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Special 1-D Heat Conduction Situations - Part 1 

 

Morning friends, welcome to week number 4. In the previous 2 weeks, we have discussed 

about the development of generalized heat diffusion equation in three different coordinate 

systems and in the previous week, we have talked exclusively about 1-D heat conduction 

equation and its possible solutions primarily in all the 3 coordinate systems which led to the 

concept of thermal resistance. 

 

In addition, we have seen that instead of solving the equations directly we can directly make 

use of the thermal resistance concept to solve several scenarios associated with 1D steady 

state heat conduction. However, the primary assumptions that we have taken there were not 2 

rather 4 along with 1-D and steady state we have also considered the absence of any kind of 

heat generating source and also constant thermal conductivity. 

 

Now in this week we shall be talking about some special 1-D heat conduction situations 

where the last 2 assumptions that we are going to relax. Nevertheless, it is still going to be 1-

D and something not mentioned in the title of this module that is we are going to deal again 

with steady state systems only. Now I am just going back to the generalized heat diffusion 

equation. 
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We developed the equations in 3 different coordinate systems but here I am going to use only 

2 of them. Cartesian; so in Cartesian coordinate system we have seen that the generalized 

heat diffusion equation can be written as 
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The last two terms signifies the volumeteric heat generation in the system and the rate of energy 

storage in the system. 

 

Similarly, in cylindrical coordinate system, we have developed the same equation again 

starting from an infinitesimally small cylindrical element and the equation was of the form 
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Now in the cartesian coordinate, our coordinate directions were x y and z and in cylindrical 

coordinate it was the radial direction, azimuthal direction and the axial direction z. 

Accordingly we have got these equations. Now here in this equations we have considered like 

in cartesian we have written Kx, Ky and Kz are the 3 possible values of thermal conductivity. 

 

Because we know that while for isotropic materials these 3 are equal to each other, but there 

are certain anisotropic materials which has some direction dependence of the thermal 

conductivity and that is why to make it generalized we have included the terms. Now once 

we are imposing the first 2 conditions that is steady and one dimensional then what we are 

going to have, in Cartesian coordinate if we remove the y and z dependency then the equation 

becomes 
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Remember the last 2 assumptions which we kept on considering in the previous week that is 

no internal energy generation and also constant thermal conductivity that we are not 

considering; accordingly both    and this  ̇   
  that remains in the framework. Similarly, in 

the cylindrical one if we neglect any variation in the φ and z direction then the equation 

simplifies to 
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In both the cases for we can drop the subscript for K, because as it is a 1-D scenario. 

Therefore, there is no point considering K having a spatial dependency, just one value of K is 

sufficient for this. Now in this way what we are going to talk about is a special scenario 

where either K can be variable or  ̇   
  is present in the system and it is also possible that both 

of them, that is the special dependence of K and also the heat generation needs to be 

considered. 
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Let us talk about the energy generation first. In this lecture, I am going to talk about 1 -D 

steady state heat conduction with energy generation. Now what are the possible scenarios, 

where we can have some kind of energy generation present in the system? We have talked 

about examples like some nuclear material, but another very common source can be an 

electrical resistor. 

 

So if there is an electrical conductor through which a current is flowing in then we all know 

that following the Joules law there will be some kind of Joule heating loses. If the value of 



the resistor is R, that electrical resistor that I am talking about and I is the magnitude of 

current then corresponding energy generation will be equal to  

 ̇          

This is the total amount of energy or rate of energy generation that is present in your system. 

If we want to know the volumetric energy generation then this energy generation rate needs 

to be divided by the volume of the of the electrical resistor that we are considering. That is 

the volumetric energy generation will be 
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This is the most primary kind of system that you can identified with energy generation apart 

from the nuclear materials which of course has very limited applicability or applicable only in 

certain special systems. 

 

For the moment, we are going to deal primarily about this kind of losses. We are assuming 

this volumetric energy generation to be constant. Generally, the energy generation will be a 

function of all the three space coordinates and time. As we have reduced ourselves or 

restricted ourselves to a steady state, 1-dimensional scenario, so we can write this to be a 

function of x. Now assuming this constant value of this energy generation we are considering 

that this  ̇   
  is no more a function of x that is everywhere in your domain it is of same 

magnitude and another assumption that we are considering for today's discussion we are 

considering the thermal conductivity to be constant. 

