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Additional Considerations of Elastic Wave in Cylindrical Bar

Hello everyone, so we have already discussed about, the Wave Equation of a cylindrical bar,

while a projectile bar, hits the cylindrical bar. So, though that equation we derived, and the

analysis we did, it is not really very accurate. There are, some additional considerations, we

need  to  take  care  of.  So,  in  today's  lecture,  we  will  discuss  about,  the  additional

considerations, that we need to take care. 

(Refer Slide Time: 01:02)

So, whatever we found in an earlier lecture, the Elastic Wave in a cylindrical bar, is expressed

as, second partial of U, with respect to T, E by Rho, second partial of U, with respect to X,

and where the velocity of the wave is, V is, E by Rho. So now, we will talk about the, the real

situation, what happens, when a striking bar or projectile, hits the cylindrical bar. So, this is

our projectile, and this is our cylindrical bar. 

So now, this is moving at a velocity V, and it has a density, Rho-0 and A0. To remove any

confusion, you can keep this, Wave Velocity as C. So, because here, we are showing the

Projectile Velocity is V, and Mass Density is the Rho-0, and A0 is the Cross Sectional area,

and we assume that, both the cylindrical bar and the projectile, the material is same, so that,

the density is same. 



And, in this case, we can take the cross section, it is also same. So, what happens, when a bar

impact.  Suppose,  in  this  case,  in  this  figure,  it  shows the  impact,  this  projectile  hits  the

cylindrical bar. Now, what will happen is, we will see in the third figure. So here, there will

be, some stress pulses will be generated, the compressive stress. So, compressive stress will

go forward, in this direction. Let us say, this is the stress pulse. This stress pulse is going, in

this direction, with a velocity C. And then, similarly, there will be compressive wave, in the

striking bar, as well. The striking bar also, because the materials, are also same. 

So, with the same velocity, there will be wave on the other side, in the other direction. So,

both, compressive wave. Compressive wave propagates in, or we can write here, C0 is the

Wave Velocity. So, compressive wave, with velocity C0, in both, projectile and target. And,

the  cylindrical  bar  is  the  target.  So  now, after  some  time,  what  will  happen  is,  it  will

propagate more. 

And then, this in the projectile bar, the wave will actually reflect, in the free surface, this

surface, and then, it will return back. So, it will return back. So, this will reflect back, with

the same velocity, the reflection. So, at this end, a reflection at this, it will reflect. And, at that

time, on the target also, whatever it will travel, in the projectile bar, and the same distance, it

will travel in the target bar, as well, because, the velocity are same. 

Now, in this case, the total length of the pulse, we will see. After some time, this wave will go

into the target bar. And, there will be, it is a note, no wave in the projectile bar. So, this wave,

the length, that is the pulse, is now, only in the target bar. And, this length is the wavelength,

which is, can be depended with the capital Lambda. And, that is actually, equal to twice L.

So, L is the length of the Projectile. 

Let us try to understand, why it is twice L, when the wave reaches, the projectile back end,

that  is  L.  At  the same time,  the wave will  travel,  L distance here,  L distance here.  And

because, this is the velocity, assuming both the medium, because they are the same material,

both the bars, the velocity is same. 

So, when it will reflect back, from this end, and at that time, it will also travel, that much. Let

us say, this distance is X, after it travels back. And similarly, this distance will also be, X. So,



this, till this point, it is L, and the other point, it is X. So, that means, after the reflection, the

Stress Wave, that the pulse has a, actually total length of twice L, and that wave, it will go

forward, in this direction. 
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So now, if we use, the Conservation of Momentum. So, for the prior to the impact, and after

the impact. So, parallel to impact, and after the impact. So, if you see, from the figure, so

prior  to  impact,  it  has  a  velocity  V. And,  that  can  be  written  as,  prior  to  impact,  the

momentum is equal to, Rho-0 A0 L V. So, this is the mass. And similarly, after impact, so

this, Rho-0 A0, in the part of the bar, which has the stress pulse is, Rho-0 A0 into Lambda,

which will be multiplied by, the Particle Velocity. 

So, because that part of the bar only, have the compression wave, that is propagating towards

the right direction. And, that will give us, because Lambda is equal to twice L. So, because

the Lambda is equal to twice L, as we got, in the previous figure, so this will be, L U P. So

now, if we use the Conservation of Momentum, so Rho-0 A0 L V is equal to twice Rho-0 A0

L U P. 

