
Steam Power Engineering
Vinayak N. Kulkarni

Department of Mechanical Engineering
Indian Institute of Technology – Guwahati

Lecture - 20
Stagnation Conditions and Nozzle Flow

Welcome to the class. We had seen in last class about the when it is concerned with the

theoretical part, we had seen the one of the components of the steam power plant as steam

generator, we had also seen its different parts and mechanism of heat transfer. Now, we are

going to see the second component as steam turbine.

But  before  going  directly  to  the  steam turbine,  we  are  going  to  understand  some  basic

concepts of compressible flows which are required in the phase of understanding of steam

turbine. So, let us start with that. So, today's class is dedicated for stagnation conditions and

nozzle flow.
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So, in this case, first we have to make use of some relations, which are called as standard

one-dimensional  relations  but  where  are  the  applications  of  standard  one-dimensional

relations. See, the fact is we are assuming that flow is having major variation in only one

direction and such flows are called as one-dimensional flows. So, what are the applications?

One such application is flows with friction.



So, here we will have certain inlet in a duct and then we will have certain outlet in the duct

for the duct and then due to the walls of the duct we will have friction. So, there are certain

losses due to friction and then if we try to apply one-dimensional relations for compressible

fluids, then we can try to estimate the properties at the outlet from the known conditions of

the duct at the inlet.

Then,  we have,  in  some engines;  we have  the  flow through  the  engine  where  we have

compressed gas or air in the combustion chamber or where heat addition takes place. So, here

variation of the area in this fuel injection around would be not dominant and further there is

chemical reaction which is taking place and that leads to the heat addition to the compressible

flows.  So,  we  practically  are  going  to  consider  the  effect  of  heat  addition  on  to  the

compressible one-dimensional flows.

That is one more application where we will try to get what is the outlet conditions in such a

domain where heat addition is going to take place. Then, we have one more relation or one

more application where we have a blunt body and a supersonic flow flows over this blunt

body and as what we know supersonic flow means flow having Mach number more than 1. In

such cases, there is a strong shock which is going to appear in front of the body.

But very special is a streamline which is called as the stagnation streamline or the streamline

which is going to go from the centre of the object when velocity is parallel to the centre line.

Then, the variation for such specific streamline across the shock will  be one-dimensional

only.  So,  there  are  various  specific  applications  where  we  can  make  use  of  the  one-

dimensional relations.

However, we in our case of steam turbines, we would be making use of these relations later

on  for  few  things  that  we  will  tell  in  detail  in  the  following  classes.  What  are  those?

Assumptions  which  involve  in  knowing  the  one-dimensional  flow  relations  and  those

assumptions include flow to be inviscid and flow with steady and in some cases we will also

assume that flow to be having no frictional work in these 2 cases.

And here will incorporate friction as not the term as what we are going to consider in some

cases  but  in  general  these  are  the  2  assumptions  involved  in  deriving  one-dimensional

relations and one-dimensional inviscid flow relations with steady-state particularly are these



3  where  we  have  this  as  mass  conservation  equation,  this  as  momentum  conservation

equation and this as energy conservation equation.

And these 3 relations do not get directly applied to these 3 philosophies or 3 applications but

yes these equations with some specific extra atoms would be eligible to get applied for these

3  situations.  Hence,  we  know  that  there  are  certain  specific  applications  in  which

approximated one-dimensional flow can be helpful to predict the flow properties.
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So, now derivation for speed of sound; we always know that sound is a medium or sound is a

wave which is passing in a medium and then that wave is having certain speed and that wave

speed  which  is  having  the  infinity  symbol  changes  in  the  medium  due  to  the  pressure

variation and those minute pressure variations are said to be the propagation of the sound and

then we are trying to derive the relation for speed of sound.

So, this is suppose the wave which is a sound wave, actually it is traversing with certain

velocity in a medium which is still or which is having zero velocity but we assume that the

wave is standing still and the flow fluid which is given the velocity of the wave. So, fluid is

not stagnant and now wave is stagnant. So, there is wave which is stagnant and then there

will be fluid at station 1 coming into our control volume shown by dotted lines.

And then there is the same fluid which would be leaving from the same control volume. So,

now we are going to understand how would be the speed of sound okay. So, let us say that a

is the velocity by which fluid is entering into the domain and this is practically our speed of



sound and this speed of sound is appearing here in the mass conservation equation where we

are saying that ρa=constant  since we have area of the computational or area of our control

volume is same.