 

That is we just want to check the effect of this heat generation first and then the effect of 

thermal conductivity or variation in thermal conductivity with special location that we shall 

be considering in the next lecture. 
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So first, we are going to deal with plain wall with energy generation. Then the equation that I 

wrote earlier we can start exactly from here. So the generalized version of let me summarise 

the assumptions then,  

*steady state 

*1-D 

*constant  ̇   
  

*constant K 

Therefore, with the assumptions, the equation that we had written in the first slide it will 

become 
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So we have to solve this one now. Remember this term in the bracket is constant as per our 

third and fourth assumptions. 

 

So it is not very difficult to solve this one at all. We can directly write 
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And if we integrate it once more with respect to x then we get 
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So this is the temperature distribution that we are trying to identify. 

 

Once we know the volumetric energy generation rate and the thermal conductivity, we can 

get the temperature profile, but of course, to get the temperature profile we need to have 

couple of boundary conditions because there are 2 unknown constants C1 and C2. Let us say 

at some location say 

              

              

So combining these 2 we can write that 
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 So if we write them together then 
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This gives C1 to be equal to 
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Now we have to get C2. So C2 we can get by putting the expression for    in any of this 2 

equations. Let us put in 1. So putting in 1 we have 

     (
 ̇   

 

 
)(

  
 

 
)  (

 ̇   
 

 
) (

     

 
)    

       

(     )
       

After simplification, this gives you C2 to be equal to 
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Hence, I have the expressions for C1 and C2; let us try to develop the final equation for T. 
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T at x originally it was 
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Putting the value for C1 and C2 
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Rearranging the equation 
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This is a generalized equation that we have developed for a simple one dimensional heat 

conduction scenario through a plane wall that is subjected to a uniform rate of volumetric 

heat generation. Quite often in an effort to avoid such complicated equation we go for simpler 

description of the coordinate location x1 and x2, so that we can reduce the equation to an even 

simpler form.  

 

Just look at this, here our geometry involves again the heat generation through a plane wall 

this wall is kept at temperature Ts1, so this is our wall x1, this is location x2, its temperature 

Ts2. In an effort to avoid such complicated expression what has been done is that the 



coordinate frame or origin of the coordinate frame x = 0 has been selected as the central line 

of this block. 

 

So that now both the walls are equally located. This is at a distance L and this is also at a 

distance of L from this and accordingly our x1 becomes -L, x2 becomes L and x1 -x2 becomes 

(-2L). If we are going for this kind of geometry definition then the equation becomes quite 

simpler. Let us try this out; also, I should add here x1 + x2 becomes equal to 0. 

 

You have to remember that here the x is defined with respect to that central line. So any 

location which is on this side of the centre line will be having a positive value of x, where as 

any location which is located on this side will be having a negative value of x and x =L and x 

= -L are the 2 extreme locations. 

 

So in that case your expression for temperature profile is 

 ( )      (
 ̇   

 

  
) [     ]  (       )

(   )

(   )
 

So we can rearrange them a bit 
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So this is the final form of expression probably we are looking for. Quite often instead of 

expressing this way we would like to express in a more compact form by doing some further 

substitutions. 
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So this is a closed form equation that we are looking for. Quite often instead of expressing 

this way, we can modify it even further. 
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So this is the final form that we are looking for regarding the steady state one dimensional 

heat conduction through a plane wall which is being subjected to uniform heat generation 



with constant thermal conductivities. You can easily see that if you put x =- L this will reduce 

to Ts1, if you put x = L this will reduce to Ts2 and what about x = 0, the mid plane? So if we 

write  
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This is the mid plane temperature somewhere here. If we are interested to calculate the rate of 

heat transfer through this then what it will be?  

 ̇        
  

  
    *[(

 ̇   
 
  

  
) ( 

  

  )]  
(       )

  
+ 

   (
 ̇   

 
  

  
) (

  

  )    
(       )

  
 

 (
  

  
) (       )   ̇   

 
(  ) 

So the first term that you are getting here is nothing but the heat transfer that we could have 

derived from thermal resistance or using the resistance concept, by using a constant thermal 

conductivity of K and length scale of 2L. However, here we have an additional term in the 

form of this  ̇   
 
(  ), which is coming because of this volumetric energy generation. 

