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Hello everyone, so we have discussed about the experimental techniques of producing dynamic

deformation  in  earlier  lectures.  So  in  today's  lectures  we  will  discuss  about  the  plastic

deformation at high strain rate, so you will see some constitutive relations.
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There is a relation between stress and strain or other quantities like strain rate or temperature and

we will get these equations the mathematical relationships. And also we will see how the defect

structures, the crystal defects influence these relations. So plastic deformation at high strain rate

so I will write high strain rate as HSR so that will be easier for me.

So plastic deformation at high strain rate have a relation between stress and other parameters like

strain rate and temperature. So as we know that in the elastic region we have only Hooke’s law

that is sigma = e epsilon. But here and if you are talking about the plastic deformation at high

strain rate we need to consider the strain rate epsilon dot and we can also consider temperature

here.



So this  is  the constitutive  equation  I  am sure you know what  is  constitutive  equations,  you

probably  studied  in  your  solid  mechanics  classes,  constitutive  equations  for  high  strain  rate

plastic deformation. So as we know this plastic deformation it is irreversible and hence it is a

also path dependent. So that is why the deformation substructures here in this book that using the

phrase  deformation  substructures  which  means  mostly  the  defect  structures  like  dislocation

structures in the material.

So  this  deformation  structures  influence  the  material  behavior  or  the  plastic  deformation

behavior. So what we need to  do is  because this  deformation  substructures influence plastic

deformation.  So  we  can  right  now  rewrite  the  earlier  expression  like  epsilon  dot,  T  and

deformation  history. So  why  we  were  writing  deformation  history,  so  this  will  denote  the

evolution of deformation substructures.

So that  means suppose in  most  cases the dislocations  how the dislocations  evolves,  evolves

means with time,  with deformation  how the changes  happens in dislocation  structure  or the

deformation substructure.  And these deformation substructures also depends on the evolution

depends on strain, strain rate and temperature, so that depends on that these.
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So some plastic deformation theories use some effective stress and strain to express these you

know plastic deformation like sigma effective = root 2 by 2, sigma 1 - sigma 2 square + sigma 2

- sigma 3 square + sigma 3 - sigma 1 square to the power half square root of the whole thing. Or

maybe effective strain which will look like this epsilon 1, epsilon 2 square + epsilon 2 - epsilon 3

square + 1 - epsilon 3 square half.

So these are these effective stress and strain they are taken as a scalar quantity although these are

tensors . We are not going to use this, so there are some other options like shear stress and that is

tau and shear strain that is gamma can be used to express these plastic deformation theories. So

because matters and also polymers they undergo plastic deformation by shear.

So that is why we can use shear stress and shear strain to plastic deformation and then to come

up with some theories. So also more advanced analytical treatment and computational schemes

they use tensorial approach which we are not probably we are not using that tensorial approach.

Because it will be little difficult for us because you have different backgrounds, so we probably

did not study about the tensorial approaches earlier.

So that  is  we are  talking  about  the  advance  theories  or  you know analytical  treatment  and

computational methods, so I would just write analytical treatment. So these theories probably

will require tensorial approach with fully calculations which tensors.
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So if we plot the yield stress with shear strain rate, so that is we can call let us say gamma dot. So

this plot whatever we will be showing is from Campbell and Ferguson, so the yield stress as it is

for mild steel. So here they are using the lower yield stress as you know there will be the yield

point phenomena, so this stress strain curve will look like this, so this is the lower yield stress

LYS the upper yield stress is this one.

So this is the stress strain diagram we are seeing but here what we are showing is the yield stress.

So how it look like is suppose we can see that the yield stress will increase with strain rate. And

so what is happening here is this is in logarithmic scale, log scale, so let us say you have 1 here

10, 100, 1000 like this 10000. So here let us say 0.1, 0.01 something like that.

So here we are not plotting what about mega Pascal values here, but this is the first curve is for

very high temperatures 713 Kelvin. And then second one is 493 Kelvin probably these are very

this would be close to each other. And then the third one let us say 225 Kelvin and the last one is

195 Kelvin. So just to show you the variation here, so there are 2 observations they made that is

yield strength increases with the strain rate.

And the number 2 is that increase of yield strength is very prominent or significant at lower

temperature. Lower means as compared to d 713 or 493 Kelvin these are lower, so the increase



the difference is higher in that at lower temperature range. So we will what we will discuss next

is a the constitutive model for high strain rate plastic deformation behavior.

So what we need to do is, so whatever we have seen in this plot, so that can be you know the

summarized  if  you can summarize  the  data  you know data means that  from the plot  into  a

equation the mathematical equation we if we can plot into a single equation. That means that

should include that strain rate variation and temperature these effects, so we will try to find.

