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Taylor's Experiment for Plastic Wave Propagation 1

Hello everyone, so we have discussed about, Plastic Wave of Uniaxial  Stress, and Plastic

Wave of Combined Stress, that is, shear and longitudinal Plastic Wave. So, we have seen,

different experiments to produce, Plastic Shear Wave, with Plastic Longitudinal Wave. So

now, in this lecture, we will discuss about the Taylor's experiment, which is also known as,

bar  impact  experiment,  bar  of  finite  length.  And,  this  is  a classic  experiment,  to  test  the

dynamic constitutive behavior of materials.
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So, Taylor, in 1948, he developed first this experiment, during the World War II. So, Taylor

described that, based on a sequence of events, that is, Elastic and Plastic Wave propagation.

Before going details about that, we will try to understand, the difference between, Quasi static

deformation, and Dynamic impact. So, suppose, we have a Quasi static compression here.

This is a cylindrical bar, which is compressed.

Let us say, this bar is compressed, in the top side. So, after compression, what will happen is,

the cross sectional area will be constant at any time, neglecting the friction at the ends. So,

what  will  happen  is,  the  cross  section  will  be  uniform,  throughout  the  length.  It  got



compressed, but cross sectional area will be uniform, throughout the length, during the test,

and at any given time T, and we neglect the friction at these ends. 

And so, now for Dynamic impact, let us assume that, there is a rigid wall. And, the cylindrical

bar is impacting on this rigid wall. So, after the impact, the bar will take a shape like this.

This  is,  after  impact.  So,  the  shape  of  the  object,  during  the  deformation,  and after  the

deformation, they are not uniform. The part of the cylinder, which is close to the impact, that

is, the part of the cylinder, that is undergoing the impact, with the rigid wall, so this will be

highly  deformed.  So,  if  you see,  this  part,  will  be  highly  deformed,  and  other  part,  the

deformation will be less. 

(Refer Slide Time: 05:27)

So, the Taylor described the test, as a sequence of Elastic and Plastic Wave propagation. So,

you will see, the sequence here. Suppose, this is the rigid wall, and this is first case, is the

prior to impact. So, let us assume, this is case number 1, 2, 3, 4, 5 and 6. So, these are the

sequences.  So,  prior  to  impact,  this  is  U, if  the impact  velocity, you can see,  this  is  not

touching now. So, impact velocity is U, the length of the bar is L. So, if you see that, the

length  is  decreasing  here,  so  after  the  impact,  this  is  up  and  the  impact,  the  length  is

decreasing. 

It is decreasing gradually, if you see, the step 2, 3, 4, 5, 6, it is decreasing gradually. So this

part is the plastically deformed part. If you see, the Stress Wave, will start from the wall

surface, and this is the Elastic Wave Velocity C, which will be ahead of the Plastic Wave. The

Plastic Wave Velocity, we are adding A v. And this, let us say, this portion is H, which is the



length of the h, which is the length of the plastically deformed part. So here, we have, U. So,

this is actually U, is the same as the particle velocity here, we will discuss about that later.

This Elastic Wave is a Compressional Wave. And, even the Plastic Wave is following, the

Elastic Wave. So, at the third step, so what will happen is, this plastically deformed zone will

be, now longer. So, you can see that, plastically deformed zone is now, thickness is more.

And then, as we told earlier, this is the Elastic Wave Velocity Wave front, this one, and this is

the Plastic Wave front, and this is U. So now, at this position, at step number 4, so what is

happening here is, the Elastic Wave hits the free surface here, this free surface, back surface,

and it is going back now

Though, it is going back now, Elastic Wave, this is we call a Release Wave, that is reflected

back. And here, the Plastic Wave is still advancing, and at some point, what happened is, this

reflected Elastic Wave, will meet the Plastic Wave, and then, at that point, that means, we will

call, Release Wave, the reflected wave, Elastic Wave. The Release Wave, will meet the Plastic

Wave, at that point, the stress will become 0. And, that is the end of deformation.