 

And also it is important to note that there is an x present in the last term, that is because of the 

presence of volumetric energy generation the heat transfer rate is not constant rather it is a 

function of x. At x = 0, it will be equal to 0 that is at the central line heat generation will be 

equal to 0, but as we move away from this you will be having an increased contribution 

coming from the second term. 

 

And also this term  ̇   
 
(  ), what is the physical significance of this? A is the cross section 

area and x refers to any distance. So if we have. Say at this particular distance we want to 

calculate the contribution to conduction coming from this term that basically will lead to the 

volume corresponding to this portion, I should have drawn the entire volume. 

 

This    refers to this entire volume because A is the cross section area and x is the distance 

and whatever volumetric energy generation is taking place inside this, this multiplied by this 

corresponding volume contributes to this second term in energy production or energy 

transmission I should say.  
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Now one special case we could have had, I should just repeat the term, the entire expression 

for Tx that I have got.  
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Now if we consider a special scenario, something like this, where at both x = L and -L, we 

are having the same temperature Ts. 

 

The temperature is same at those locations. Then what we should have? Here we are talking 

about your Ts1 and Ts2 both are equal to Ts, here the system is subjected to symmetrical 

boundary condition. In the previous case it was asymmetric, and look at the temperature 

profile that we have got here. 

 

It is an arbitrary drawn temperature profile of course, but the temperature profile that we have 

got here that shows that assuming Ts1 to be higher, we are having a parabolic kind of nature 

because you are having an x square term present, but this parabola is not symmetric with 

respect to central line, as Ts1 is higher than Ts2.  

 

Now we are having a geometry where Ts1 and Ts2 both are equal to Ts, then in that case what 

will be the temperature distribution Tx. Your Tx in this case is going to be 
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The second term Ts1 - Ts2 that cancels out and the third term reduces to Ts, which is a 

perfectly parabolic profile. That is what we are getting the base value is Ts and then we are 

having a parabola on top of this. 

 

Now, at which point this temperature profile is going to have its maxima? to get that let us 

calculate dT/dx and assign that to 0. So we are going to have 
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Now  ̇   
  cannot be 0 because there is a volumetric rate of energy generation, if there is no 

energy generation then there are 2 things we can identify. K cannot be 0 because K is the 

thermal conductivity, a property of the system, it cannot be negative as well, it is always a 

positive number, like if there is no volumetric energy generation then the entire temperature 

profile in that care Tx = Ts. 

 

Only if  ̇   
  is equal to 0; that means throughout the system you have the same temperature. 

Secondly if  ̇   
  is having a nonzero value in that care the maxima will appear at x = 0, that 

is only at the centre line. So this is the location where you are going to have the maximum of 

this temperature. And this maxima  
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So this is the maximum temperature you can identify. In the previous case, we developed the 

rate of heat conduction like this. Let us try to develop the expression for rate of heat 

conduction in this situation as well. So here, 
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So in the previous expression, look at this here; the expression for  ̇   
  that we got, there was 

a constant term, and then we had that  ̇   
    and that constant term was appearing because 

of the difference between these 2 end temperatures. Now as the end temperatures are not 

different, in that case, we are not having that first term and therefore what will be your 



conduction at x = 0, that is going to be 0 only. So that means this mid plane, this particular 

plane is not having any heat transmission across. 

 

This it is acting like a plane of symmetry. Whatever heat conduction taking place on this side, 

the same amount of heat conduction is taking place on the other side as well. So that net heat 

conduction is equal to 0, and the temperature profile across this centre line is going to be 

mirror image like this. Temperature profile on either side will be mirror image of each other. 

So the centre line can be considered a plane of symmetry. 

 

Therefore, this centre line we can almost assume to be like an insulated surface. Just like this, 

we can just do the analysis for half of the domain and whatever we are getting the solution we 

can easily extrapolate that to the other side. Therefore, if we are having a plane of symmetry 

like this, you could easily solve the problem by putting your boundary condition at x =  L to 

equal to Ts and at x = 0, the rate of heat conduction is equal to 0. So that dT/dx  =  0, which is 

the symmetry boundary condition that we can very conveniently use in several scenarios as 

long as you are having a symmetrical temperature profile like this.  