So, this will give us U P, the Particle Velocity, is half of the Projectile Velocity. And again,

from our earlier discussion, the stress generated, in our earlier classes, we have learned that,

this Rho C UP, is equal to, half of Rho CV, now. This is, C the velocity wave. And so, UP is,

V by 2, now. So, we can express the stress generated, by the impact. 



So, stress generated by the impact, with a Projectile Velocity V, can be written, like this. So,

we  are  discussing  about,  additional  considerations,  for  Elastic  Wave  propagation  in

cylindrical bars. So, this is important for, Split Hopkinson Pressure Bar experiments, which

is, the most widely used experiment for, Dynamic Material Testing. 

(Refer Slide Time: 11:52)

So, it is important for, Split Hopkinson Pressure Bar experiment. Now, the expected shape of

the stress pulse, if it is in a simplified form. So, the expected pulse shape is, it is rectangular.

However, in real case, so we will get, significant fluctuations. So, there in the real case, it

looks like, something like this. 

So, significant oscillation, in real case. So, these effects will influence, the interpretation of

the Split Hopkinson Pressure Bar results. So, these fluctuation effects, that is actually also

called,  Dispersion  effect.  So,  these  fluctuations  will  influence,  how  we  interpret,  Split

Hopkinson Pressure Bar results. 
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So, we will discuss, how there are deviation, from the simplified case. So, initially, what we

got for uniaxial stress case. So, we found that, C0, the Wave Velocity can be expressed, as

square root of the ratio of, Elastic Modulus by Mass Density, E by Rho. And however, in real

case, in reality, so there are two effects. Number one is, Radial Inertia. And, number two is,

Wave Interaction with external surface. 

So, let us first check, what is Radial Inertia. So, in the simplified case, or simplified one, or

idealized one, so what we see, that the stress waves, in this cylindrical bar, the longitudinal

stress wave, so we think that this, compressive stress was coming from left to right, will

compress the bar, above this small section, and that wave, the compressive wave travels, from

left to right. 

But, in real case or in reality, so what happened is, when the compressive wave travels from

left to right, this section will be little, expanded in the vertical direction. So, that is, as you

can understand, from Poisson’s Effect. So, this is nothing but the, Poisson’s Effect. So, radial

expansion with, radial expansion or with axial compression. Now, in the first case, it is only

assumed that, we have axial compression, and no radial direction, deformation. 

So basically, if you see the cross section, the original cross section is, the length is Delta X,

and the diameter is D. And then, the final shape will be, like this, which is, 1 plus Epsilon,

which is the strain, multiplied by Delta X. And here, this will have, the Poisson Effect. So,

new Poisson’s Ratio, multiplied by a strain, the whole thing multiplied by D. So, and in this

case, because this is now, elongated little bit. 



So,  in  this  case,  we should  understand,  that  this  is,  the  strain  is  negative,  here  actually.

Because,  this  is  a  compressive  strain.  So,  Epsilon  is  negative,  which  will  have  an  axial

compression, and the radial expansion. And so, we will have some inertial forces, due to this

radial  expansion.  That  is,  material  flowing  outward,  due  to  the  kinetic  energy,  for  this

compression wave. So, there will be some inertia forces. These are inertia forces, along radial

direction. Radial direction, delay the, radial expansion. So, that is what, we mean with, by

this Radial Inertia. Okay. 
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Now, we will talk about, the Wave Interaction, at the surface. So, initially, we found this for a,

uniaxial stress case. So, C0 is, square root of the ratio of E by Rho, this is for 1-Dimensional

case, that is uniaxial stress. But, if we assume, 3-Dimensional effects, 3-Dimensional case, so

there are different calculations. First one is, we will talk about, Rayleigh’s calculation. And,

that gives us is, CP by C0, is 1 equal to 1 minus 3, Poisson’s square, Pi square, E by capital

Lambda, whole square. 

So,  CP here,  is  the Phase Velocity. The Phase Velocity, which is,  nothing but  the,  Wave

Velocity, in this 3-Dimensional case. So, when we allow that, multiaxial stress conditions, so

this  Phase Velocity  is  normalized by C0, which is  for the uniaxial  case.  And, Mu is  the,

Poisson’s Ratio,  Pi.  And then,  A is  the,  bar  radius  or  cylinder  radius.  And  then,  capital

Lambda is, the Wavelength. So, this calculation proposed by, Rayleigh. And, the another one

is proposed by, Rayleigh. 



