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Hello friends. Welcome to the third lecture of our module three where we are talking about 

the 1 - Dimensional Steady State Heat Conduction. Now in the previous two lectures, we 

have discussed about the Cartesian and cylindrical coordinate frame that is starting from the 

basic heat diffusion equation we have reduced that to a 1 - dimensional steady state version 

assuming in general the constant properties and also no heat generation. 

 

And subsequently we have developed expressions for the corresponding thermal resistance 

associated with conduction and also possible situations if convection is also there in the 

picture. Accordingly we have learned that for 1-dimensional steady state heat conduction at 

the absence of heat generation and with constant properties any system can be reduced to a 

combination of series and parallel resistances and accordingly using the electrical analogy we 

can easily analyze such systems. So we have already got the expressions for thermal 

resistance corresponding to conduction and convection in Cartesian coordinate system 

referring to a plane wall and also to a cylindrical coordinate system referring to a hollow 

cylinder. In the previous lecture, I was trying to go very quickly and that is why I made 

couple of mistakes in situations. 

 

But hopefully I have recovered from there and you have got the idea about how to do the 

calculation for cylindrical reference frame. Today we shall first be extending that one to 

spherical coordinate system the third system that we have in our syllabus or in our 

curriculum. And there we shall be trying to develop the expression for the thermal resistance 

corresponding to conduction and convection in spherical reference frame and then we shall 

be seeing a comparison for all the three and a few applications of that. 

(Refer Slide Time: 02:18) 



 

So straightway we are starting with a spherical coordinate system where our geometry is that 

of a plane sphere. You remember in cylindrical coordinate system initially I started with a 

solid cylinder and then reach to a difficult situation referring to the position r = 0 which of 

course need to have finite reference of temperature. But generally that kind of solid cylinder 

is not of that much use in practice rather we always work with hollow cylinders. 

 

And that is why finally I went to the hollow cylinder to get the expression for corresponding 

thermal resistance. Similarly, I am starting with a hollow sphere here. Here we have 2 

concentric circles in the plane of the screen as you can see one of radius r1 and other of radius 

r2. Basically I have 2 concentric spheres here the first one is of radius r1 and the one having 

larger radius of r2. And the temperatures are given. 

               

               

So if we take an infinitesimally small section just like this at some radius r of thickness dr 

then we can assume this one to be a 1 -dimensional steady state heat conduction situation. So 

the standard assumptions that we have taken always we have assumed our system to be under 

steady state. We have assumed heat transfer in one particular direction to be much more 

dominant compared to the other one such that we neglect the variation in other two 

directions; like in this case we can neglect the variation in temperature in θ and φ direction. 

We are considering the temperature variation in the r direction to be the only significant one. 

Then we are also assuming the absence of any kind of heat generating element. And we are 

assuming constant properties.  



So under such kind of situation we know that the heat diffusion equation the generalized heat 

diffusion equation in spherical coordinate system reduces to a 1 dimensional version of this 

form 
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Rearranging, 

   
  

  
  

  
 

 
    

    
  

  
    

Integrating, 
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 Now let us put the boundary conditions. So we have 
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So writing the two expressions; we have  

      
  

  
    

      
  

  
    

If we combine both together then we have 
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Rearranging 
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So that is the expression for C1 that we have got similarly we can get C2. We can pick any 

one of the expressions and get that value. Let us pick up this expression number 1. So from 

Equation 1 we can write  
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So we have got the expression for both C1 and C2 now. So if we take it back then we get  
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Now there are several ways you can simplify this one whatever seems convenient to you, but 

let me just write one form as our final objective is to get the expression for the thermal 

resistance from here. So let me just combine the two terms having Ts,1 -  Ts,2. So I am having 

it as 
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That is the expression for temperature at any radial location using the knowledge of the two 

radius, radii r1 and r2 and also the corresponding temperatures Ts,1 and Ts 2. 