 

Now one final thought on this, quite often we may not be knowing the end temperatures Ts1 

Ts2 or the Ts in this case, we may not know them and to identify that we may have to use the 

information available outside the block, like shown here the block may be subjected to some 

kind of convective heat transfer. 

 

And therefore we can easily make use of the balance between conduction and convection at 

the surface under steady state condition so that the conduction heat flux at x =  L should be 

equal to the convective heat flux again at x =  L. So what is your conduction heat flux that is 

equal to  
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Expression for dT/dx we have developed, so if we have knowledge about    and h you can 

easily identify Ts from here. Subsequently you can incorporate that into your analysis, 

because we want to get a close form expression. Putting the values 
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In the same way, we can calculate the value on the other surface if the temperatures are 

different. We have considered heat generation is uniform, if that is non-uniform then we may 

have to depend on some other technique. Calculation will become much more complicated. 

Let us quickly check the scenario with a plane cylinder.  
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So for plane cylinder, this is the geometry that we have, we are having cylinder like this, this 

is the centre line of the cylinder and let us say the radius of the cylinder is R. This is your 

radial direction and the length of the cylinder maybe L. We have to get an expression for the 

temperature profile when the cylinder is experiencing uniform heat generation inside this. 

 

We have already seen the basic equation that can be written taking  ̇   
  and K both to be 

constant as 
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Integrating 
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We have to identify the constants. Let’s check at this particular situation at r =0, then 
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Here if C1= 0 then dT/dr will be 0. As dT/dr  is C1 / r, so to have any finite value of this only 

possible scenario is C1 = 0. So then C1 we can directly eliminate from this. Hence  
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Second boundary condition is quite straightforward, let us say the surface temperature is Ts, 

so at r = R, T  is equal to  Ts, accordingly 
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Giving you C2 to be equal to  
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Taking it back there,  
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Which is the closed form solution that we could have got about temperature profile within 

this plane cylinder subjected heat generation. If we want to calculate the central line 

temperature 
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Therefore, sometimes we also write this expression in an alternate form as 
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Now what will be your rate of heat conduction? Then   ̇     will be equal to 
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L is the length of this particular cylinder. 
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Again,      refers to the volume of an incremental cylinder. If we take an incremental 

volume inside      will be the total volume of this. Then how much is the total heat 

conduction at the surface 
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at r = R, heat energy conducted at the surface at this location or surface of this cylinder is the 

entire volume of the cylinder multiplied by the energy generation that is the amount of heat 

that will be coming out. 

 

And if the cylinder is subjected to some kind of convective boundary conditions a fluidic 

temperature    and heat transfer coefficient of h then this should be equal to 
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Remember conduction convection both in this cases happening on the same surface area, the 

peripheral area, which is     . So using this we can also get an expression for Ts. if Ts is not 

known.  

 

So this way we can take care of energy generation inside both plane wall and plane cylinders. 

Now let us quickly solve a couple of numerical problems to get a taste of what we have done. 

Before solving any problem, you have to be careful about one thing. The resistance concept 

that we have used in the previous week that is not applicable when energy generation is 

present. Because when energy generation is present we have seen in case of both plane wall 

and cylinder that the rate of energy conduction is a function of location, and as it keeps on 

varying from one point to another in the same system therefore we cannot go for the 

resistance concept. 

 

We have to stick to the basic formulation. However, if your system can be broken into several 

components where some component is expressing energy generation and some components 

are not then for the components where there is no energy generation you can still stick to that 

resistance concept. That is precisely what we are going to check in this first numerical 

problem. 
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Here it is given that we are having a plane wall, which is made of 2 materials A and B. The 

wall of material A has uniform heat generation and the thickness of 50 mm and wall of 

material B is having no heat generation and thickness of 20 mm, so we can draw the walls. So 

we have 2 blocks, this is your A, this is your B, block A is having thickness of LA, block B is 

having thickness of LB. 

 

Here as per our given information LA, the thickness of the first block is 50 mm that is 0.05 m 

LB is equal to 20 mm, 0.02 meter. Their thermal conductivities are given also, KA is equal to 

75 W/mK, KB is equal to 150 W/mK. The wall A is having energy generation, so  ̇   
  for A 

is given as 1.5 MW that is 1.5X10
6
 W/m

3
. 