Otherwise  rho  a  would  have  been  constant  but  momentum  equation  says  that

p+ρ a2=constant  and then this equation which is mass conservation equation if we put 1 as

inlet  and 2 as outlet  but since we know that  the speed of sound or sound wave leads to

infinitesimal  changes  and  if  there  is  a as  speed,  ρas  density,  p as  pressure  and  T  as

temperature at the inlet, then those quantities at the outlet would become a+da, ρ+dρ, p+dp

and T+dT .

So, this is the variation of properties across the sound wave. Then, using these conditions we

can put it in the mass conservation equation. Practically, we mean over here that  ρaat the

inlet  is  equal  to  ρaat  the outlet  but  ρa at  the outlet  is  ρ+dρ∧a+da.  So,  the same mass

conversation equation as what we have said as constant between inlet and outlet is getting

represented as ρa=(ρ+dρ)(a+da).

Then, we can expand the bracket and then say that ρa+ρ da+adρ+dadρ but dadρ would be

already da is a small quantity, dρis also a small quantity, so multiplication of 2 infinitesimal

quantities would make their order of magnitude much lower than the other terms and hence

let us neglect this term to be out from the above expression and then further we know that ρa

ρa can be cancelled.

So, we can get an expression which say that ρda+adρ=0,  so we get dρ /da=−ρ /a. So, this

is  what  we  could  achieve  from the  mass  conservation  equation  across  the  sound  wave.

Further, let us apply momentum conservation equation across the sound wave. Momentum

conservation equation  says that  p+ρ a2 before the wave and after  the wave are same, so

p+ρ a2 is before the wave but p after the wave is p+dp and ρ is ρ+dρ and a u and here we

have basically aand (a+da)
2  

Then,  we  can  get  here  the  same  term,  this  bracket  can  be  expanded  and  said  that

a2+2ada+da2 and rest of the terms can be kept as same. Now, we can as neglected in earlier

case da itself is a small quantity, so d a2 will be further small, so let us neglect that and then



neglecting  that  we can write  down the same expression without  just  d a2.  Further,  let  us

multiply these 2 brackets and say that ρ a2.

Then, we have  2aρda and then we have  ρ a2sorry then we have  dρ a2  and then we have

dρda2a. So, these are the 4 terms. Further, higher order terms da dρ will be neglected here

and then we can get the same expression without the term of dadρ.
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Now, the same thing, we can further if we go then we can neglect, we can cancel dp, we can

cancel  d a2 and then we can have only, we have only 3 terms in the equation and equal to

zero. So, we get 3 terms in the equation and equal to zero. Let us divide the terms by dρ and

we  have  
dp
dρ

+2aρ
da
dρ

+a2=0 but  we  know  that  from  mass  conservation  equation

dρ /da=−ρ /a.

So, we can put this  over here which will  be becoming  
−a
ρ

 so we can further  have  ρ , ρ

cancelled,  then  this  will  be  becoming  −2a2 but  we  have+a2,  so  basically  it  leads  to

dp
dρ
– a2=0, so this is the speed of sound expression which says that a2=

dp
dρ

, so a=√ dpdρ   but

here the changes are so small such that we can treat this as an isentropic condition where



practically  
dp
dρ

 is having variation of pressure with respect to density changes at constant

entropy.

But we know for the isentropic case, we have 
p

ργ
=constant , so we can differentiate this and

get    
dp
dρ

 and that would give you as γ ,√γRT  , √γRT since we have p=ρRT . So, this p can be

replaced as ρRTand then we can get the speed of sound expression as a=√ γPρ =√γRT  

So,  this  tells  that  speed  of  sound  in  any  medium  depends  upon  the  temperature.  If

temperature  is  high,  then  speed of  sound will  be  higher.  Obviously,  we are  using  these

relations for gases; however, this relation is valid in general.
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Now, let us talk about stagnation quantities. So, what do we mean by stagnation quantities?

First of all, let us understand what do we mean by stagnation. Let us see there are 3 situations

in which first is there is a flow over ogive shaped body where we can see it is a low speed

flow flowing over ogive shaped body and then this flow at point 1 has certain amount of

velocity  when it  comes  closer  to  the  body and when it  hits  the  body at  this  point  very

particular point it gets zero velocity.