 

But we start with the objective of getting the expression for thermal resistance. So to get the 

rate of heat conduction at any location 
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Putting the value of Ar which is the surface area of a sphere of radius r, and differentiating T 

from previous expression 
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Look at this expression. This is the one that we have just now developed corresponding to the 

heat conduction in the radial direction and what are the terms that we have in this expression? 

We have r1 and r2 we have Ts,1 and Ts, 2; all are known information and K is the thermal 

conductivity which also we have assumed to be constant here. That means this entire term is 



a constant one which indicates that the rate of heat transfer that remains constant in the radial 

direction, when you are treating with the spherical coordinate system as well. This is quite 

similar to the cylindrical or Cartesian coordinate frame. But one difference is there instead of 

 ̇  if our interest is to know the heat flux at any location any radial location then that will be 

equal to 

  ̇  
 ̇ 
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Therefore it is a function of r. Therefore, while in the Cartesian frame that is in the plane wall 

both heat transfer rate and heat flux generally remains constant unless we are leading to a 

situation of parallel resistances. But in spherical and cylindrical coordinate system while heat 

transfer remains constant in the radial direction but heat flux keeps on varying because of the 

change in the area and finally to get the thermal resistance if we want to get the         then 

what that will be; that will be equal to 
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By now you know that thermal conduction resistance can be expressed in terms of the 

potential difference divided by the corresponding effect. 

 

That is the temperature difference which is the reason for this heat transfer divided by the rate 

of heat transmission and so we can easily rearrange the above expression to get the 

conduction resistances 
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So this is the thermal conduction resistance in spherical coordinate for this hollow sphere or 

the spherical shell that we are dealing with of inner radius r1 and outer radius r2 and K being 

the thermal conductivity. Then we are having the corresponding conduction resistance to be 
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(   )
. And if I want to calculate the convective heat transfer resistance at any location how 

much will be that? Let us say at the outer surface we are having some fluid flowing and with 

some convective heat transfer coefficient h, then how we can have this? If the outer surface 

or outer fluid temperature is T∞, then 
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 being corresponding area and h is the convective heat transfer coefficient. So now we 

have done the analysis for the all the 3 coordinate system. 
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And let us have a quick summary of that. So I keep on repeating the conditions for which we 

are doing this. We are assuming steady state heat transfer only in one direction, then we are 

neglecting any kind of heat generation and we are assuming properties to be constant. The 

only thermo-physical property of importance here is thermal conductivity. So basically this 

fourth assumption refers to constant thermal conductivity. 

 

Then in that situation we have compared the three. This is the plane wall which also refers to 

the Cartesian coordinate framework, this is a cylindrical wall or maybe you can say hollow 

cylinder which refers to the cylindrical coordinate system and finally we have the spherical 

coordinate system in the form of a spherical wall or hollow sphere in their case corresponding 

heat diffusion equations are written the reduced version of the heat diffusion equation. 
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So quite often just to write them in common form we can also adopt a notation something 

like this  
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Where n =0 for plane wall; n=1 for cylindrical wall and n=2 for spherical wall. Putting the 

corresponding n values we can get the required equation. And of course thermal conductivity is 

also there inside the bracket what we are assuming that to be constant so that has come out. 

So these are the heat diffusion equations now temperature distribution we have developed. 

 

This one we have developed in the first lecture in Cartesian coordinate system 
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For cylindrical 

      *
    (

 
  

)

  
  
  

+ 

For spherical 
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This is shown in one particular form we can always rearrange the expressions to get this kind 

of forms. Then the heat flux 

For plane wall 

  
  

 
 

For cylindrical wall 
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For spherical wall 
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You can see for cylindrical wall it is actually a function of radius. Same we get in spherical 

coordinate system. So the heat flux keeps on varying as we move along the coordinate 

direction in cylindrical and spherical shells, but that remains constant in the Cartesian wall or 

in the plane wall. So finally the expression for heat rate for Cartesian 

   
  

 
 

For cylindrical wall 
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For spherical wall 
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Finally the most important one as of now at least conduction resistance that is 