 

No heat generation in the second one, that is layer B. Now the inner surface of material A is 

insulated well. So this side is well insulated, no heat transfer across this; while the out of 

surface of material will be cooled by water stream with 30 ºC and h is equal to 1 kW/m
2
K. 

On this side you are having a fluid flowing with temperature    and heat transfer coefficient 

h. 

 

It is given that    = 30 ºC that is 303 K and this convective heat transfer coefficient is 1000 

W/m
2
K. You have to determine the temperature of the insulated surface and the cold surface. 

So let us say temperature at this point is T0, temperature at this surface is Ts. This we have to 

calculate. So there are 2 layers and therefore and as we are having heat generation only in one 

of the layers. 

 



So we can treat the layer separately. For layer B we can use the resistance concept, but for 

layer A we have to follow the mathematical approach that we have just done. Now for layer 

A as there is heat generation, so here   ̇ will be a function of x, but layer B as there is no heat 

generation there is no heat   ̇  will be a constant in this case. 

 

Then let us try to tackle qB and write an energy balance at this point.  
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So this is the energy balance at the cold surface. From where the   ̇ is coming? The   ̇ is 

coming because of whatever energy that is getting generated in A, that is passing through B 

without any change. 

 

So total energy generation or heat generation I should say within A that should get 

transmitted through B as it is; so this is the   ̇ that I am looking for and that should be written 

as 
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So you can easily calculate the total value of   ̇ , and once we take it back here then we have 

an estimate of Ts  
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So this is one of the solution for the cold surface, which we can get very easily. Now we have 

to do for this surface number B. What about the temperature point TAB, how can we calculate 

TAB? If we talk about energy transmission via resistance following electrical resistance 

concept through the layer B, then we can express it something like this. Here your 

temperature is TAB, the temperature is Ts, which you have just calculated, and how much will 

be this resistance? It should be equal to   
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That is TAB. Once you know TAB then you can easily go back to the earlier approach that we 

have done to get the values of T0. 

 

If I just go back to the surface plane wall with heat generation, this was the temperature 

profile that we had in this. You can easily follow this approach to get the temperature at the 

other end. Here in this case we are looking to identify the Ts2 itself and Ts1 is the TAB that we 

have just got and accordingly you can do the calculations to get the final result. So, final 

solution for T0 is going to be equal 140 degree Celsius. You please do the calculation to see 

whether you are going to get the results or not. 
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Now second problem I would like to quickly go through this one. Here the problem involves 

a nuclear reactor, which incorporates cylindrical fuel rod of 25 mm diameter; it is made of 

Thorium, which is having thermal conductivity of 60 W/mK. It is wrapped in a thin 

aluminium cladding. It is proposed that under steady state condition, the system operates with 

uniform heat generation rate of 700 MW/m
3
 and the fuel rod is cooled by stream maintained 

at 95 ºC and corresponding h is given. So you are having a cylindrical fuel rod. Let us draw 

only half of the domain. So this is your fuel rod made of thorium and around this rod, we are 

having a thin cladding. Cladding is nothing but a jacket kind of thing. So this is the fuel rod 

with diameter is 25 mm, so radius is 25/2. And aluminium cladding is very thin, so the 

cladding thickness is not given which can be neglected for the situation shown here. We can 

almost assume that the surface is made of this aluminium. So we are not going to draw the 

cladding surface separately, rather this is the half of the domain that I am considering, half of 



the cylinder. There is heat generation that is happening inside the cylinder and outside we are 

having a fluid flowing with temperature   , in this case    is set at 95 ºC that is equal to 368 

K. Corresponding convective heat transfer coefficient is 7 X 10
3
 W/m

2
K. So you have to 

solve this problem. Again, there is a heat generation part. 

 

So using heat generation let us try to calculate the temperature T0 here and the surface 

temperature Ts here. You already know the way you have to derive the expressions for this. 

For the moment you just neglect the cladding, just consider this is a cylinder and which is 

having uniform volumetric heat generation, you have to calculate this temperature T0 and Ts. 

 

Performing a balance between conduction and convection here, energy convected away = 

total energy generation 
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Now you have to calculate the value of T0  
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So the thermal conductivity of aluminium actually never coming into picture because 

aluminium layer we are not considering anywhere during the calculation. So the temperature 

we have identified, this is the maximum temperature the system is having, this is temperature 

the surface of that aluminium cladding. 