So,  such point  is  termed here stagnation  point.  Here,  in  the second example,  we have a

vertical  plate and flow is coming perpendicular direction to the plate and then or flow is

coming in the direction parallel to the area vector of the plate such that when velocity vector

hits or here velocity, stream line hits or here we get a flow with zero velocity and here as well

the same point is called as stagnation point.

Similarly,  there  will  be  an aerofoil  and flow over  the  aerofoil  where  initially  streamline

would become stagnant at this point or get terminated at this point. So, this is the leading

edge  stagnation  point  and  when  the  2  streamlines  meet  over  here,  we  have  a  second

stagnation point, which the trailing is stagnation point. So, practically stagnant means we are

meaning over here that velocity is zero for the flow.

So, when the flow is adiabatically stopped to zero velocity, then such changes in the flow

which are basically related to reversibility of such stopping leads to isentropic stopping of the

flow to zero velocity from its initial state. Hence, if the flow is stopped isentropically from its

initial state to zero velocity, then the corresponding conditions are called as stagnation or

total condition.

So, if we have a streamline of the flow where flow has  P pressure,  T  temperature and  ρ

density, then it has  v velocity which is not 0. So, if velocity is not 0, then corresponding

quantities are called as static quantities. So, we have static pressure, static temperature and

static  density  but  now if  this  flow is  isentropically  stopped,  then  at  this  point  pressure,

temperature and density are called as total or stagnation.

And generally they are represented as  P0 ,T 0∧ρ0 . So, these are the stagnation quantities of

the flow. So, we have static pressure, stagnation pressure or total pressure; static temperature,

stagnation or total temperature. Now, we are supposed to find out the values of stagnation

quantities if we feel that we know the static quantities or other way we are trying to find out

what is the relation between static and stagnation quantities such a relation is called as, such

relations are called as isentropic relations.
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So, let us take the third equation as energy conservation equation for one-dimensional case

which says that  h1+
V 1
2

2
=h2+

V 2
2

2
where flow is flowing between station 1 and station 2. We

know that h=C pT , so C pT1+
V 1
2

2
=C pT 2+

V 2
2

2
. Our argument at this moment is C p is constant

for the fluid flow and since it is a perfect gas with constant  C p it  is called as calorically

perfect gas.

So, this relation if we feel that we have brought the flow to the zero velocity isentropically at

station 2, then we will say that V 2=0 and corresponding temperature T2 is T 0 and which is a

stagnation temperature. Then, the expression become  C pT1+
V 1
2

2
=C pT 0.  but we know that

C p=
γR
γ−1

.  Therefore,  we get  
γR T1
γ−1

+
V 1
2

2
=
γR T0
γ−1

after  putting the expression for  C1 in this

energy equation form.

Now, let us divide this equation by  
γRT
γ−1

.   Practically, we are dividing by this term to the

complete equation. Therefore, this term will be 1 and we will have γ−1in the  numerator and

γRT   in  the  denominator,  same thing  would  happen to  the  right  hand side  as  well.  So,

practically,  this  γ−1  and this  γ−1  will  cancel  and we have  γRT=a2 as what we have

derived.



So, 
V 1
2

a2
=M 2 which is using the concept Mach number is equal to velocity of the fluid divided

by local speed of sound. So, this is the definition of Mach number. Therefore, we get an

expression which says that 
T0
T

=1+
γ−1
2
M 2. So, here basically if we know static temperature

and if we know Mach number of the flow, then we can know total temperature.

Or otherwise if we know total and static temperature, then we can find out what is the Mach

number of the flow. Further here let us use isentropic relation which says that 
p2
p1

=(
T 2
T 1 )

γ
γ−1.

Hence, as what we have said that in case of stagnation conditions, we are feeling that flow is

brought to the rest isentropically. So, we can use this relation to correlate the temperature

ratio and pressure ratio between the static and stagnation quantities.

So, this is stagnation pressure, static pressure, stagnation temperature, static temperature and

these can be correlated using this expression which again we can correlate for the density, the

stagnation point divided by static density using its relation with the total temperature divided

by static temperature. Thus, we can see here that the ratio of total temperature to the static

temperature,  ratio  of  total  pressure  to  the  static  pressure  or  ratio  of  total  density  to  the

stagnation density, this ratio depends upon only Mach number and ratio of specific heats.
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So, if we put Mach number to be 1, if this Mach number is 1, then we get a special relation

which  is  the  relation  between  total  temperature  and  the  sonic  temperature.  Here,  sonic

condition is specifically denoted by star. Further, total pressure and static pressure, they can

also be found out from Mach number but if we put Mach number is equal to 1, then this

relation also become a specific relation between total pressure and the sonic pressure.