And then, another one, another calculation, was proposed by, Pochhammer and Chree. So,

this is another one, we are not, will plot this, both of this. So, we do not include, the equations

for the second one. So, what we can see, from here, so, in 3-Dimensional cases, so there are

two.  One  is  the,  Rayleigh.  And,  the  another  one  is,  these  two  are,  commonly  used

calculations.  So, in this  case, so what we have is, the Phase Velocity, normalized,  by the

Uniaxial Wave Velocity. 

So, Phase Velocity is nothing but the, Wave Velocity in the 3-Dimensional case. And, that can

be also, sometimes known as the, Group Velocity. But, the Group Velocity is can be different

than, Phase Velocity. So, we are not going, into that details. But, we want to know, the simply

the variation of the normalized,  the Wave Velocity, for the 3D case, with the ratio of bar

radius, by the wave length. 

So, the first one, is the green, that curve shows for, Raleigh prediction. From this equation,

whatever we found, we already mentioned this equation. And, this dotted lines are for, C C1

by C0, which is longitudinal Wave Velocity. And then, C2 by C0, we have already discussed

about, C1, C2, and the CS, which is the, Rayleigh Wave Velocity. C1 is, we have found in the

earlier lectures, that Lambda by twice Mu by Rho, for longitudinal case. And, C2 is, square

root of Mu divided by Rho. And, CS, would be little less than, the Shear Velocity. 

So,  the Rayleigh  Wave Velocity  is,  little  less  than,  Shear  Velocity. So now, here we are

showing that, Rayleigh prediction, for the 3-Dimensional case, with the additional effects.

And then, we can see that if it is the, A by Lambda, is very small. That means, the bar radius

is very small. So, this implies that, CP by C0 equal to 1, or they are almost the same. And

then, if this A by Lambda, smaller than equal to 0.1, the Raleigh calculations are, accurate. 

Now, we will see, the second case, Pochhammer and Chree calculations, we have not any

included in an equation, but we will plot it here. So, plot will look, something like this. So, I

am just opening this curve, the same curve, so it will look, something like this. And, this

curve is, Pochhammer and Chree calculations. As I already mentioned, that if, A by Lambda

is, less than 0.1, these Raleigh predictions, are also accurate. 



But, otherwise, if A by Lambda is very high, the Raleigh prediction are, unrealistic, for A by

Lambda  high  values.  And,  in  that  case,  we  can  say  that,  this  Pochhammer  and  Chree

predictions are, better. They are better than, the Raleigh predictions. So, you can see that, at

higher value of A by Lambda, this PC, which we call in short form, Pochhammer and Chree

predictions or calculations, actually approaches the Rayleigh Wave Velocity, which is like

almost 0.5, 8 times of C0.

So, whatever we told about, C1, C2, and CS, so as we discussed, the dotted lines C1, for by

C0, this is normalized longitudinal Wave Velocity. And then, C2 by C0. And, then again, CS

by C0, the dotted lines. So, corresponding to C1, C2, CS, which are, I hope, you understood,

from earlier lecture, they are for, Unbounded Media. And, our C0 is for, Finite Body. So, C0

is for, Finite Body with Uniaxial Stress. 
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Then, we will discuss about, the Wave Interaction at free surface. So, let us see the first case.

So, let us assume that, we are hitting this cylindrical, the rod, with a projectile or striker bar.

And  then,  in  the  second  case,  what  we  get  to  know that,  while  this  compression  wave

propagates, so there will be some waves, that the wave will interact, with the free surface. 

And then, there will be some waves, will be reflected, from the interface. And, that is, we call

the Release Wave, from the interface. So, similarly, if you go forward, so this wave will, so

like this, the Release Wave. And then, similarly, we have this, the wave will propagate more

and  more.  And,  these  Release  Wave  will,  interact  among  themselves.  So,  these  are  the



Release Waves. We have learnt little about, the Wave Interaction earlier in, reflection and

refraction. 