For Cartesian  

 

  
 

For cylindrical wall 
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For  spherical wall 
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I would also like to add here the thermal resistance corresponding to convection. In case of 

plane wall actually the form of convective resistance is always  

         
 

  
 

Where, h is the heat transfer coefficient and A is the area which is experiencing heat transfer 

in its perpendicular direction. In the cylindrical wall we can easily express this area in terms 

of its radius. 
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And in case of spherical wall it will be  
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Where, again r is the corresponding radial location. So you can see again the convective 

resistance also depends upon the radial location where we are calculating; for  spherical and 

cylindrical wall but does not depend on that in case of plane walls. 

 

Let’s look into one final important observation in cylindrical coordinate system. Suppose we 

consider that hollow cylinder that we have considered yesterday we have this is the inner one 



this is the outer one. The inner radius is r1 the outer radius is r which can be a variable. In that 

case what is going to be your conduction resistance? Conduction resistance is going to be 
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And convection resistance is whatever written. Now in both cases the radius is present and in 

case of the first one r is in the numerator in case of a second one r is in the denominator what 

does that indicate. So as the r increases as the thickness of this cylindrical shell that keeps on 

increasing keeping r1 constant. 

 

Then the value of conduction resistance that keeps on increasing whereas the value of 

convective resistance that keeps on reducing. So there must be some optimum location of r 

which is going to give you some maximum or minimum in the heat transfer rate 

(Refer Slide Time: 20:43) 

 

And that is what we are going to identify here in terms of this critical thickness of insulation 

for a cylinder. As I explained, we have one inner cylinder and this is the outer cylinder. So 

the inner one is having radius of r1 outer one is having radius of r. Then our conduction 

resistance  
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And if we assume that over the outer surface of the cylindrical element some fluid is flowing 

in with a temperature T∞ and the characteristic heat transfer coefficient of h then 

corresponding convective heat transfer resistance is going to be 
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So the total thermal resistance is equal to 
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If we now try to see the variation of these resistances in the radial direction; just what I was 

talking verbally at the end of the previous slide. Thermal resistance on the vertical axis and 

this small r on the horizontal axis which we can write this one in terms of t which is r - r1 that 

is thickness of this shell then as the thickness increases that is as a value of r increases what 

happen to your conduction resistance? 

 

The conduction resistance keeps on increasing following a logarithmic profile. What happens 

to the convective resistance? The convective resistance keeps on decreasing and therefore we 

must reach a position where the net has some kind of maximum or minimum; let us try to 

identify that. We do not yet know the profiles of        , this is the profile for         , this 

are profile for R thermal convection. 

 

Let us see what about the        . So for that we need to differentiate this        with respect 

to r or with respect to this thickness t. So differentiating this expression we have 
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To get the optimum location of this         let us equate this one to 0. 
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Now r cannot be equal to 0, so the only possible solution is 

 
 

 
 

 

  
   

That means  



     
 

 
 

So this is optimum value of this r or correspondingly 
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But this refers to a maximum or minimum? To get that let us differentiate this once more 
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Putting the value of ropt 
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So this entire quantity has to be greater than 0, what does that mean? That means that the 

value that we have got that refers to a minima in the total thermal resistance. Therefore, the 

profile for total thermal resistance will be something like this, it keeps on reducing which is a 

minima and then keeps on increasing. So this is the profile for         and this value is at r= 

ropt. 

 

We have the minimum thermal resistance at this particular location and as the thermal 

resistance is minimum at this, so what will be about what about the heat transfer? If the 

temperature ranges is given then the rate of heat transfer has to be maximum at this location. 

So this actually refers to an optimum value; I should not say an optimum that is why we 

generally do not use that term optimum we call it critical. 

 

And that is why I am going to make a change now instead of using this optimum I am going 

to call it a critical because generally the term optimum refers to a maximum value of the 

thermal resistance or minimum value of heat transfer rather here we are getting the opposite 

and that is why we should not call this the optimum thickness or optimum radius. 

