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Welcome to fundamentals of artificial intelligence we continue our discussion on knowledge 

representation and reasoning and our focus on first-order logic. Unlike propositional logic 

where every proposition is treated as a single individual unit, first-order logic is a formal 

language to express the content of a proposition. We have looked at the syntax and semantics 

of first-order logic. 

 

First-order logic or first-order predicate calculus is called first-order precisely because it does 

not allow quantification over predicate symbols or function symbols. This is what 

distinguishes first-order logic from higher-order logics. Notwithstanding the fact that there 

are no predicate variables first-order logic is the knowledge representation and reasoning 

formalism most widely used by the artificial intelligence community. 

 

Inference is the process of arriving at new sentences from existing sentences. This is the 

focus of our lecture today. 

(Refer Slide Time: 02:25) 

 

In the last class recall that we had looked at conceptualization which is about formalizing 

declarative knowledge. A conceptualization consists of the objects functions and relations. A 

conceptualization is a triple which includes A, a universe of discourse the set of objects for 



which knowledge is being expressed. B, a functional basis set, the set of functions being 

emphasized in the conceptualization and C, a relational basis set, the set of relations being 

emphasized in the conceptualization. 

 

In the blocks world example that we were looking at we have the universe of discourse as 

these 5 blocks A, B, C, D and E. We have a function hat and four relations. The relation on 

holds if and only if one block is immediately above the other block. Above is a relation 

between two blocks if and only if one is above the other. We had looked at a relation called 

clear which means no block is on top of the block. And then a fourth relation table to mean a 

block is on the table.  
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An interpretation is a mapping between the elements of the language and the elements of a 

conceptualization. To continue the example if the first-order predicate calculus language has 

five object constants, then interpretation I would map the object constants to the objects in the 

world. The function constant hat is mapped to the tuples corresponding to the function and 

the relation constants are mapped to each of their extensions. 

(Refer Slide Time: 05:05) 



 

Coming back to the blocks world example, with four relations we could write down the 

essential information for the blocks world scene shown on the right of the screen. Apart from 

the essential information we could encode some general facts. The first here says that if I 

have a block on top of another block, it would mean that the first block is above the other 

block. A second general statement would be like for three blocks x, y and z. If x is above y 

and y is above z it would mean that x is above z. So, we are trying to capture here the 

knowledge that the above relationship is transitive. We have a third general statement here 

which says that a block which is clear would not have any other block on top of it. So, this 

general statements one need to realize that it also applies to block scenes other than the one 

pictured here.  

 

Given the general statements and the on relation, we may not have to explicitly include all the 

above relations because given the on, I could always derive above. Now having removed the 

above relation from my list of essential information and listed these three general sentences, a 

conjunction of these formulas can serve as a description of the world state. Now let us say the 

problem is to show that a certain property is true in the given state. 

 

For example, let us say I want to conclude from the given information and the general 

statements to me that there is no block on top of block A; that is block A is clear. So, we 

would look for a sentence which would say there is no y on (y, A). We can deduce this fact 

showing that the formula logically follows from the state description. Equivalently the 

formula could be derived from the state description by application of sound rules of 

inference. 
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So, there exists well understood mechanisms for making inferences from predicate calculus 

well-formed formulas. The terminology is the terminology of mathematical proof. So, we 

start with an axiom. Here an axiom is a well-formed formula that is asserted to be true 

without proof. It could be domain-specific knowledge certain rules in the database and also 

include input data supplied by the user. 
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Thereafter we have a theorem which is a well-formed formula that can be proven true on the 

basis of the axioms. The theorems would be inferences that are drawn from the general 

statements or the rules and the input data. It is interesting to note that questions posed by the 

user could also be posed as a theorem. Like for a Tom and Jerry cartoon series type scenario, 

I could ask a question: Who chases Jerry? 



 

And this could be turned into our predicate calculus theorem something like there exists an x 

chases x Jerry to mean that x chases Jerry. Now when I am doing proof of theorems 

containing existential quantifiers, that is, existentially quantified variables in them, there is a 

very interesting side effect. What we are actually doing is also finding in the knowledge base 

a value of the variable for which this desired condition holds. 

 

And that value of the variable is the answer to the question who chases Jerry. This is referred 

to as answer extraction. And we will look at answer extraction in more detail in one of the 

subsequent lectures. 

(Refer Slide Time: 10:48) 

 

Reasoning in logic based systems is as we have been emphasizing accomplished by using 

methods of mathematical proof. Since, this has a long history they provide a wealth of 

resources for us to draw on in doing the same with an artificial intelligence. One of our most 

important tools for this are the laws of inference which allows us to form new theorems from 

axioms and other existing theorems. 