And then  what  we can  do is  then  we can  interpolate  or  extrapolate  to  predict  the  material

behavior at different strain rate or a different strains or temperatures. So that is what we will do

that to find a constitutive model for a suitable or appropriate constitutive model for high strain

rate.
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There are several equations were proposed and even an equations means constitutive equations

they were proposed and even successfully have been used. So that is objective of this equation is

to  summarize  the  yield  stress  behavior  the  variation  of  the  yield  stress  with  strain  rate  and

temperature.  So suppose if we try to have these relationship between stress and strain in the

plastic region.



And that there is a relation which is a good approximation, so this is at low strain rate low and

constant  strain  rate.  So  and  then  if  you  want  to  talk  about  the  flow  stress  dependent  on

temperature. So there is another model that is put forward is like this 1 - T – T r T m – T r so we

will see what these means. Similarly if we want to see the variation of flow stress with strain rate

or effect of strain rate.

So that stress is proportional to nature logarithm of the strain rate, so here in the first equation.

So this sigma 0 is the yield strength and n scholars work hardening coefficients and k is the pre

exponential factor. That I think all of you know that this is work hardening or strain hardening

exponent or we can call coefficient. And then k is also a constant, this is we generally write as

pre exponential factor.

So similarly for the flow stress temperature dependent relation that is sigma R is the reference

stress T m here is the melting point melting temperature, T r is the reference temperature. So m is

a experimentally determined this is the fitting parameter that you know when you want to fit

your experimental curve. So with this equation, so we may need this fitting parameter.

And then the third relation  is  the sigma that  is  directly  proportional  to  natural  logarithm of

epsilon dot, that is the strain rate. So that is also not very high strain rate at strain rate it is not

very high probably this relation yeah it is not for very very high strain rate but we can go to

moderate high strain rate.
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So if we want to plot these variations, so we can get like this yield strength and the temperature

curve will  look something like this.  So that  with temperature increase so yield strength will

decrease and the curve looks like this. And again if we draw the yield strength variation with

strain  rate  epsilon  dot,  so  this  will  vary  like  this.  And  if  you  are  talking  about  a  lower

temperature, so it will look like this, so this is T1 and T2 here T2 is higher than T1.

So these are the plots the shape of the plot it does not look very good, so these are the shape of

the plots. We will talk about now Johnson Cook model a plasticity, so which is a very widely

used and successful for specially for high strain rate, I will write HSR the high strain rate for

high standard plastic deformation behavior. Johnson and Cook basically summarize and then use

the basic ingredients like the stress dependence on strain, a temperature and strain rate.

So using these basic ingredients and proposed a relationship say which is equal to sigma 0 + B

epsilon to the power n 1 + c natural logarithm of epsilon dot divided by epsilon dot, epsilon dot,

epsilon 0 dot. And then 1 - T star to the power m, so the power for the T star only. So this

equation have 5 experimentally determined parameters, so here you got sigma 0 B and n, here

you got c and here you got m.

So these are the 5 experimentally determined parameters, so this equation this model it is was

very successful. And so has been predicted and the plastic response plastic deformation of many



specially  metallic  materials,  this  is for metallic  materials.  Many metals  at  high strain rate or

under high strain rate loading, so this is predictions was actually predictions are very successful

for many metallic materials.

And these parameters are already available, so you can see in the let us say table 13.1 in the

Mark Meyer’s book. So you can see all these parameters in a tabular form, and then for many

materials these are already available. Suppose for n is whatever you can see from this table is the

range is 0.12, 0.42 generally this varies from 0.12 to 0.6 but whatever I mean I am focusing is

that these only this table.

And this table has I will just speak I will not write all those, so OFHC corporate cut is brass,

nickel  200  Armco  iron  and  then  carpenter  electrical  iron  1006  steel  2024  Aluminum,  7039

aluminum and 4340 steel. And there are 3 more materials, so these materials have a you can see

the range of n is like that and then c will be it is a smaller value 0.0072, 0.06.

And then  m which  is  the  thermal  actually  exponential  thermal  softening exponent  which  is

mostly it is equal to 1.0 or even higher or higher, even there are some lower values are also

available. So and sigma 0 and B are which are we express in terms of mega Pascal. So they are

also kind of it can vary from 100 to 1000 these range are let us say 100 or even less than 100 to

1000 in this range these parameters.

But these are experimentally determined and so for many materials these are already available.

And we will we did not discuss about this T star, so T star = T – T r which is the reference

temperature and then T m melting temperature – T r. So this we already got this in the earlier

slide, so this is we already wrote, epsilon dot in this equation epsilon dot 0 as a reference strain

rate.

