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Lecture - 07 

1 - D Steady minus State Heat Conduction – Part 2 

 

Good morning everyone. Welcome to the second lecture of our week number 3 where we are 

talking about the one minus dimensional steady state heat conduction scenario. Now in the 

previous lecture, we have seen the situation with a plane wall. Basically we started with the 

generalized heat diffusion equation in the Cartesian coordinate, and then we simplified that by 

removing the transient term, then removing the heat generation term and then also used the space 

dependence just to one coordinate. Accordingly, the corresponding partial differential equation 

got reduced to an ordinary differential equation and then we have seen how we can solve that to 

analyze simple conduction scenario and we have also seen the concept of thermal resistance or 

how can you use the concept of thermal resistance in such conduction analysis, so that we do not 

need to solve the ordinary differential equation always. Rather we can just calculate the 

corresponding thermal resistance and get the rate of heat transfer and that concept is even more 

useful and when you are dealing with a composite wall just like this. 
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Very similar to the electrical systems, we can consider the given system to be comprising of 

several such kinds of thermal resistances and accordingly we can form an equivalent thermal 



resistance circuit and do the analysis. This is called the electrical analogy of heat transfer. Like 

the situation shown here, from there like yesterday as long as we are sticking to the Cartesian 

coordinate system, then we can write the thermal resistance for conduction to be  

         
 

  
 

where L is the length scale associated with the direction on which the heat is being transferred. A 

is the cross section area, the area perpendicular to which the heat is being transferred and K is the 

corresponding thermal conductivity. 

 

And we have seen similarly the thermal resistance corresponding to convection can be given as 

         
 

  
 

Where, h is the convective heat transfer coefficient, A again is the area perpendicular to the 

direction of this heat transfer. When we are having multiple such kinds of layers comprising of 

conduction and convection or sometimes in some cases radiation, then we can easily calculate 

the thermal resistances for each of them to form a resistance circuit. 

 

So just for completeness purpose, let me add the thermal resistance that we can get 

corresponding to radiation. I am not deriving it here because that we have done in the previous 

week, where we introduced the concept of thermal resistance for both convection and radiation 

situation and also drawing analogy with the convective thermal resistance. We can also write this 

one to be  

        
 

   
 

Where hr refers to the radiative heat transfer coefficient, which we know that can be represented 

as 

     (  
    

 )(     )  

Where,   is the emissivity,   is the Stefan Boltzmann constant and T1 and T2 are the 

temperatures across which this heat transfer is being taking place. And then this is the 

corresponding expression for the resistances. And this particular diagram that is shown here 

yesterday we have done the analysis. 

 



Here this situation where we can see convection is happening on either side of the wall and the 

wall itself comprises of three different layers. We can visualize five different resistances. This is 

the one corresponding to the convective heat transfer associated with the hot fluid side. This is 

the convective thermal resistance associated with the cold fluid side and in between we have the 

three conduction thermal resistance. 

 

1, 2 and 3 corresponding to each of the layers. And as the area associated with each of the five 

modes of heat transfer are same, so we can assume that all of them are connected in series and 

also the same amount of power is passing through all of them. Therefore, we can easily connect 

them through a series just analogous to what we do in electrical circuit and then calculate the 

equivalent resistance. 

 

The equivalent resistance for such as a circuit can be just summation of all the individual thermal 

resistances. And also we have introduced the concept of overall heat transfer coefficient, where 

the product of overall heat transfer coefficient into the corresponding area is defined as this 

equivalent resistance.  

    ∑    
 

  
 

So we can also calculate the overall heat transfer coefficient at any specified area once we know 

the value of the equivalent resistance for the circuit. 

 

And when the areas are different, then you have to visualize them to be connected in parallel and 

accordingly you can perform the analysis as well. Now, just look at this particular surface, which 

is connecting this material or layer A and layer B. Here while writing this expression in this 

particular format; we are assuming that the contact surface connecting layer A and layer B is a 

perfect one. 

 

There is no irregularity on the surface and on each point of the surface both A and B are tightly 

connected with each other, but that may not be true in practice, because in several scenarios 

practical surfaces can be rough. They may have certain irregularities. Suppose your surface A 



may be of shape like this, whereas surface B may have a shape somewhat like this. Now if you 

connect them, then what will happen? 

 

If this is the way you are connecting them, ideally they should have been connected just along 

this line, but practically the contact surface may have lots of variations or pores, something like 

this. Now this intermediate portion, which I am showing by this hash line; these portions are 

voids. They are generally filled by air or if there is some liquid or other gases that can enter into 

this, they are filled with that. 

 

And accordingly the concept of contact resistance comes into picture. Contact resistance refers to 

exactly what I am talking about the layer A and B are connected with each other and once we 

assume this connection using a microscope or some similar device, you will find lots of 

discontinuities, lots of pores and these voids once they are filled up with certain material like air, 

then they also will lead to some kind of resistance or they are also going to offer certain 

additional resistance to the heat transfer. Because the thermal conductivity of air generally is 

expected to be much lower than corresponding solid materials, the heat when it is passing 

through these voids passing through these pores, they will face additional resistances and that 

resistance is referred as this contact resistance. 
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Suppose for unit area of the interface, you are talking about at one point where the temperature is 

TA and another point the temperature is TB, then the corresponding thermal resistance at this 

contact surface will be 

       
     

 ̇ 
 

We are putting the double prime symbol to indicate that we are going to use heat flux. Here we 

are assuming that the heat transfer is taking place from TA to TB. For better convenience let us 

talk about this point, let us put the temperatures T1 and at this point the temperature is T2, then as 

per this diagram if you talk about this heat transfer, then corresponding thermal resistance will be 

       
     

 ̇    
 

So this additional resistance now also needs to be taken into consideration, while forming the 

circuits for thermal resistances. Of course the magnitude of the thermal resistance depends upon 

the surface, the nature of the contact depends upon both layer A and B and also by modifying the 

nature of this gap, we can modulate the value of this resistance. Like suppose if these gaps are 

vacuum, then what will happen? 