So, the Release Waves, from the interface, will follow the Main Wave. So, this is the Release

Wave, and this one is the Main Wave. They interact, continuously, and cause the fluctuation

of Particle Velocity, which we denote it as, UP, earlier. Fluctuation of Particle Velocity, will

lead to, fluctuation of strain and stress, as well. So, that means, in an earlier slide, we have

shown that, this stress fluctuation.

So, that  is  due to,  this  Release Wave Interaction,  release it  from the,  free surface.  Okay.

Actually,  I  wrote  here,  interface.  But,  better,  we  can  write  it  as,  free  surface,  which  is

interface between, the air and the cylindrical bar. But, we can write it as, free surface. So,

these fluctuations can be predicted, by computation. For example, R Skalak has computed,

Distress Wave Predictions, in 1957. 

He used, Method of Double Integral Transform, to solve the problem of, this impact of a

cylindrical projectile, on a cylindrical rod. I am sorry. This Particle Velocity, I have made a

mistake  in  the spelling,  so Particle  Velocity, UP. So now, we will  discuss  about,  another

aspect of it. So, what will happen, when the cross section of the bar, changes? 
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Suppose, we have a cross section, of the bar here is A1, and here, the cross section is A2.

And, if we assume, the materials are also different, then that mass density will be Rho1 here,

here the Mass Density will be Rho2, and similarly, the Wave Velocity, if we say, C1 here, and

C2 here. This is, Longitudinal Wave Velocity. So, applying the force and particle balance,

what we have used, even earlier, Particle Velocity balance. 

So, we can find, the stress and the Particle Velocity, at the new cross section. So, we will

apply the force,  in Particle  Velocity  balance,  at  the interface.  And then, we can find, the

stresses and Particle Velocity, in the new cross section. So, this analysis is important in, Split

Hopkinson Pressure Bar, which we commonly abbreviated as, SHPB. Generally, we take the

specimen in a, smaller cross section or smaller diameter. Then the, bar diameter, and also the

material, we test is, let us say, can be, any ceramic or metal. 

And generally, this is the SHPB specimen. And, our bars are, used in the SHPB are, let us say,

very widely used bars are, Maraging Steel, high strength steel. So then, the properties will be

different, across the interface. So, as we can remember, from our earlier lectures, so Sigma

transmitted by Sigma incident, is equal to, twice Rho-B CB, divided by Rho-B CB plus Rho-

AC, where we know, Rho multiplied by C, is the Sonic Impedance. We call it as a, Sonic

Impedance. 

And similarly, Sigma reflected over Sigma I, is equal to, Rho-B CV, Rho-A CA, divided by

Rho-B CV, Rho-A CA. So, if we remember, the earlier calculations we did, in a previous



lecture that, the equilibrium at the interface, will require the inclusion of the area term. We

did not do, at that time. But, now we can, check that. So, what we had earlier, the equilibrium

is equal to Sigma I, plus Sigma R, equal to Sigma T. But now, we have the different areas. So,

Sigma I A1 plus Sigma R A1, equal to Sigma t A2. 

So, if you use these equilibrium conditions, so we will end up with our expression, Sigma t is

equal to, twice of A1 Rho2 C2. Sigma I is equal to, A1 Rho1 C1 A2 Rho2 C2. Here, it is

important,  this is A1, not A2, which, Rho2 and C2, on the numerator. And, similarly, for

Sigma R, Sigma subscript R, so this will be, A2 Rho2 C2, A1 Rho1 C1, divided by, you can

write first, A1 Rho1 C1, plus A2 Rho2 C2, and multiplied by Sigma I. 

So, which can be simplified as, Sigma transmitted, equal to, twice A1 plus A2 Sigma I, and

Sigma R equal to, A2 minus A1, divided by A1 plus A2 Sigma I. So, these are important for,

Elastic  Wave  propagation,  in  cylindrical  bars,  which  will  be  important  for  our,  Split

Hopkinson Pressure Bar calculations. Sorry, I made a mistake here. Probably, I somehow, I

forgot to mention this. So, we assumed in these two cases, that Material 1 and 2, are the same.

So, that means, Rho1 equal to Rho2, and C1 equal to C2. So, that will give these, simplified

expression for  Sigma T, and Sigma R.  So, as we discussed,  that  is  Split  Hopkinson, the

materials at the bar, and the specimen, will be different, and also, can be the cross section can

be different. So, with this, so we are closing this, chapter of Elastic Wave propagation. So

next, we will discuss, the Plastic Wave Propagation.