 

Rather they should call it a more critical radius, and therefore what we are getting is  

                              



 ̇             

Therefore, as long as the value of r is less than this critical one then the total resistance keeps 

on decreasing, whereas when the value of r is greater than this greater than this critical the 

radius keeps on increasing with increase in r, then how can we make use of this fact. 

 

There are certain situations where we want the heat transfer to be high; there are certain other 

situations where we want the heat transfer to be low. What can be the situation where we 

want the heat transfer to be high, just think about the situation of an electrical wire, electricity 

carrying wire that is generally made of some kind of metal some electrically conducting 

material which generally is also very good thermal conductor. 

 

And around that we put a layer of insulation like suppose if this is your electrical conductor 

electrical current carrier then around this we are putting insulation. So just assume that the 

inner cylinder refers to your conductor and having radius of r1, and then this outer shell refers 

to the insulation. Now what should be the thickness of insulation that actually depends on 

how the heat transfer or what heat transfer rate that we want. 

 

Generally, as the current flows through the conductor, because of joule heating there will be 

some kind of thermal energy generation. And to maintain the temperature of the conductor 

within check we want this thermal energy to get dissipated to the surrounding. Here our 

objective is to have high rate of heat transfer, in order to have high heat transfer what we 

want, we want the radius to be small and therefore in which regime we should operate. 

 

The choice of r should be such that your final value of r should be what, greater than r critical 

or less than r critical? Here we want heat transfer to be high and we want resistance to be low. 

Therefore, in this situation we should operate in this side. Ideally we want to be somewhere 

here so that we can maintain this value of r = r critical which is the minimum possible 

thermal resistance scenario and giving the maximum possible heat transfer. 

 

The opposite scenario we can have in your refrigerator. The refrigerant is coming with a very 

low temperature and is about to enter that the chiller. Now here the refrigerant is at a much 

lower temperature compared to surrounding and therefore we need to insulate the refrigerant 

coil refrigerant coil. Now here we want heat transfer to be very low as low as possible then 

what we should want. 



 

We want the thermal resistance to be high and therefore your choice of insulation thickness 

should be such that we operate on this side. So accordingly the choice of this critical 

thickness of insulation is very important. In certain applications we want the heat transfer rate 

to be high and thermal resistance to be low. In that situation we should choose the thickness 

such that final value of r should be less than r critical. 

 

Whereas in certain other scenario we want the value of heat transfer to be low, thickness of 

insulation they should be chosen such that your total resistance is quite high you are 

operating on the zone r greater than r critical.  

(Refer Slide Time: 32:41) 

 

In case of spherical situation or spherical coordinate also the same situation is valid let us 

choose 2 spheres like we have done earlier. I am quite poor in drawing this; just assume these 

two as spheres. So the inner one is having a radius of r1, the outer one is having radius of r 

which is our choice. This is the thickness t which is equal 

       

Now here we know that  
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So now you know the procedure so to identify the critical value of this thickness or critical 

choice for r, we have to differentiate this R thermal total with respect to r and equate that to 0. 
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So in the previous case what we have got it was K/h in case of cylindrical coordinate system 

it is 2K/h in case of spherical coordinate system. I am leaving the next exercise to you. 

 

You should also check whether this corresponds to a maximum or minimum. For that you 

need to differentiate this term once more at r  =  r critical and you will find this is actually 

coming to be greater than 0, which again corresponds to a minimum value of insulation 

thickness and maximum value of heat transfer rate. So the critical thickness of insulation for a 

cylindrical element is K/h and for spherical coordinate system it is 2K/h.  

 

I should be very careful actually. We are not talking about the critical thickness. So the 

critical thickness of insulation is 

               
  

 
    

So this is going to be the critical thickness of insulation in spherical coordinate system 

whereas this is the critical thickness of insulation in case of cylindrical coordinate system. 