This is basically, interaction of the Release Wave, with the Plastic Wave. So, Release Wave is

the reflected Elastic Wave, back from the back surface, this back surface. So basically, this is

the interaction. And, right here, interaction of Release Wave, when plastic wave will lead to,

reduce the stress to 0. And, that is the end of the deformation. Now, as you can see this, now

the length of the bar is, slowly reducing from 1 to step 6. 
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And, if we see in the details in this diagram, so we can see that, first one is the Plastic Wave

front, and the second one is Elastic Wave front. Okay. So, this Plastic Wave front, you can see

that, this is the plastically deformed area, this area is the plastically deformed area. Plastic

Wave front is  traveling  at  a  velocity  v. And,  we know that,  this  is  the area A, the cross

sectional area. And, the area is A0, in this portion. This is the area, not the length.

We are  writing  this  way. So,  area  A0,  which  is  the  smaller,  than  the  area  A,  is  in  the

plastically deformed part. So, as you know, this impact velocity was U. And, we will say that,

this is the interface I, that is the interface between, the plastically deformed part, and the other

part. Similarly, for Elastic Wave, we know that, when the Elastic Wave will go through this

area, let us say, this area. 

So, we are showing it in the second diagram, let us say, the first diagram is in diagram A, and

the second one is diagram B. So here, what is happening is, the Elastic Wave front, with the

velocity C, it is advancing towards the left. And, this is, let us say, the particle velocity U p.

And, we can say that, the density is different here. This is Rho, and this is Rho0. So, it is the

initial density, and Rho0, and Rho, because the compressive Elastic Wave, is changing the

density.

 But, in the other case, in the diagram A, we have the Rho, you know, on both the side of the

interface are same. So, this Rho, and this Rho, they are the same, they are both equal. But, in

the Elastic Wave case, we are assuming that, the compressive Elastic Wave, we reduce the

density. So basically, in the right hand side, the Rho0 is the initial mass density, and the right



hand side, because of the compressive wave travels through that part,  and that is why, it

compresses the material, making actually the density higher.

So now, we will try to derive some relations between, strain and stress, and impact velocity.

So we will see, how to go forward. So, in the first case, this is diagram A, so we can have

conservation of mass. So, the virgin material, that means, the material on the left side of the

interface, so this material, moves into the interface, with a velocity U plus V.

So, that means, I will tell you, this is, mass in, will be equal to, mass out, for a conservation

of mass. This velocity, so we twitch this, the thicker line, you know, so this v1 is the for

Plastic Wave front. But, the mass, the virgin material, will enter into the plastically deformed

part, that means, towards the right side of the interface, and the velocity will be, U plus v.

Because, as you know, this impact velocity is U, and the interface is coming towards left side,

with a velocity V, that is the Plastic Wave front velocity. 

Or, what we can do is, we can write the V, somewhere here, to make it even clearer. So, now

this part of the material, on the left side of the interface, will enter inside the interface, that is,

towards the right side, with a velocity U plus V. Because, U is the velocity of the impact, and

V is the velocity at which, the interface is coming towards the left side, so that means, on the

relative velocity, so we have EU plus v, and multiplied by your area A0.

And, we have Rho. So, this is mass, Rho into, area into that velocity, and the mass in, and

which will be equal to, on the right hand side, area will be A, Rho is same, and then this v, we

call the material that is on the right hand side, that is going away from the interface, at a

speed of v. Because, at the speed of v, the interface is going towards the left side, that means,

the material on the right side, is going at a speed of v, towards the right side is going away

from the interface.