Similarly, density ratio between the total and the static at the sonic condition can be found out

in the same way and the star quantities can be seen to have only dependence upon the specific

heat ratio gamma since we are putting a specific value of Mach number which is 1.

(Refer Slide Time: 23:01)

Now, let  us  try  to design an expression or let  us  try  to  find out  an expression which is

expression for area and Mach number relation. Let us consider a duct which is having area A

at the inlet, it is getting fluid flow with velocity u, density ρ and pressure p; however, in the

direction of the flow duct is having varying area such that at outlet we are u+du, ρ+dρ, p+dp

and A+dA .

Such condition is no more one-dimensional since here area is varying in 2 directions okay,

area is varying in the direction of flow that is why there are changes in the fluid properties in

the direction of flow and there are certain changes away from the or normal to the direction

of flow. If the changes which are happening normal to the direction of flow, if they are small,

then such flows are called as quasi one-dimensional flows.



So, let us try to derive the relation which is area Mach number from the perspective of quasi

one-dimensional  relation.  Now,  earlier  in  one-dimensional  relation  we  had  considered

ρu=constant , but now for quasi one-dimensional or in general, we will have ρAu=constant .

This relation tells to us that d (ρAu)=0. So, practically, ρ1 A1u1=ρ2 A2u2

Also,  we  can  differentiate  this  expression  which  isd (ρAu )=0 and  then  we  can  get

uAdρ+ρudA+ρadu=0,  so  this  is  the  differentiation  of  expression  corresponding to  mass

conservation equation. For quasi one-dimensional equations, quasi one-dimensional equation

for  momentum is  this  where  this  term was  not  present  when we were  considering  one-

dimensional relation and it was pA=ρ , it was p+ρu2=const.

But  now we  have  area  variation,  so  we  have  p1A1+ρ1u1
2 A1  plus  area  variation  in  the

direction of the flow is equal to outlet pressure into area plus outlet  ρ u2 into area. So, this

expression in differential form can be written between inlet and outlet as pA+ρu2 A+ pdA.

So,  this  is  a  dA  variation  of  area  in  the  direction  of  flow  is  equal  to

(p+dp)(A+d A)+ (ρ+dρ ) (u+du)
2
(A+dA ).

After expanding this term and again as what we did in earlier case, neglecting all terms which

are  second  order  terms,  we  can  get  an  expression  which  will  be

Adp+Au2dρ+ ρu2dA+2 ρuAdu=0.  After  multiplying  by,  this  expression  is  basically

obtained after multiplying equation 2 by u. We have got this expression, let us star this. Let

us take this expression which is equation number 2 and multiply this equation completely

both sides by u.

So, 0 into u is 0 but these 3 terms would get multiplied by u and then we have an expression

which is  ρ u2 dA, rρ u2 dA this term plus  ρuAdu+A u2 dρ. So, these 3 terms would belong to

equation number 2 after multiplying equation 2 by  u. Further, this equation belongs to the

modified form of this starred equation.

Now, we can subtract these two equations from each other and in we can get an equation

which says that  dp=−ρudu.  So, this  is what we will  get from this expression when we

subtract the u multiplied equation from the momentum equation.
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Now, we know that the energy equation for one-dimensional relation is ρ is h1+
u1
2

2
=h2+

V 2
2

2

Here, let us consider the similar expression where we are considering energy flux at the inlet

plus energy flux at the outlet is equal to the reason for changing flux and here we are only

considering pressure forces. So, ρ1(e1+u1
2

2 )(–u1A 1) that is for the inlet of this domain where

minus sign neglects, minus sign tells that velocity vector and the area vector at the inlet they

are opposite to each other.

Similarly, this term belong to same energy flux at the outlet, this is the pressure into area into

velocity at the inlet. This is pressure into area into velocity at the outlet. We will rearrange

the terms in this expression, we will get p1u1 A1+ρ1u1 A1(e1+ u1
2

2 ) is equal to same two terms

at the outlet. Dividing equation 1 by h, dividing by equation 1, this equation let us divide by

equation number 1 we say thatρAu=const .