 

And this choice of insulation thickness is very important in several heat transfer scenarios. As 

I have given examples some cases like very common application of spherical coordinate 

system is the fuel tank of some satellite and space shuttle which are generally spherical in 



shape. So as we want to maintain them generally at very low temperature at cryogenic 

temperature as long as they are in the earth. 

 

The outer temperature may be significantly larger than compared to the fuel temperature 

stored inside the tank and in order to maintain that low cryogenic level temperature we must 

reduce the heat transfer to the smallest possible and if the heat transfer has to be small as 

possible then the radius or rather the total thermal resistance should be very high. 

 

And therefore we have to ensure that the thickness of the insulation is greater than this      

that we have just now calculated. So that is what we had to discuss about the 1 dimensional 

steady state scenario. There are several other smaller concepts can be developed from this 

which you can refer to book or you can try on your own. I shall be solving a few numerical 

examples now to show you the applications of whatever we have discussed. 
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The exercise number one corresponds to a domestic refrigerator; just read the problem 

carefully, you can pause the video here and also read the problem statement carefully. So 

here I am talking about the wall of a refrigerator. It is typically constructed by sandwiching a 

layer of insulation between sheet metal panels. So this is a layer of insulation and on either 

side of that we have sheet metal panels. 

 

This is your insulation layer and both side you have metal sheets on either side. So we are 

considering here a wall made of fiberglass insulation, k is equal to 0.046 or let us say Ki 

refers to the insulation material let us say this is Ki and 50 mm thickness, so this length is Li 



so here our Li = 50 mm and it is safe to convert everything to SI unit that is 0.05 m and Ki 

=0.046 W/m K. 

 

Now the steel panels that has K of 60 W/mK let us say Kp refers to this panel, So in this case 

Kp=60 W/m K, which is actually a quite high value for common stainless steel. The thermal 

conductivity is only in the range of 15 to 16; each of 3 mm thickness. So on both side let us 

say this is Lp ; this is also Lp both layers of metal panels are of the same thickness Lp =  3 mm 

that is 0.003 m. 

 

The wall separates the refrigerated space maintained at 4 ºC. So this side your temperature is 

4 ºC let us call this Ti =  4 ºC that is 277 K. Ambient is at 25 ºC, so our T∞ is at 25 ºC that is 

298 K and the heat transfer coefficients are given hi and h0 to be 5 W/m
2
 K. So here we have 

hi and here we have ho. 

 

And both are equal in this problem. Inner and outer heat transfer coefficients both are 5 W/m
2
 

K. So let’s calculate the rate of heat leakage per unit surface area. So what will be the 

direction of heat transfer? Of course the ambient is at a higher temperature so this is the 

direction of heat transfer. We can easily visualize this as a combination of several thermal 

resistances. 

 

And which kind of coordinate system we should use here? This looks like a plane composite 

wall so we can stick to the Cartesian coordinate system. So how many resistances you can 

think of? The insulation is there. Let us say this is our insulation related radius. What will be 

the expression for this one; Li/KiA. Either side of this we have sheet metals. So this side we 

have a layer of sheet metal and corresponding resistance this side another layer of sheet metal 

and corresponding resistance. 

 

So this is having resistance of Lp/KpA. This is also the same Lp/KpA. Then we have 

convection on inner side and outer side; so this is the inner side one, and what will be the 

corresponding convective resistance 1/hA, outer side we have the convective resistance 

1/hoA. Here you have this temperature of Ti temperature of T∞. And this is the direction of 

heat transfer   ̇ which we have to calculate. 

 

So quite straightforward we can do the calculation. Then 
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So putting the values 
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So this way you can get the value of R thermal total. I do not have the value written with me 

can you please calculate and of course the area is still included. We do not know the value of 

area and that is why you are going to do the final calculation as per unit surface area. 

 

And I would also urge to calculate the values of each of these 5 individual components. Try 

to identify the most dominant one in determining this total resistance. I guess that has to be 

the insulation one. So the final total resistance will be 
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Now, 
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This is answer that we are looking for. 