 

We have to judge whether this proposal is valid or not. The proposal is valid or not that 

depends upon the melting point, see the melting point of thorium is 2023 K and the maximum 

system temperature is well below there. So the thorium will remain solid, but the melting 

point of aluminium is 933 K and we are having the surface temperature to be 993 K, which is 

going to be the aluminium temperature. 

 



So aluminium is going to melt if we run the system. So this cladding will not be able to stay 

and hence this proposal is not valid. To make the design valid then there are several ways we 

can make modifications. One way is if we reduce the volumetric rate of heat generation but 

that depends upon the rate of fusion reaction and also we always want higher volumetric 

energy generation in such kind of systems. 

 

Then another possibility is if we can reduce the radius of this one, radius of this rod; so that 

the surface temperature becomes smaller. Another definite possibility if we can increase the 

heat transfer coefficient h but again that depends upon the coolant side conditions and of 

course if somehow we can use a cladding material which is having a higher melting point that 

is also very much possible. 

 

Finally, I would like to give you another example of a scenario where we have heat 

generation or rather conduction with heat generation that is inside our body only. You know 

that because of the metabolic activities our body is always converting chemical energy to 

thermal energy and the thermal energy is going to get conducted through our tissues, come to 

the skin and then that get distributed to the surrounding via convection. 

 

But before it reaches the skin, it is only conduction; and conduction with energy generation 

and that is where the bio heat equation comes in to picture, it is nothing but the thermal 

conduction equation modified to incorporate the metabolic heat generation inside our bodies.  
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The earlier equation that we wrote was 



   

   
 

 ̇   
 

 
    

Now here this  ̇   
  generally can have 2 contributions, one contribution coming from the 

metabolic activities and other contribution is coming from the perfusion. 

 ̇   
   ̇   ̇  

Perfusion refers to as the blood flows through the tissues then it exchanges heat with that, 

depending on the temperature of the blood is higher or temperature of tissue is higher this  ̇
 
 

can be positive or negative. 

 

But the  ̇  is always positive. We have standard charts available for  ̇  , when a person is 

sleeping, generally ̇ is in the range of 75 W or rather total body generates heat in the range 

of 75 W. Here we are writing in per unit volume, so that 75 W needs to be divided by total 

volume of our body to get the value of this  ̇
 
   . 

 

When someone is swimming it is in the range of 200 to 250 W. When someone is playing 

some high activity sports like tennis etc., it can be in the range of 400 W as well. But  ̇
 
 is the 

one that need some attention. Without going into detail I shall be giving you the expression 

that was developed by Pennes,  

  ̇
 
         (     ) 

 

Here    is the temperature of the blood,    is the temperature of the tissue,    and    refers to 

the density and specific heat of the blood and   is the rate of this perfusion. Generally,     

can also be considered as the mass of the tissue that is concerned in this heat transfer. So if 

we put this form then the heat conduction equation can be written as  
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This is the bio heat equation. Generally, we used to go for some kind of non-

dimensionalization by introducing a term θ. Before defining this θ let us just take this term 

out.  
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This Tt is actually the temperature that you are trying to identify because tissue temperature is 

the one that is our objective. So let us drop the subscript. 
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Θ we can define as 

       
 ̇

 
   

     
 

So the equation becomes 

   

   
       

Where,  

   
     

 
 

 

So this is the bio heat equation or the Pennes equation. This can easily be solved using the 

standard boundary condition and we can get an idea about the temperature profile inside our 

body from the core to the skin using suitable boundary conditions. Nevertheless, I am not 

going to the deep of this, if any of you are interested you can just refer to the book of 

Incropera and DeWitt, the recent versions where some more information about this is 

available. So this is where I shall be stopping today. 
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Today we have talked about the heat transfer with heat generation in both the plane wall and 

the plane cylinder. Several scenarios of that has been discussed like symmetric temperature 



profile, asymmetric temperature profile, the condition of a symmetrical surface or 

symmetrical boundary condition and then we have briefly discussed about heat transfer in 

biological system. 

 

So that takes us to the end of our discussion for the day. There is one more lecture this week 

where I shall be talking about some other special scenario like variable space thermal 

conductivity during heat conduction. Thank you very much. 