So, this is the conservation of mass equation. So, as we know, both the density are same, in

this case. And, so basically, we will end up with, A0 U plus v A v. So, after that, we will use

the conservation of momentum, which means that, the change in momentum, is equal the

impulse so, I have noticed that, these lines were not shown earlier, so you can draw this line.
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So now, it will be more clear to you, somehow due to some technical problem, these lines

were  not  shown,  and  these  arrows.  So,  we  are  discussing  about,  the  conservation  of

momentum. So, we have the bar, with the plastic deformation, that means, bar impacted on a

rigid wall, and this part is the plastically deformed part. And, let us assume that, as we know,

we have this area A here, and area A0 here. And, let us assume that, we have the interface

here.

Let us assume that, the material is entering, from left side to the right side, material flow. So,

this small length d l, is the material entering into the plastically deformed area. So, d l will be

equal to, as we discussed, this is U plus v, that is the relative velocity of the material, going

inside the interface, inside means, from left to right of the interface. And, let us assume that,

the time taken is d t, and also the mass of this small element, let us say, Rho A0 dl.

So, this is equal to, Rho A0 U plus v d t. So, yeah, let us assume that, this is the interface. So

now, from the Newton's second law, so we have force equal to, acceleration into the mass. So,

force here is  A minus A0, into the stress, and that  means,  Sigma y d is  nothing but,  the

dynamic yield stress. So, in the plastically deformed zone, so the stress within that region is

constant,  and that  is  Sigma y d.  Because,  the plastically  deformed zone stress,  does  not

exceed that stress limit.

So, this is dynamic yield stress, it is not static yield stress. So, yield stress at the highest strain

rate. And, that is why, so across the interface I, so this force will be A minus A0 into Sigma y



d, which is compressive, so it is actually minus sign. So, this is the force, which is equal to

minus of A minus A0 Sigma y d, that will be equal to acceleration into mass.

So, acceleration, we will write Gamma, and the mass is d m. Gamma is the acceleration of

that element. So now, we have this acceleration. So basically, the material is going inside, this

plastically deformed part, and the initial velocity is U, and the final velocity is 0, that is, that

happens in time d t. So, this will be equal to, U d t. Now, if you have this as Gamma U d t,

and d m from the above expression, Rho A0 U v d t, and on the left hand side is, minus A

minus A0 Sigma y d.

So, d t will get cancelled, and we can write this, by rearranging, U plus v U is equal to, Sigma

y d A minus A0. So basically, this is the conservation of momentum. Sorry, this should be

conservation of momentum, not motion. So now, we have two relations with us, one is the

conservation  of  mass,  initially  we got  that  expression,  and then another  relation  is  from,

conservation of momentum.

(Refer Slide Time: 25:40)

So,  we will  combine  these two,  to  get  a  final  expression.  So,  what  we will  do is,  from

conservation of mass, we found that, we will try to eliminate the v, from this two, A minus A0

v plus A0 U is equal to zero. And, if we have the v, del v equal to A0 U, A minus A0, this is

conservation of mass. From conservation of momentum, what we can get is, Rho A0 v U plus

Rho A0 U square, equal to Sigma y d A minus A0. So, if we substitute this v, with this, so we

will find Rho A0, A0 U A minus A0, U plus Rho A0 U square, is equal to, Sigma y d A minus

A0. 



And then, little simplifying, A0 square, U square, A minus A0 plus Rho A0 U square sigma y

d A minus A0. We will try to simplify it more, taking that term common, A0 square, A minus

A0 plus, A0 A minus A0. So, we will take the term common, and then, we will again find this

term, in terms of A and A0. So, how it will look like is, okay, we will keep it here itself, on

the left hand side, A minus A0, A0 square, plus A A0 minus A0 square, okay, is equal to, A

minus A0.

(Refer Slide Time: 29:22)

So, further rearranging, Sigma y d equal to, A square plus A0 square minus twice A, A A0.

So, what we will do is, we know that, the volume is constant, to get the expression in terms of

strain, so what we do is that, we know the volume is constrained during plastic deformation.

So, we assume, it actually like that. So, assume for plastic deformation, which is not the case

in Elastic deformation. 