 

If I add something to this, let us say please tell me what is going to be the temperature at this 

particular point? Let us say temperature at this point is T*, how can we calculate the 

temperature at the outer surface of the refrigerator? We now know the value of  ̇. Then we 

have to consider only that outer convective resistance and for that we can write this resistance 

as 
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And now putting the values  

     
    

 
 



So putting this we can easily get the value of this T* and this we can easily get any other 

temperatures as well. So this is a numerical problem dealing with the Cartesian coordinate 

system a composite wall. 
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Now let us have the second problem where we have a conical section to deal with, which is 

made of pure aluminum. Thermal conductivity is given. It has a circular cross section with 

variable diameter. So the diameter is changing in the direction of heat transfer and 

accordingly the area corresponding to the direction of heat transfer is also changing. 

 

The small and large ends are given so we have a conical section to deal with, something like 

this. Let us say this is your x = 0 location these are x direction so this is x1 which is given as 

25 mm this is x2 given as 125 mm. Here the temperature is T1 here the temperature is T2. So 

we now given that x1 =  25 mm that is 0.025m, x2  =  125 mm that is 0.125 m. T1 =  600 K, T2 

=  400 K. Thermal conductivity is also given.  

 

Lateral faces are insulated that means these faces are insulated. Quite often we put this hatch 

to indicate that there is no heat transfer in that direction or perpendicular to those areas. So 

only possible direction of heat transfer is this  ̇. We have T1 is at a higher temperature so 

direction of heat transfer will be from x1 towards x2. We have to calculate the rate of this heat 

transfer. 

 

Now can you directly calculate the conduction resistance in this case? We cannot. Because 

while the thermal conductivity is constant, but the area is changing in the direction of heat 



transfer; so we have to go for that alternate approach. Whenever the cross section area is 

changing in the direction of heat transfer then it is always safe to go for this alternate 

approach. So let us say this is  ̇ . 

 

Then we know that 

 ̇     
  

  
 

Assuming 1 - dimensional heat transfer in the x Direction and K is a constant, and the conical 

section is having a circular cross section 
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Area in this case is varying as given. 
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So if we rearrange the terms and take the constants like  ̇ , a and K out, it becomes 
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 So integrating this we have 
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Now if we put x  =  x2  

  (  )        
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From there if we separate out this  ̇  then what we are going to get. Okay instead of jumping 

a step let us do carefully. So we have 
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So now we have to put the values. We know the values of x1, x2, T1, T2, and K. So we can 

easily put the values to get the value of heat flux. So from in this problem we have got an 

expression for the temperature profile and we have also got an expression for this  ̇ . 

 



So whatever may be our desire, well we can easily calculate. Unless we know the value of  ̇  

we can’t get the temperature profile because  ̇  is included here. So we need to get the value 

of  ̇ . If we put all of them then the value of  ̇  in this problem is going to be 5.76 kW; this is 

the final answer that we are looking for. 
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Now let us see one example of applying the cylindrical coordinate system. Again a big 

problem statement you can pause the video to read it carefully and then again restart the 

video. A thin electrical heater is wrapped around the outer cylinder outer surface of a long 

cylindrical tube whose inner surface is maintained at 5 ºC. The tube wall has inner and outer 

radii of 25 and 75 mm respectively. 

 

And thermal conductivity is 10 W/m K. So we are talking about a long cylindrical tube. So 

this is a center line this and basically we are talking about a cylindrical shell the inner radius 

is r1 and outer radius is r2 and as for the given problem r1  =  25 mm that is 0.025 m, r2 =75 

mm =0.075 m. 

