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Hello everyone, so in the last lecture, so we have discussed about the Taylor's experiment,

that is, impact of a bar of finite length. So, we will continue, this discussion. So, what we

discussed in the last class is, the particle Velocity of that impacted bar, at different point of

time. So, we will again go through that discussion, a little bit again. So basically, what we

have here is, that there are different steps, or sequence, number 1, number 2, number 3, 4, 5

and 6.

So, we remember that, this C is the Elastic Wave Velocity, and the plastically deformed part,

in step number two, that plastically deformed part will move at a Velocity V, which is the

Plastic Wave Velocity. And, so what we did in the last class, so we found out that, for the

Region 1, here I wrote, Region 1, or we can write it as, R1. So, I think in the last class we

had, this was written as R1, this Region 1, and then R2, in this case, and then R3. So, we will

write, R1, R2, R3.

So, the particle Velocity, for R1 case is, just U, which is U, is your Impact Velocity, and that

is the Velocity of the back portion of the projectile, or that impact bar. So, this is actually you



can see, that Velocity of the back portion of the bar. So, that is the Impact Velocity. So, for

region R1, the particle Velocity is U. Or, we can write, U p equal to U, that means, U p is the

particle Velocity, general symbol for other particle Velocity. For region 2, for R2, we can see

that, the region is behind the Elastic Wave front, which is Elastic Wave front, is this one, and

this is Plastic Wave front. 

So, this, in between the Elastic and Plastic Wave front. So now, for particle Velocity U p here

will  be,  U minus.  So, the particle  Velocity  from the Elastic  Wave, that  we calculated as,

Sigma C Rho0. So, Sigma is nothing but the, dynamic yield strength here, so this one. And

then, if  we talk about region R3, so then what is happening here is, so we have particle

Velocity will be, that we talked that, U minus twice Sigma yd Rho0 C.

Why it is, twice Sigma yd, we did not discuss much about this. So, what happens, when the

wave travels, you can see from sequence 3 to sequence 4, what happens the wave travels, and

then come back from the free surface, so what happens, if we draw it here, this thing in a

bigger way, so what happens is, this is the wave, which is compressive, I will write C, I will

write compressive wave, and this is the free surface.

So, this free surface, will reflect the way back, and that will be a Tensile Wave. So, this will

be a Tensile Elastic Wave. So, in the earlier discussion, in an earlier lecture, we show that,

this reflected wave, divided by this Incident Wave, that the stress is minus 1, that means, for

free surface,  a compressive wave will  reflect back, as a Tensile Wave. However, we also

discussed that, the particle Velocity of the reflected wave, that is, relation with the particle

Velocity of the Incident Wave is, plus 1.

So, that means, whatever particle Velocity here, that is U pi, and then U pr, the reflected

wave, so this is the Incident Wave, and this one is the reflected wave, so here also, the particle

Velocity will be, in this direction, and this will be U pr. So, we can see that, both the sense of

the reflected and the incident particle Velocity, is the same. Or otherwise, so we discussed

that, for compressive wave, U p and wave Velocity.

Let us say, we write as, wave Velocity as V, they have same sense, and for Tensile Wave U p

and  V, has  opposite  sense,  that  we discussed  earlier.  So,  here  you can  see  that,  for  the

compressive wave, that particle Velocity, and the compressive wave Velocity. But, this is the



propagation of wave direction, for compressive wave, so that, U pi and this Incident Wave, is

in  the  same  direction.  Similarly,  for  the  reflected  wave,  the  Tensile  Wave  propagation

direction, is opposite to the U pr direction. So, that is what, the above statement says that, for

Tensile Wave, the U p and VR, opposite ends.

So, it is because, both U pi and U pr in the same direction, so we need to subtract that from

the U, which is the Impact  Velocity, or as we discussed,  that is the Velocity  of the back

portion of the bar. So, ultimately, if we want to know the particle Velocity, inside the Region

3, R3, which is actually left of that reflected or Release Wave front, this is the reflected wave

front is, so-called release wave, then it will be, U minus twice of the term Sigma yd C by

Rho0.
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So,  now  we  will  go  ahead,  and  we  will  discuss  that,  something  else,  I  mean,  we  are

continuing it. So, we want to see, how much time it takes, for this Elastic Wave, this is the

Elastic Wave front, how much time it takes, from this plastic boundary, that is, that plastic

boundary means, we can call elastoplastic interface, or you can simply call, plastic boundary

interface or boundary, so because, this side is plastic, and this side is elastic, so how much

time it takes, for the Elastic Wave front, to go forward, and reflect back at the free surface,

reflect back and to reach again, in the elastoplastic boundary. 