It is taken generally as 1 for convenience this is actually reference strain rate and then sigma 0 is

measured at reference temperature T r. So T r the reference temperature, sigma 0 is measured at

that temperature. Also as I told her this is used for mostly for metals but sometimes it is also

modified for ceramics as well. This Johnson Cook model has been modified for many materials.



This is some of the researchers they modified the equation a little bit and so that it can fit to I

mean different kind of materials. And the so some researchers even they tried it for ceramics and

they were able to get reasonable prediction from this Johnson Cook model for ceramic as well.

(Refer Slide Time: 26:01)

As you can see that there are different models, so these models will have exceptions so it is

difficult to you know propose 1 theory proposed a unified theory for all materials. So that is not

possible because so materials are all different they follow different rules, so it is not possible to

get a unified theory. And also this is the first point and then the second point is there are different

deformation mechanisms.

So  different  deformation  mechanisms  that  means  plastic  deformation  mechanism,  that  we

already  discussed  in  our  materials  basic  lecture.  So  as  we  know  we  have  dislocation  slip,

twinning and phase transformations or mostly we discussed about martensitic transformation. So

here in this section we will only talk about slip, that is dislocation slip not the other 2.
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So here we will talk about this 1edge dislocations, here we have edge dislocation I hope this

figure is clear to you. So this is an extra half plane, so this extra half plane these lines vertical

lines or an horizontal line, so the atomic arrangements we are not drawing the atoms but showing

only the lines. So these whatever I am highlighting with red color, so that is the extra half plane

and if you say where is the dislocation line that is perpendicular to the plane of this diagram.

So and then this is the slip plane, the slip plane is you know we were seeing in 2-dimensional but

if you extend it to the third dimension you will get the slip plane. So now this dislocation is

moving towards right and then it is now after this you know first it was let us say we are talking

about a perfect crystal. Here we have a dislocation and then if the dislocation moves, so there is 1

step created that is equal to burgers vector B the magnitude of this.

And here also maybe this is same as the burgers vector B one step, 1 atomic distance, here we are

doing is we are applying some shear stresses tau which is in this direction also you can show.

This is we are applying some shear stresses, so shear stress tau moves dislocation. Here in this

case we are showing only one edge dislocation and here again in the lower figure what we will

see is that let us say we have a square domain a material, that is say L and L length.

And then let us say we are applying some shear stress tau and there are some dislocations are can

be shown with this symbol, that is a symbol for dislocation.  So we are drawing let us say 4



dislocations here, so these dislocations when they will move this direction they can have, so this

is 1 slip plane let us say number 1 dislocation move and can create a step here.

Similarly the other dislocation in a parallel slip plane will move and create a step, step means the

making a step here.  Similarly  another  dislocation  can move and make a  step here and then

another parallel plane here. So the finally the shape will be look like this, so this final shape will

be look like this. So this angle let us say assume this angle is theta and , so now what we will do

is, so this second figure that means in the lower figures of the above talked figures.

So below 2 figures what it says is that moment of array of dislocation movement of array of

dislocations results in shear strain gamma. So air array means as you can see we have drawn 4

dislocations here, and also on the same slip plane just I want to clarify this under a same slip

system there will be more dislocations.

So after 1 dislocation here for a simplicity we are showing that just 1 dislocation is going out of

the crystal. But there can be more dislocation on the same slip system there can be 100s or 1000

of them. So the movement to the area of dislocation will result in a shear strain that is gamma, so

we will see how to calculate these gamma. So this shear stress the force on the dislocation per

unit length in this case is force on dislocation.

So we will write per unit length because the dislocation is a line defect, so it looks like a line, I

have not shown you any figure. But if you see in transmission electron microscope TEM the

dislocation will be seen in that transmission electron microscope and this dislocation will look

like a noodles like Magi noodles. So these are lines basically though that may not be a straight

line what we are seeing is some of our diagrams even in materials basics lectures.

We saw a straight line is a dislocation but that may not be the case that can be a curve, so and

that may look like some noodles. So what happen is, so when you are calculating the force on the

dislocation,  so  you  need  to  calculate  the  force  per  unit  length  not  the  entire  length  of  the

dislocation,  entire  length  can  be  very  high.  We even do not  know and  we it  is  difficult  to



discretize  and say that  ok this  is  1  dislocation  or  something like  that,  it  may be you know

continuous curve line.

So that force will be equal to tau that is the shear stress multiplied by the magnitude the burgers

vector so burgers vector. So that means that is the dislocation burgers vector you can write or that

offset that caused by the dislocation. Here you can see this is the burgers vector magnitude, so if

1 dislocation goes out of this surface that is the distances B. So this is the force per unit length

acting on the dislocation.