 

Thermal conductivity for this material say let us take Kt = 10 W/m K. So we have the heater 

mounted somewhere here. No information is given about the dimensions of the heater so we 

assume the heater to having a zero thickness. But there is a thermal contact resistance 

between the heater and the outer surface of the tube per unit length of the tube which is     

given as 0.01 mK/W. The outer surface of the heater is exposed to an ambient so this is your 

T∞. T∞ is -10 ºC that is 263 K. And the inner surface temperature Ti that is given at the 

beginning to be equal to 5 ºC which is 278 K. As the inner surface at a higher temperature 



you can expect heat transfer from inner surface to outer surface. But there is a heater in 

between so we have to be careful about that, and there is a convective heat transfer 

coefficient also. So some fluid is flowing here with temperature T∞ and convective transfer 

coefficient is h = 100 W/m
2
 K. Determine the heater power per unit length required to 

maintain the heater surface at 25 ºC. 

 

So the heater surface, that is this portion the temperature let us say To has to be maintained at 

25 ºC that is 298 K. So it is a very interesting scenario here both Ti and T∞ are less than this 

To that is heat will get transferred from this heater to this inner surface by conduction and 

also by convention to this direction. So if we plot the corresponding resistances then how we 

can assume this? 

 

So let us take this is a temperature Ti at this node, if we move from this innermost position 

towards the ambient first we are facing a conduction resistance, this is the conduction 

resistance. This conduction resistance is having a value of the Kt is this cylindrical wall you 

have to remember. So this conduction resistance will be as per our notation 

  (
  
  

)

    
 

Then we have a contact resistance     on the outer surface somewhere here. Then we have 

the convective resistance 

 

      
 

Nothing is given about the thickness of the heater. So whatever is a thickness or whatever is 

the radius of the outer side of the cylinder that same can be taken as a final radius. So this 

contact resistance is given as per unit area, so it needs to be multiplied the corresponding 

area. So how we can do this? We have to determine the heater power per unit length required 

to maintain the heater surface at the desired temperature. 

 

So this is the point where we are having the temperature To. Outside we have the temperature 

of T∞. Then what is the direction of heat transfer? As I have mentioned heat is being 

transferred in this direction and also in this direction. Let us say this direction is   ̇and this is 

   ̇ and therefore whatever power the heater is producing let us say   ̇ under steady state that 

has to be  

  ̇    ̇     ̇  



Now writing the expression for both the heat transfers per unit length with corresponding 

temperature differences and resistances 

  ̇  
     

  (
  
  

)

    

 
     

 
      

 

So you can easily calculate both the components as the values are given. So I have got the 

numbers as 728 for the first one and 1649 as the second one giving a total of 2377 W/m or 

maybe 2.377 kW/m. This per m coming because we are doing this calculation for per unit 

length of the cylinder. So it’s a very interesting problem where somewhere in between the 

temperature is higher. This problem can also use visualized in form of volumetric heat 

generation only in that part. But as in this entire model we have neglected any kind of heat 

generation so we are solving this one not using any volumetric heat generation and 

completely neglecting the dimension of heater rather we are assuming a point source of 

energy which is getting dissipated by conduction and convection on both sides and 

accordingly we are solving this problem. 

(Refer Slide Time: 1:01:00) 

 

So this is where I would like to complete this module number three where we discussed about 

the 1D heat transfer scenario in all the three coordinate directions. Assuming plane wall, 

cylindrical shells and spherical shells and the conduction and convection resistance concept 

was introduced; thermal resistances that is. Then we have discussed about the networks of 

resistances connected in series and parallel to solve any kind of 1-D steady state heat transfer 

scenario. 

 



The alternate conduction analysis was also introduced when the area keeps on varying in the 

direction of heat transfer or actually in case of plain cylinder and sphere also the area also the 

area varies in the direction of heat transfer. So this alternate conduction analysis is more 

prevalent in case of plane wall scenario the Cartesian coordinate. And finally the critical 

thickness of insulation for spherical and cylindrical coordinate system was also discussed in 

detail. 

 

And we have also solved quite a few numerical examples you please try to solve a few more 

by referring to the books and also try to solve the problems that are given in the assignment 

corresponding to this module. If you have any query, please write back to me I shall be very 

happy to answer to you. Thank you very much. 