And, that is, we can call the time taken is, DT twice X by C. So, this is X. So, that is, time

taken to, by the Elastic Wave front, to travel from elastoplastic interface, to the free surface,



and reflecting again to the plastic boundary, or elastoplastic interface. So, this is twice X by

C. And also, for Velocity of Plastic Wave propagation, that is V, we know that can be written

as, DH by DT, because h is that thickness of the plastic zone. So, we are talking of the same

time interval DT.

So, suppose, we have DH equal to v DT, at the same time interval, so we will see that, DH is

the plastically deformed region thickness, at time DT, so which we can write is, from the

above relation, we can write it as, V twice X divided by C. And also, if you want to know

that, du, that is the change in Impact Velocity, or change in the Velocity of this back portion

of the impact on the bar, so that will be equal to something like, U minus Sigma yd C Rho0,

minus which is, before reflection, and then, this will be equal to Sigma yd C Rho0, so which

is after reflection. 

So, this will give us as, D U equal to twice Sigma yd C Rho0. So, this is one relation. And

then, the plastic region advances a distance DX, during time DT, that is, let us say, twice X by

C, here from the above. So, that we can write as, DX minus U plus V multiplied by the time.

How we got this? That is, actually we earlier discussed, the mass going into, from the left

side of the boundary, to the right side. 

The virgin material goes inside the plastically deformed part,  that is from conservation of

mass, we showed that, the mass in, is U plus V, which is because, the back surface is going at

a Velocity U, and this interface is coming at a Velocity v, so if you want to know that mass

going inside this plastic region, is actually the U plus V, because the elastoplastic interface is

going towards left, and then this back portion of this bar is going towards right, at a Velocity

U. 

So, this will be, U plus V, we are writing minus because, we are writing that plastic region

advances,  that  is  right  to  left,  so it  is  minus U plus  V, which  is  opposite  to  the Impact

Velocity, so multiplied by the time twice X by C.
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So now, from this discussions, what we can know is, DH by DT. So, DH by DT equal to V,

which is a Plastic Wave Propagation Velocity, the definition. And then, DX by DT, which we

just found out, U plus V. This is nothing, but this relation. And then, we have du, DT, which

will be equal to, Sigma yd Rho0 X.

How we got this relation? And, it is actually, we have du equal to twice Sigma yd divided by

Rho0 C. And, if we replace the C, because C is nothing but, we got that, DT equal to twice by

C, or we can write that, C equal to twice X by DT. So, if we replace this, let us say, C minus

twice Sigma yd, divided by Rho0 twice X DT, and what we will get is, here from we can

cancel out the two, and then finally we can end up with, this relation. 

So, from these two relations, what we can get is, DX du is equal to, U plus v Rho0 X, divided

by Sigma yd. So, from conservation of mass, we know that, what we discussed in the earlier

classes, plus A0 v Av, so that, why the area is different, because the plastically deformed part,

and the other part, has a different area. So, this can be, we can found out that, v is equal to A0

U, divided by A minus A0. 

And, in terms of strain, so what we can do is, A0 by A, 1 minus A0 A, multiplied by U, and

this will give you, 1 minus Epsilon into Uv. So, what we got is, Plastic Wave Propagation

Velocity v, in terms of strain, and the Impact Velocity U. So, what we will do is, we will

substitute this v, in this above equation, so that will give us, DX du will be equal to, U plus U

1 minus Epsilon divided by Epsilon, this Rho0 X divided by Sigma yd. 



So, this part, U plus U 1 minus Epsilon divided by Epsilon, will give us, U by Epsilon. And

then, finally the expression will be, Sigma yd, Epsilon Rho0 X. So, we can write as, DX by X

Rho0 Sigma yd Epsilon U du 

(Refer Slide Time: 19:22)

So, this expression, if we can use one earlier expression, which is Rho U square, Sigma yd, is

equal to, Epsilon square 1 minus Epsilon, and if we can replace U, from this relation to the

other relation, and then if we integrate, what we can do is, using this relation, in the earlier

relation, what we got in the earlier slide, and then if we integrate it, so I am writing the final

expression, I am not going into the detailed derivation of this, just left few steps. 

And, then finally, what we can get is, LN of X square integration, 1 by Epsilon, D Epsilon

square, 1 minus Epsilon, which will give us, integration by parts, that will give us as, which is

just integration, that is, U dv is equal to Uv minus v du, so applying that, what we will get is,

Epsilon square, Epsilon into 1 minus Epsilon, minus Epsilon square minus 1 minus Epsilon,

and D 1 by Epsilon. 

So, actually D Epsilon will be, minus 1 by Epsilon square, that means, what we can get is,

Epsilon square, D 1 by Epsilon, differential  of this, and is equal to, minus differential  of

Epsilon, so that way, we can write it as, 1 minus Epsilon plus, 1, 1 minus Epsilon, D Epsilon.