 

The derived well-formed formula is referred to as theorems and the sequence of inference 

rule applications using the derivation constitute a proof of the theorem. 

(Refer Slide Time: 11:42) 



 

Now let us focus on a couple of rules of inference from propositional logic. This is precisely 

because the rules of inference that we have discussed in propositional logic is also applicable 

to first-order logic. And to reemphasize, in formulating proofs one of our most important 

tools are these laws of inference. So, here is Modus ponens A implies B, A ,  therefore B, that 

is, if I have the premise we say something like that it is snowing outside implies it is cold 

outside. And I know it is snowing outside then it is reasonable to infer that it is cold outside.  
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The next rule of inference that we would look now is modus tolens which says A implies B 

not B therefore not A. Let us say it is snowing outside implies it is cold outside and I am also 

told it is not cold outside. So, again it would be reasonable to conclude that it is not snowing 

outside. Let us now take a moment to realize that instead of not B ,that is, being told that it is 



not cold outside, if I was told that it is cold outside could I then infer that it is snowing 

outside. 
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This is interesting for if I am told that it is snowing outside implies it is cold outside and now 

I am told that it is cold outside, note that, it is not a sound rule of inference to say it is 

snowing outside. This is precisely because there could be other reasons why it is cold outside. 

There are ways of reasoning where you would try to fill up the reason here given the premise 

and the fact that you observe. This sort of reasoning is called abduction but we would not 

cover abduction in our discussion here. 

 

So, for us if we are told it is cold outside it is not necessarily the case that it is snowing 

outside. 

(Refer Slide Time: 14:42) 



 

Then we focus on one of the most interesting rules of inference, I refer to as interesting 

because it is that makes it so easy to automate theorem proving in first order logic because of 

these very rule of inference called resolution. So, what we have here is A or B and another 

called not A or C from these two I resolve that A or C is true. Now it is interesting to see that 

both modus ponens and modus tolens could be looked at in terms of resolution. 

 

I could write the implication here A implies B as not A or B and once I have an A in my 

premise I could resolve and get a B. Similarly, I could have modus tolens which is again 

writing this implicit as not A or B and having not B in the premise I could get to a not A.  
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Now rules of inference that have been introduced in propositional logic as I told you can also 

be used in predicate logic. But then if you remember the only thing that makes the difference 



here is the quantifiers. So, one need to learn how to deal with formulas that contains variables 

and quantifiers to use the rules of inference in first order logic. We will focus our attention on 

four different methods to deal with quantified sentences in first order logic. 

 

The first of this is called Universal specialization also referred to as Universal instantiation. 

The second is existential instantiation. Then we have existential generalization and the fourth 

Universal generalization also referred to as universal introduction. Let us look at each of 

them one by one. 
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So, Universal specialization it is about having a universally quantified statement saying for 

all x, P(x) is true. I could then very well say that P(C) for C being any constant symbol is 

true. Here is an example if I know that zen eats everything, that is what is being said here. For 

all x, zen eats x. So this part of the statement here is saying that zen eats everything. So, 

given this zen eats everything I can very well infer that zen eats ice cream. 

 

So, the variable symbol can be replaced by any ground term that is any constant symbol or 

function symbol applied to ground terms only. That is Universal specialization or also 

referred to Universal instantiation because a universally quantified variable x has been 

instantiated to a constant symbol C. 
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The next is existential instantiation. So if I have an existentially quantified statement that 

there is an x for which P(x) is true, then I can say that that x is A, a brand new constant 

symbol and therefore I could say P(A). So, here is the example if I have a statement that says 

that zen likes x, there is some x which zen likes, then I can very well imagine that x to be 

some stuff. So, in existential instantiation a variable is replaced by a brand new constant and 

that constant should not occur in this or any other sentence in the knowledge base. 

 

This is because I am talking of something existing which should not have existed in the 

knowledge base. So, this is also known as skolemization and the constant is called as skolem 

constant. It is convenient to reason about the unknown object rather than the existing shell 

quantifier. 

(Refer Slide Time: 20:26) 

 



The next is called existential generalization which is that if I know specifically that P(C) is 

true where C is an object constant, then I can definitely say that there is an x for which P is 

true. Like if I know that zen likes to eat ice cream I can very well say that there is an x which 

zen eats. All instances of the given constant symbol are replaced by the new variable. Note 

that the variable symbol cannot already exist anywhere in the expression. 
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Now the last of these treatments of quantified sentences the universal generalization is 

counterintuitive. Here we are saying that if I have a statement that says P(C), I could 

generalize this to say for all x P(x) but then one needs to deal with this very, very carefully. 