Now we will see another thing that the gamma I will write it here only although it does not look

good. But this gamma that shear strain will be equal to tan theta in this case from your definition

of shear strain. We know that let us say this portion is L and we need to know this distance, so

how to get these distance is we know we are assuming this 1 step is B or in this side also you can

see that this is B or even this portion is also let us say B.

And again this portion is B, so here we are not assuming let us say array of dislocation. But let us

say we are talking about only one dislocation now, so then only one step and this step length is

we can say that equal to B. So now if you have 4 dislocations we have here also B, so if you have

4 dislocations, so then it will be the total distance will be 4B.

Now instead of writing 4B we can write N b, so n is number of dislocations per unit area. So you

can get that gamma = tan theta which will be equal to now N b by L you can see this is if you see

this triangle and this angle is theta, triangle means I want to tell you about this triangle. And this

is the perpendicular and the base so N b by L will be equal to gamma ok.
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So we will write again here, so gamma will be tan theta which will be equal to N b, N is the

number of dislocations per unit area, b is the magnitude of the dislocations burgers vector. And

then divided by L, L is the our domain or size of the materials sample and then what we can do is

we can write it like this N b l divided by l square. So we are multiplying l both above and below.

And so we should know that the number of dislocations per unit area and divided by l square will

give us the dislocation density rho, that is the dislocation density, so this is dislocation density.

So here what we can do is we can write now N by l as rho N b l, so that is equal to gamma the

shear strain. So here I will write shear strain, shear strain produced by the dislocation movement.

So now we can take the time derivative, if we take the time derivative then we get that d gamma

by dt rho b derivative of l with respect to t. So d gamma by dt is nothing but the shear strain rate

with a dot on top of it and then rho b and we can write v small v. So v is the equal to dl by dt. So

this dl is you can see we have l here this l so the dislocation moves let us say in time T you know

if it moves in the x direction.

And  then  if  we  take  the  derivative  of  l  with  respect  to  t  that  will  give  us  the  velocity  of

dislocation. So this equation is very important and this is called as Orowan equation. So that

equation shows the relation between shear strain rate, so here if you want to know this gamma

dot is shear strain rate, rho is the dislocation density. We have already written there dislocation



density  and the  v is  the  burgers  vector  magnitude  of  burgers  vector  actually  burgers  vector

magnitude.

And v is the as you know velocity of dislocation we have wrote here, the shear strain can be

converted to longitudinal strain epsilon by adding orientation factor. So here in this book it is not

discussed in  details  but other  books probably form on the mechanical  behavior  of materials

Meyer’s and Chawla. So they are referring it to it, and then this is orientation factor that is m, so

m is can be different for different crystal structures.

So from this book from Meyer’s and Chawla, so they are saying that m they are taking m 3.1 for

FCC material and m = 2.75 for BCC body centered cubic metal. So what the expression I did not

write yet, so d epsilon by dt that is epsilon dot will be equal to 1 by rho bv, so the m factor is

different for different materials.
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In a generalize tensorial form just I want to write that but we are not going to discuss at all, this

will be little advanced for you. Generalize tensorial formulation is, so plastic strain rate is k = 1 n

b I will let you know what is k and then rho V k. So you know what is b rho V and then m k and

this n k, so these are the vectors I will tell you what is this.



And so basically what happens here is this k 1 to n is the number of slip systems, so these are the

slip systems. So as you know there are different number of slip systems, so in FCC materials this

n can be 12, so for each list slip system of the contribution should be calculated. And here m and

n, so this is we writing the product of tensor product of m, m is for each slip systems this slip

direction.

As I told you in earlier class of materials basic this is the slip direction and n is the slip plane

normal direction, these are the vector slip plane normal direction. So just to let you know that the

slip direction in the slip plane normal direction can you know influence this. So that is why

although whatever we got early as a simple expression but then this slip systems can influence

this the strain rate.

Here the strain rate in a longitudinal strain right, so this is we do not need to discuss more on it

but this is a important result. So with that so we are actually closing for this lecture. So what we

discussed here is we discussed about the constitutive relations empirical constitutive relations

which is a very successful one equation is Johnson Cook model. And we also discussed about the

basic high standard plastic deformation relations between stress function of strain, strain rate and

temperature.

And that relation can be is summarized in with the help of this Johnson Cook model which is the

most widely used. But there are other models also available in it, and then we also found about

this R1 equation, the R1 equation gives the relationship between shear strain rate with the density

of dislocation. And this the velocity of dislocation, so we will continue this discussion, so we

have more to discuss about the plastic deformation behavior at high strain rate, so thank you.