And, that can be written as again, Epsilon, when we do the integration, with a constant of

integration K. 
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And, we will use some boundary conditions here, like, at X equal to L. L means, first the

initial  length of the bar, when impacting the rigid wall.  So, this length is L. So, when it

impacts the rigid wall, so let us say, the strain is, Epsilon equal to Epsilon 1. And, let us

assume that, Epsilon is equal to Epsilon 1. And then, if we use that relation, so which will

give us as, you know, the constant of integration K, which will be equal to, Ln L square,

minus 1 minus 1 by Epsilon 1 plus Ln 1 minus Epsilon 1. 

And, that will give us, if we replace that in the earlier expressions, so we will end up with, Ln

x L, whole thing to the square, 1, 1 minus Epsilon minus Ln, 1 minus Epsilon minus, 1 minus

Epsilon 1. There is a constant of integration. So, 1 minus Epsilon 1. So, again, at x equal to

X, so Epsilon equal to 0, then this actually the end of the deformation,  when the Elastic

Wave, that is released from the free surface, that is back surface of the impacted projectile,

the bar. 

So, that okay, I will draw it here. Suppose, when this is the rigid wall, so the final shape of

the projectile will be, like this. So, what happens, when the Release Wave, goes back from the

free surface,  this  is  the Release Wave,  and then meet  the Plastic  Wave here,  so then the

deformation will end, and the strain will be 0, at that point. So, this distance, we can call it as

X,  and  then,  total  distance  is  L1.  This  is  the  initial  configuration,  and  this  is  the  final

configuration. 



So now, if x equal to X, and Epsilon equal to 0, so then what we can get, this relation can be

written like, 1 minus, because Epsilon equal to 0, in the above expression, 1 minus 1 divided

by the 1 minus Epsilon 1 plus Ln of 1 minus Epsilon 1. From an earlier expression, what we

know is, Rho U Square Sigma yd, which is dynamical strength, is equal to, Sigma 1 square

divided by 1 minus Epsilon 1. 

So now, what we can do is, if we eliminate Epsilon 1, from these relations, this A and B, if we

try to eliminate Epsilon1 from A and B, so we will end up with an expression of L1 L2, we

can find out alone at that final length, and divide by L, is a function of Rho U Square Sigma

yd  is  a  function  of  this.  So,  Taylor  actually  plotted  this,  and  prove  this  model  with

experiment, so we can get both L1 by L and L1 minus X divided by L. So, we can get these,

if X by L and Epsilon 1, known. 
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So, what we know from the Taylor's plot is, Rho U Square Sigma yd, which is a 1, 2, 3, 4, 5,

and in this direction, L1L, or maybe, we can plot even, L 1 minus X by L, both, we can plot

in the Y direction. So, for L1L plot, this looks, something like this. So, this is L 1 by L, and

this  is  1,  let  us  say 0.2,  0.4,  0.6,  0.8.  And,  also for  L 1 minus X 2,  this  will  look like,

something like this. So, this is L 1 minus X by L. 

So basically, whatever the model, the theory, Taylor proposed, and the experiments observed

results, very close to the prediction is very good, when this value is Rho U square by Sigma

yd is around 0.5. But, if you go away, and so this will show some deviation, so the prediction



is not so good. It is something like this. These are all, from the Taylor's original experiments,

and then theoretical predictions. 

So basically, if Rho U square divided by Sigma yd is equal to 0.5, the shape will look like

this, and the prediction is good. But then, when it has higher value, so Rho U Square Sigma

yd is equal to, let us say, this is the wall, let us say, so if it is equal to 1.63, so it will be look

like this. And, if it is even higher value, so it will take a, maybe this kind of convex shape,

and this is Rho U Square Sigma yd is 3.2. 

So now, this way, we call this as Mushrooming effect. The shape of the bar, will look like

this. And, although it is little not exactly correct, so it may be the first one, we can draw a

little  longer.  So,  if  we  go  this  way, and  if  the  Impact  Velocity  is  very  high,  so  this  is

increasing Impact  Velocity, if  it  is  very high Impact  Velocity, the shape of the deformed

projectile or bar will, can be very different.