So,  ρ1 A1u1=ρ2 A2u2and now we can divide this expression completely, we can get here as

ρ1 A1u1, so u1 u1  will get cancelled, A1 , A1 will get cancelled and ρ1 A1u1 so this term will be

cancelled. Similarly, we will have this to be is equal to p2 ρ2 and this will be cancelled. So,

we have 
p1
ρ1

  plus  e1.



So,  this  p /ρ+e is  basically  h and  hence  we  will  have  an  expression  which  states  that

h1+u1
2
/2=h2+u2

2
/2 which  otherwise  says  that  h+u2/2=constantwhich  also says  that  h0 is

equal to constant. So, if we differentiate this expression, then we get dh+udu=0.

(Refer Slide Time: 31:04)

Now, let us try to find out what is the area Mach number relation. We now know that for

quasi one-dimensional case,  ρuA=const is mass conservation equation. Let us take log and

differentiate this equation which says that  
dρ
ρ

+
du
u

+
dA
A

=0, but from momentum equation,

we know that dp=ρ udu, so we have 
dp
ρ

=
dp
dρ
dρ
ρ

 but that from momentum equation is equal

to −udu .

So, considering adiabatic, inviscid flow, we have this term at isentropic case is equal to a

square. So, we get  a2
dρ
ρ

=−udu. So, we have 
dρ
ρ

=
−udu

a2
. We will multiply numerator and

denominator by u, so we will have – M 2 du
u

  where we know that M=u /a . Substituting this

dρ
ρ

  term in equation number 3 which is this and then we can get dA
A

=(M 2
−1 ) du

u
.



So, we have 3 things in our disposal. First is this 
dA
A

 is the area geometry variation and now

let us consider a converging section where 
dA
A

  is a negative term. So, if this is a negative

term on left hand side, we should have right hand side also to be a negative term. So, for that

term to be negative, let us consider the Mach number to be less than 1. So, if Mach number is

less than 1, then this term will be negative okay.

If  this  term is  negative,  then we have to  have total  product  to be negative,  so this  term

becomes positive. That means when area is decreasing in a subsonic flow, velocity increases

so this becomes the nozzle for subsonic flows. Now, let us take an example of supersonic

flows or diverging section and in case of diverging section like this, let us feel that Mach

number at the inlet is more than 1.

So, Mach number at the outlet is more than 1. So, this term will be positive and now if  
dA
A

is a positive number, then this term also needs to be positive. So, this term will be positive if

du is equal to positive, that means again diverging section acts as nozzle in case of supersonic

flow. So, converging section acts as nozzle for subsonic flow and diverging section acts as

nozzle for supersonic flow.

Further, if we add converging and diverging section together, then we have convergent and

divergent nozzle which acts as nozzle where at the inlet we have subsonic flow and at the

outlet we have supersonic flow. So, what we can see over here that the variation of fluid flow

properties across the duct depends upon the Mach number. So, if Mach number is less than 1

and Mach number less than 1 means velocity of the flow is less than the local speed of sound

means flow is subsonic.

So, for such subsonic flows we have convergent section as nozzles. So, we have 3 things,

here we have converging section and we have diverging section and we have nozzle and we

have diffuser okay. So, converging section for nozzle, nozzle and converging section, this

combination is going to suit for subsonic part or subsonic flow. So, in the subsonic flow,

converging section acts as nozzle.



But in case of supersonic flow, converging section acts as diffuser. In the similar line, we

have  supersonic  flow,  which  acts  as  nozzle  when  we  have  diverging  section.  Similarly,

supersonic flow so since the flow with flow variation depends upon Mach number. We have

some criteria  which says that  we have suppose we have nozzle,  then this  nozzle  will  be

converging section if the flow is subsonic and this nozzle will be diverging section if the flow

is supersonic.

Similarly, we have diffuser and then this diffuser will be converging section if the flow is

supersonic  but  this  diffuser  is  diverging  portion  if  the  flow is  subsonic.  So,  nozzle  and

diffuser, these 2 are the philosophies where flow is going to have certain fixed variation of

pressure and velocity. In case of nozzle, velocity will increase and pressure will decrease and

in case of diffuser, pressure will increase and velocity will decrease.

So, this equation says that converging section for subsonic flow acts as nozzle, diverging

portion for supersonic flow acts as nozzle, converging portion for supersonic flow acts as

diffuser and diverging portion for subsonic flow acts as diffuser. Rest of the relations and

their derivations, we will see in the next class. Thank you.