One needs to remember that if P(c) must be true then we have assumed nothing about C. 

Only under that state I could generalize it to say that for all x P(x) is true. 

 

 Universal generalization is under the premise that the PC statement is true for all elements of 

C in the domain. Therefore, you do not commit to anything about C. We assume nothing 

about C. And used when we show that for all x P(x) is true by taking an arbitrary element C 

for which we do not assume anything.  

(Refer Slide Time: 22:28) 



 

Now the rules of inference that we were discussing can be applied to produce new well form 

formulas. And as I have been emphasizing the new derived well-formed formula keeping in 

view the parlays of mathematical proofs that we use, the derived well-formed formula are 

referred to as theorems. And the sequence of the rule application using the derivation is what 

constitutes the proof of the theorem. 
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For proving theorems involving quantified formulas it is often necessary to match certain sub 

expressions.  
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Let us see what we mean by that here is an example where I have a statement which says for 

all x W1 of x implies W2 of x and I am also told W1 of A. So given these two statements I 

could convert the implication to not W1 or W2. And I have my second statement W A now 

instead of x here if I would have had an A I could have immediately resolved them to derive 

W2 of A. But how do you produce W2 of A here from 1 and 2. 

 

One needs to realize that in order to do that I have to have a substitution A for x in here to 

actually get this statement rewritten as not of W 1 A or W 2 A and in which case it resolves 

with W 1 A to give me W 2 A. This idea of finding substitutions of terms for variables to 

make expressions identical is an extremely important process in going towards first order 

proofs and is called unification. The set of substitution that is being used is called the unifier. 
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So, unification makes resolution of clauses containing variables possible. And the unifiers 

using a resolution proof actually provide a handle for using the proof outcome to answer 

questions because if I was using some unifier and it had given a value for an initial existential 

variable I know I am looking for an answer to the question that was posed as an existential 

formula. 
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The terms of an expression that I am trying to substitute can be variable symbols constant 

symbols are functional expressions. The later consisting of function symbols and terms. So, 

here is a substitution instance of an expression obtained by substituting terms for variables. 

Of the four instances if you focus on the first instance here I have substituted variable x in the 

expression with a new variable z, variable y with a new variable w and the constant B has 

been kept intact. 

 

So, the first of the four instances of substitution for the expression is actually an alphabetic 

variant except for replacing variables with newer variables I have not really gone ahead and 

did a real substitution. In the second instance shown here I have substituted an A for y. In the 

third instance the x has been substituted by a function of z. And this is interesting we will 

focus on this very soon. Here what this means that the variable x is some function of z and 

therefore I have substituted it as a function of z. 

 

The last of the four instances shown here if you take note does not have a variable in it. All of 

the variables have been replaced by constants. This is called a ground instance. A ground 

instance is when none of the terms in the literal contains variables. 
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Now let us look at a couple of properties of substitution that we were trying to do for 

unification. For two formulas Phi and Psi at least one of which contains variable I can talk of 

a substitution U that makes them identical. So, that substitution is called a unifier for Phi and 

Psi. So, here is an example I have two sentences P (A, x) and P (y, z) now I use a substitution 

U A for y and x for z one needs to realize that often we have more than one unifier for a pair 

of formulas. 

 

For example, in the above case I could go with a substitution which could be A for y B for x 

and B for z this is another unifier for these two sentences. Variables or term containing 

variables can also be used for another variables as you must have realized when I was 

showing you the example substitutions. 

(Refer Slide Time: 29:36) 

 

Necessary unifier will be apparent when you examine two classes. There is a whole body of 

theory on unification including unification algorithm which we will not cover here. Having 

said that let us look at unification a little bit more closely. So, our unification is a substitution 

and is a set of pairs t1 for V1, t2 for V2, t3 for V3 so on and so forth. Meaning that t1 is to be 

substituted for V1, t2 is to be substituted for V2. We write an expression E followed by a 

substitution s to actually denote the instance of expression E that results from making the 

substitution. 

 



Like in the example here I have our expression PA phi AB let us say I use a substitution A for 

x and B for y then this instance of expression E that results from making the substitution I 

could show by writing E followed by the substitution s. 
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The composition of two substitutions s1 and s2 is denoted as s1 s2 and is a substitution 

obtained by applying s2 to terms of s1 and adding any pairs of s2 having variables not 

occurring among the variables of s1. So, let us look at an example here I have a substitution 

s1 which says that the function g x, y is substituted for z and the second substitution s2 is a 

substitution that substitutes A for x, B for y, C for w and D for z. 