Plastic deformation, we can assume it as constant, strain is equal to L0 minus L. We know,

this length of the bar, initial length, and the final length, divided by L0, which will be given

as, V0 A0 minus V0 A, because volume is constant, divided by V0 A0, and that will give us,

1 minus A0 by A is the string. So now, in the earlier expression, this expression, what we can

do now is, on the top, so what we can do is, we can divide, both numerator and denominator,

by A square.

And then,  we will  see,  if  we can reduce that,  to  an expression of string.  So,  this  above

expression will give us, okay, 1 plus A0 A, this is square minus twice A0 A divided by A0 by



A, which will be equal to, and the above, it is actually from this, we can write as Epsilon

square,  and  the  below  it  is,  one  minus  Epsilon.  So  now, we  have  arrived  at  the  final

expression.

So, we have an expression of the mass density, with the impact velocity, with a dynamic

illustrious, which will be equal to, as a function of string. So, Epsilon divided by 1 minus

Epsilon. Sorry, so we left the square here, that should be Epsilon square. Okay. So now, we

will talk about the, Elastic region. But, already we have seen that, as we discuss in the figure

B, in the bottom figure, so we have the Elastic Wave Velocity C, and particle velocity U P,

and the densities are different. So, we can even draw that, here.

(Refer Slide Time: 33:13)

We can draw it here, again. So, the Elastic Wave front, which is moving from right to left, it

is C is the Elastic Wave Velocity, and the particle velocity is, we are referring as U p. So now,

initially, the mass density is Rho0. But, when the wave travels from right to left, so the right

side of this wave front, where the compressed Elastic Wave already passed through, that the

density will be little higher. This is the Rho, the other one is Rho0.

Now, we are talking about this Elastic region. So, we will talk about the particle velocity, in

the Elastic region. So, conservation of mass here, in this case, you can see that, the area is

constant, let us say, it is only A, so then the density are different. So, what will happen is,

mass in, okay, we will write it like this. So, conservation of mass in, is equal to, mass out. So,

mass going from the left side of this interface, to right is, Rho0 C.



Because, the interface is moving towards left, at a velocity C. And then, mass out is, that is

the density Rho, multiplied by C minus U p, that is the relative velocity. Because, C is the

velocity, that  interface  is  moving towards,  left  from the right  side.  And,  U p is  also the

velocity  of the particles  or materials,  towards the left  side.  So, we will  end up with this

expression, for conservation of mass, for this Elastic Wave front, which you can see here.

Okay.

So,  from here  actually,  we  can  get  the  particle  velocity,  in  terms  of  density  and  Wave

Velocity, which will be, Rho minus Rho0 divided by Rho, into C, that Elastic Longitudinal

Wave Velocity. So, this is equal to, we will see, what is the relation of this, with the strain. 

(Refer Slide Time: 36:36)

So, now we will try to have the strain expression, and relate with this particle velocity. So, the

strain, we write it as Epsilon 2, which is because, the earlier we wrote Epsilon 1, and this is

for the Plastic Wave front, we are trying to get the expression, so that is why, we are writing

as Epsilon 2, and that will be equal to, L0 minus L divided by L0, that is the length of the bar.

So, and this will be equal to, V0 minus V divided by V0. This is the volume actually, not any

velocity. 

And, we know that, the volume is not constant, as we have seen that, we already discussed

that, the density will be different, and volume will be different. So, this will give us actually,

Rho minus Rho0 as Rho, because area is constant. If you are wondering, how we get this

from volume to density, so it is like, if you start from here, Rho minus Rho0, that will be your



mass into V minus your mass, the same mass, by V0, and divided by, that is M by V, so which

will be equal to, V0 minus V divided by V0.

Yes, that will be, will lead to this, if we do that. So, this is not needed. So, just to tell you that,

if  it  is  V0 minus  V, it  will  be  opposite  Rho minus  Rho0 divided  by Rho.  So,  now we

understood that, the earlier expression, what we got is, Rho minus Rho0 divided by Rho,

which is actually related to strain, so that is Epsilon 2. So then, what we can get that, U p is

equal to Epsilon 2 into C, and the material is Elastic, we can use Hooke’s law.