And, it can even take a concave shape. So, for this Taylor's experiment is for steel projectile,

or steel bar. And, for a steel bar, this value 0.5 is can be, the U the Impact Velocity is like, 250

meter per second. So, you can imagine, how fast it will be, for the other cases. One important

result of the Taylor, this analysis or the Taylor's experiment is, the Velocity of Plastic Wave

propagation.
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So, Velocity of Plastic Wave propagation, we wrote it as, DH by DT. So, that is nothing but,

the change in the total distance, of the elastoplastic interface,  from the impact plane, that



means,  whenever  you have  some deformation  like  this,  so this  elastoplastic  interface,  so

distance here is H, so this distance, how fast it is moving away from the impact plane, and it

will give us the Plastic Wave Velocity. So now, the total time from the, initial length L, to

finite length L1, so the total time is like, what we can found out, from this is, Rho X Sigma

yd du. 

So, how you got is, earlier one expression, we know that, du by DT is like, Sigma yd Rho0 X.

So, we assuming Rho here, not Rho0, let us say. So, that is the expression, we got. So, this is

the total time, and from another equation, we have the U, in terms of strain, what we found is,

Sigma yd by Rho and Epsilon square 1 minus Epsilon, entire thing square root. So, what we

can find is, if you replace this one, U, in this du, so what will happen is, D Epsilon, Epsilon 1

minus Epsilon.

So, this will take a shape like, it is like D Uv DX, which will be like, V square V du DX

minus U dv DX, so that way, this expression will be like, 1 minus Epsilon into 1 plus 1 minus

Epsilon, which is square of the square root, and then, E1 by twice 1 minus Epsilon. So, this

will give us something like, 1 minus 0.5 Epsilon, divided by 1 minus Epsilon to the power 3

by 2. And, so basically, D E1 minus Epsilon square, will be equal to 1 minus 0.5 Epsilon,

divided by 1 Epsilon to the power 3 by 2 D Epsilon.

So, finally if we want to get an expression of the T, which will look like, Rho by Sigma yd,

square root of the whole thing, into multiplied by the integration of X, will be here, and 1

minus 0.5 Epsilon 1 minus Epsilon 3 by 2 D Epsilon, and the entire thing will take a limit

from 0 to Epsilon 1, because at X equal to L, the strain is Epsilon, and then X equal to Ln,

and the final strain will be equal to 0. This will be, 0. And, we have a minus sign, here.

So, this will be, now we can take, from 0 to Epsilon 1, we reversed it with the minus sign, so

this is a total time, and we have a relationship with Rho Sigma yd, we have a relation like

this. And then, what we can have from these two, Ut L Epsilon 1, 1 minus Epsilon 1, square

root 0 to Epsilon 1, x, L is coming for, this L on the left hand side, and then also the U. The U

is nothing but, I will show on the top. So, okay, we already have that, sorry, so we do not

need to write this U here. So, this U will be, that way, and this L is from here, so 1 minus 0.5

Epsilon, divided by 1 minus Epsilon 3 by 2 D Epsilon. 
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So, if this relation, if you want to do numerical integration, of the earlier expression, will give

me some curve, so that can be in terms of Ut by L, and this way you can have, hl is the

thickness of the plastically deformed region. So, that is like, if you have this as, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6 and 0.7. So here, 1, 2, 3, 4, 5, 0.1 0.2, 0.3, 0.4, 0.5. So, what will happen is, this

will look, something like this. 

It is kind of a straight line, close to a straight line. So, this will be, for this one is for, Epsilon

1 equal to 0.5, and this one is equal to, Epsilon 1 equal to 0.7. So, the value Rho U Square

Sigma yd is 0.5, as we discussed. And, this is the actually, end state here, so it will end here.

So, Rho U Square Sigma yd, it is 1.63, that we have earlier, even shown that, one of our, this

1.6 to the same ratio here, we are taking.

So now, actually we can write as this, h by L, Ut by L, is nothing but that, 1 by U h by t, is

equal to 1. This will be, equal to, close to, 1, or we can write, strain Epsilon 1 is equal to 0.5.

And then, and if L equal to 0.5, if Epsilon 1 equal to 0.7, so here, we can see these two plots,

same in to same, plotted in two curve. So, the basically, this H by T is nothing but, the Plastic

Wave Propagation Velocity, so that means, your V by U is equal to 1, so which is the Impact

Velocity.

Impact  Velocity  U, and this  is  Plastic  Wave Propagation Velocity, they are equal  for our

strain, that Epsilon 1 is equal to 0.5, the maximum strain, or it can be equal to the v, actually.

V and U is equal to 0.5, for Epsilon 1 equal to 0.7. So, yeah, this is mostly, it  is almost

proportional. So, what we got hit here is, h L by L, nearly proportional to, Ut by L.



So, this is what, from the Taylor's experiment. So, we will continue this discussion, we have

some more discussions on it,  for Taylor experiment.  And then, we will  start,  the another

chapter of Shock Wave. So, before going to Shock Wave, we will have a little discussion

about, these Taylor's experiment, so we will try to solve, some numerical problems. Thank

you.