 

Now the composition of these two substitutions s1 s2 would be obtained by applying the 

second substitution onto the first substitution. So, when I apply s2 the substitution in s1 you 

should realize that this x need to be replaced by an A as shown here because A is for x and 

this y needs to be substituted by B because B is for y in substitution s2. So, here I have g A, B 

for z and then because these pairs for x, y and w did not occur in my original substitution s1. 

So, I have to add them into my substitution s2, so I added the pairs of s2 having variables 

which did not occur among the variables of s1, so I had to add for x, y and w. But for z, s2 

had a substitution saying D for z which s1 already stated as z of x, y for z and therefore this 

does not get included into the list of the composition of the two substitutions. 

 

Now let us look at a couple of properties of substitutions the first says that if I have an 

expression and a substitution s1 it is followed by a substitution s2. It is same as the 

expression being followed by the composition of the two substitutions. The second property 



is about composition of substitution being associative. So, if I have s1, s2 then s3 this is same 

as s1 and composition of s2 s3. 

 

However, substitutions in general are not commutative. So, composition of substitution s1 s2 

is not equal to s2 s1. 
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Having said that we could have multiple unifiers for an expression I can always find out at 

least one which is called the most general unifier which has the property that if s is any 

unifier for E yielding Es then I could always find a substitution s prime, such that the 

composition of the most general unifier with s prime will give me the same substitution as s. 

So, let us look at an example and try to understand what is the most general unifier. 

 

So, here is our substitution A for y and x for z, given the two statements above P(A,x) and 

P(y, z). I can now think of a substitution s prime which is B for x so we get a substitution s 

which is a composition of g and s prime. And this substitution says that A for y B for x B for 

z is same as the substitution which is a composition of these two. Now if we apply the most 

general unifier and then apply the second substitution s prime we get s. Note that the reverse 

would not be possible. 
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The most general unifier is important for it preserves as much generality as possible for a pair 

of formulas. And by using the most general unifier we are actually leaving maximum 

flexibility for the resolvent to resolve with other clauses. The most general unifier is not 

necessarily unique. I could have more than one most general unifier for a group of sentences. 

So, here is my pair of formulas P of A, x and P of y, z and you could see that A for y and z 

for x is also a most general unifier. 

 

There are many algorithms that can be used to unify a finite set of unifier expressions we 

shall be talking of them during the course of our discussion.  
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Now for completeness let us quickly look at a concept that we will cover in more depth in our 

subsequent lecture. So, this is the concept of resolution refutation which is about getting to a 



proof for a given statement by adding the negated concretion to the premise classes. So, what 

we do is we have a set of satisfiable clauses given to us. And a conclusion T to be proved the 

conclusion is negated and added to the original set of clauses. 

 

The whole set of clauses if it now resolves to an empty clause a contradiction has been found. 

If we have started with a non contradictory set of clauses and now a contradiction has been 

found the only reason the contradiction has come about is because of the negated conclusion, 

that means, the negated conclusion is not true. And it means that the conclusion follows from 

the premise. So, this is what we do we convert all sentences to clausal normal form. 

We negate the conclusion and convert result to the clause and normal form. Add the negated 

conclusion to the premised clauses and we repeat these four steps until contradiction or 

progress is made. If we succeed in step four in getting a contradiction, we have proved the 

conclusion. We will come back to this in more depth in subsequent lecture but what I want to 

emphasize here is that the first step in a resolution refutation proof is to convert all sentences 

to the clausal normal form. And this is what we will try to understand in the remainder of the 

lecture today. 
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A formula is in conjunctive normal form or clausal normal form if it is conjunction of one or 

more clauses where a clause is a disjunction of literals. And any predicate calculus well form 

formula can be converted to a set of clauses. Before we focus on the process of resolution and 

proof through a resolution refutation we will discuss how a first-order predicate calculus 

well-formed formula can be converted to a set of clauses. 
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So, the first step in converting to clausal form is to eliminate the implication symbol. So, here 

is an example I have a statement that says for all x W1x implies for all y W2y implies W3f x. 

So, I could replace this by not of w1 or whole of this sentence. And for the inside implication 

I could again bring not of W2 or W3. So, all occurrences of the implication symbol in a well-

formed formula are eliminated by making the substitution not x or y for any implication x 

implies y. 

 

The second step is to reduce the scope of the negation symbols. For example, here the 

negation symbol applies to the whole of the formula we want each negation symbol to apply 

to at most one atomic formula and we achieve this by repeated use of the De Morgan laws 

and other equivalences. Like here given this statement not for all y this portion which is an 

implication I could first push in the negation and write there exists y not and this implication. 