We are talking about, Elastic Wave propagation. So, we can use, Hooke’s law, which will

give you, we will write Epsilon 2 here, so Epsilon Sigma by E, that is the Young’s modulus.

So, that is, from here now, you can write, U p is equal to Sigma by E and C. So again, we

know that, the Elastic Wave Velocity C is equal to, Young's square root of the ratio of Young's

modulus by density, which is Rho0 the initial density in this case, and that is why, or we can

write even, E as Rho0 C square.

So, in this case, so if we write Rho0 C square here, and then Sigma C, so U p will be Sigma

Rho0 C. So, this is the particle velocity, due to the Elastic Wave. But, if you consider the

impact velocity U, then the particle velocity will be different. And then, we can find out the

particle velocity, for three different regions in the, if we see the sequence of steps, earlier.

So, what will happen, when this is in a region number 1, let us say. Or, do not be confused

with the other numbers, 1,2,3,4. So, this is region one, or better I would write R1, Region 1

here. This case is, when the Elastic Wave is, has not crossed that region yet. And, this is the

Region number 1.  And, the  Region number 2 is,  somewhere  here,  R2, that  is  inside the

Elastic Wave region, that means, that is on the right hand side of the Elastic Wave front. 

And then, third region is, let us assume that, after the Release Wave reflects back from the

back surface, let us assume, this is R3, Region 3, so that is towards the back surface. This is

the region, near the back surface, when the Elastic Wave is already reflected back, from the

back surface. So, now these three regions, if we see the particle velocity, in the Region 1, R1,

the particle velocity is nothing but the impact velocity. 



Because, the Elastic Wave has not reached that part, and only the impact velocity, will be the

particle velocity here. And, what happens for the Region 2, so the particle velocity U p will

be equal to, U minus sigma dynamic yield strength actually, divided by C Rho0, whatever

that expression we have just now derived, so that is the expression of particle velocity, due to

the  Elastic  Wave  propagation.  But,  in  this  case,  because  not  only  the  Elastic  Wave

propagation, this term, but also the impact velocity will have a role. 

So, that is why, the resultant will be, U minus Sigma, this is actually Sigma subscript y d.

This N in the Region 3, so what will happen is, when the particle at the free surface, will have

actually twice the velocity, that we have derive for Elastic Wave profile, that means, because

that wave reflects back, from the back surface, that is why, for the particle velocity, for the

Elastic Wave, that will be twice of Sigma y d divided by C Rho0.

So, this is the particle velocity, due to the Elastic Wave. And, that is because of the wave

comes towards left, and reflects back from the surface. And, that is why, this will be twice of

that. And, with that, the impact velocity will be that, the resultant will be the particle velocity

is equal to, the impact velocity U minus, Sigma y d by C Rho0. So, there are what we learned

here is, so we have the Region 1, and Region 2, and the Region 3 here, so we have different

particle velocity. 

So, in the Region 1, it is only the impact velocity of the bar, and in Region 2 and 3, we have

both,  the impact  velocity, and the particle  velocity, contribution from the Elastic Wave is

contributing to it. Sorry, some of the lines here, in the earlier slides, specially the arrows were

not shown properly, that is probably, some technical difficulty with the machine,  so I am

inserting the slide again. So, I have noticed that, especially these arrows, were not shown, in

that earlier in the recording.

So, I have to insert it again, to show these arrows. So, I hope, that will clarify your confusion.

I think, sorry about that, that is due to, some technical difficulty of the machine. So, that is all

for this lecture. So, we will continue this discussion, that is, this Taylor's experiment, which is

actually the experiment, for the constitutive behaviour of material, at high strain rate, and that

is nothing but the impact of bars of finite length. So, we will continue this discussion, to the

next lecture. Thank you.


