause evaluates to true then the entire clause can be removed. If a 

literal evaluates to false then the occurrence of just that literal in the clause can be eliminated. 

 

For example P of x or Q of A or equals 7, 3 can be replaced by simply P of x or Q of A as equals 

7, 3 evaluates to false. 
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This is what is procedural attachment other ways and means of reducing search includes a 

technique of using sorted logic. Now sorted logic involves associating sorts with all terms, for 

example a variable x might be a sort female. A function like mother maybe of the sort person 

map to female then one would keep a taxonomy of sorts. Like one could say woman is a subsort 

of person, the idea is to refuse unification between literals Pt and Ps if s and t are from different 

sorts. 

 

Now this under their assumption that only meaningful with respect to sorts, meaningful 

unifications can lead to the empty clause. And this is how sorted logic can be used to reduce 

down search. 
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There is another trick of using what is called a connection graph, if I am giving a set of clauses I 

can precompute a graph with edges between any 2 unifiable literals of opposite polarity and 

labeled with the most general unifier. Now resolution procedures that can be use involve 

selecting a link computing a resolvent clause and inheriting links for the new clause from its 

input clauses, one needs to realize that there is no unification at run-time. 

 

This if you give us bit of thought can realize that can be seen as a state-space search problem, 

where the idea is to find a sequence of links that ultimately produces the empty clause. Now any 

techniques that I can use for improving state-space search can be applied here as well. 
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We have so far in these couple of lectures discussed knowledge representation and reasoning, 

argued why logic is the first choice for knowledge representation and reasoning. We have 

examined first order logic as a knowledge representation formalism. Now, one needs to 

understand that first order logic is not the only choice. However first order logic is simple and 

convenient to begin with, we have looked at resolution and resolution refutation proofs. 

 

We have particularly looked at resolution derivations, symbol level operations leading to 

knowledge level logical interpretations. We have gone through answer extractions and today we 

have covered strategies and simplifications leading to refinement in resolution to help improve 

search. This is where we windup knowledge representation and reasoning, thank you. 