 

There after this implication could be replaced by not of Q or P and now we have discussed 

this while discussing propositional logic that when I have a statement that says not of P or Q, 

I could have not of P or Q being replace by not of P and not of Q. So, this statement already 

having a not there. Another not coming in here will give me a Q and here I will have not of 

Py and that is a conjunction. 

 

So what we have done by repeated application of the De Morgan laws is that we have 

reduced the scope of the negation symbol from the whole formula to an atomic formula here. 
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The third step in converting to clausal form is about standardizing variables. So, the scope of 

a variable is the sentence to which the quantifier syntactically applies and in here we could 

see that for all x this variable applies to the whole of the statement. Whereas there exists x 

this existential x applies to only W2 within the scope the variable is bound by the quantifier. 

And this bonding is to a dummy variable. 

 

So what we can do is we can uniformly replace any other non occurring variable throughout 

the scope of the quantifier without changing the truth value of the well form formula. That is 

given this x and this x here I could very well write this as y without any change in the truth 

value of the well form formula. Standardizing variables refers to renaming the dummy 

variables to ensure that each quantifier has its own unique dummy variable. 
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So, we have this fourth step on converting to clausal form which is about eliminating 

existential quantifiers and this is very vital for one to understand this step very carefully. So, 

here is an example we say for all y there exists an x, P of x, y. Now one should realize that 

this x that exists is dependent on the y. So, we would use a function g of y to remove this 

existential x. So, we can eliminate the existential quantifier altogether and write the 

universally quantified statement. 

 

For all y there exists x now this existence we should understand is possibly depending on y 

such that P of x, y is true. So, we allow an explicit function g of y which maps each value of 

y into x that exists and such a function is called a skolem function.  
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We will now look at a second example where we again have an existential quantifier there 

exists x P of x. But now if you look closely this existential quantifier there is no preceding 

universal quantifier. So, in example 2 the existential quantifier being eliminated is not within 

the scope of a universal quantifier. So, we can use a skolem function of no arguments which 

is finally a skolem constant and we can explicitly state the constant. 

 

Now this constant is referring to an entity that we know exists and this constant is called the 

skolem constant. It is important that the skolem constant that we talk of be a new constant 

symbol one that I have not used in other formulas to refer to known entities. 
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The fifth step in converting to the clausal form is about getting to the prenex form. One 

should realize that we have eliminated the existential quantifiers there are no remaining 

existential quantifier. And each universal quantifier has its own variable. So, what we can do 

is move all universal quantifiers to front of the well form formula. The scope of each 

quantifier is the entirety of the formula. 

 

Now and the resulting well form formula is said to be in prenex form. So, the premix form 

actually consists of a string of quantifiers which is called the prefix followed by a quantifier 

free formula called a matrix. 
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The next step is to put this in the conjunctive normal form. So, the matrix that we have got 

may be written as the conjunction of a finite set of disjunction of literals such a matrix is said 



to be in conjunctive normal form. Now recall that when I say matrix here what I am referring 

to is a quantifier free formula. So, here is an example that highlights the way the conjunctive 

normal form is arrived at by repeatedly using one of the distributive laws. 

 

Like if I have P or Q and R I could write it as a conjunction of a finite set of disjunction of 

literals P or Q and P or R. 
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Finally, I am having all the variables universally quantified bound and I could now eliminate 

the explicit reference to the universal quantifiers. And what I will be left with is a matrix 

which is in conjunctive normal form. Finally, I can eliminate the conjunction symbols. I 

eliminate the explicit reference to the conjunction symbols by breaking each of them as a 

clause. So, if I have a statement P and Q or R I could write as P and I could write s Q or R. 

 

Once I have written these statements in as individual statements the final step is about 

standardizing the variables apart. What it literally means is that the variable symbols may be 

renamed so that no variable symbol appears in more than one Clause. So, we have taken a 9-

step process of converting a first-order predicate calculus statement to clausal form. 
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One needs to realize that when I am using resolution as a rule of inference getting to the 

clausal normal form is the first step. Now, one thing to note here is interesting result that if, I 

have a well-formed formula Phi which logically follows from a set of well-formed formulas 

S, then it also logically follows from the set of clauses obtained by converting the well-

formed formulas S to the clausal form. 

 

And therefore I could work on the clausal form on resolution and still assure that what I am 

getting is what would have logically followed. Clauses are a completely general form in 

which to express the well-formed formulas. Iteratively if we apply the resolution rule in a 

suitable way, we would be able to prove that a first order formula is unsatisfiable. Now 

resolution refutation systems allow proving a theorem by adding its negation to the clauses as 

I was discussing. 

 

And arriving at a contradiction this we would take up for discussion in our next class thank 

you very much. 