 

Then there is nothing which can be used to transfer the heat and you know that both conduction 

and convection requires certain kind of medium for transport of heat. So if the pores are vacuum 

and then there will be no heat transfer through them at all, and accordingly the heat will only get 

transmitted through this connected portion; through these portions there will be no heat transfer. 

So the total contact resistance will be much more significant in that case. 

 

On the contrary, if we can somehow fill up these gaps with some conducting liquid, then there 

will be an increase in the thermal conduction property through this gap, so the contact resistance 

will decrease. 
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These are the certain values for contact resistances for certain common situation, when you are 

talking about vacuum interface. For stainless steel the value of this thermal resistance will be in 

the range of         . Please note this notation. It indicates that whatever values they are 

given there are        after multiplying       with    . 

 

So here with stainless steel, we are actually talking about values of contact resistance to be of the 

order of         . Similarly, for aluminum, it is slightly lower because aluminum has a 

higher thermal conductivity compared to stainless steel. If the interfacial fluid is air, then you are 

having 2.75, whereas you are using something like glycerol, resistance is lesser. These are 

certain interfaces or metal combinations or material combinations. 

 

You can see when we are having aluminum coupled with aluminum with indium foil filter, then 

it is only of the order of 0.07. Similarly, when silicon chip has been coupled with aluminum with 

0.02 mm epoxy, it is in the range of                . Also note that unit for this one; here we 

are also having a m
2
 in the numerator, because we are expressing this one in terms of heat flux 

and not in terms of power. 

 

So contact resistance is another important parameter while dealing with the real surfaces and to 

mathematically calculate the rate of heat transfer through such contact resistance, we need to 

know precise value of this contact resistance, otherwise we cannot do it and for that we generally 



have to depend on certain kind of experiments and maybe certain analogies with real life 

situations. Let us now solve one numerical problem to use this concept of thermal resistance. 
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I am not putting the contact resistance in here. I am just talking about thermal resistances. Now, 

here is my situation. I am talking about a human which is having a body core temperature of 35 

ºC. He is exposed to an environment maintained at 10 ºC. He is wearing a suit made of a special 

kind of insulation; the corresponding thermal conductivity of insulation for the suit is mentioned. 

 

Emissivity of the outer surface of the suit is 0.95. So radiation heat transfer is also relevant. And 

we have to determine the thickness of the insulation required and corresponding skin 

temperature, if the rate of heat loss is restricted to 100 W. We have to consider the human body 

to include a fat layer of 3 mm; corresponding thermal conductivity of fat layer is also given. This 

is somewhat kind of a schematic representation.  

 

This surface represents core body, then we have the fat layer of 3 mm thickness and then we 

have the insulation. So this is our body core and this is the skin, in between you have the layer of 

fat. So this Ts here refers to the skin temperature which we have to find at the end and the 

insulation corresponds to the suit that he is wearing. So this is the thickness of the insulation or 

thickness of the suit which also you have to identify. 

 



Emissivity of the outer surface and thermal conductivity of the insulation material is given and 

on outer surface we can say that the temperature is 10 ºC. Now, we can consider two kinds of 

scenarios. We can have air flowing over the surface at 10 ºC. This is the corresponding heat 

transfer coefficient, whereas when water is flowing the transfer coefficient will be much larger. 

Let us say it is 100 times more than air. 

 

We shall be solving for both the scenarios, but quite a few assumptions that we have to put, the 

standard assumptions. One is steady state, we have to consider. Then 1D heat transfer, let us say 

this direction is the x direction, then the entire heat transfer is taking place only in this direction. 

Then we are talking about constant value of the thermal conductivities for both the materials. 

Similarly the emissivity is also constant. 

 

And so is the heat transfer coefficient for air or water whatever is the working medium. And 

another consideration that is related to the radiation application here is that we are assuming the 

body or this outer surface of this insulation layer, it is total area to be too small compared to the 

area of the room, so that we can assume it is having radiative heat transfer only with the wall 

maintained at 10 ºC. So we have to form the circuit of thermal resistances. 

 

Find the modes of heat transfer, how many modes of heat transfer involved here, all the three 

modes. Firstly, from here up to this, it is conduction from the core to the skin by conduction. 

Then again conduction; from the skin through the insulation to the outer surface. Remember here 

we are not talking about any kind of contact resistance at this point. It has been assumed that the 

contact resistance is 0 in this situation. 

 

Then from the outer surface of the insulation heat can go to the surrounding following two 

modes, as some kind of fluid air or water is flowing over the surface at a lower temperature, so 

there will be heat loss by convection. Similarly, there will be also radiative heat loss. So this is 

the corresponding resistance circuit that you can think of. This is the conduction resistance 

corresponding to the fat layer. 

 



This is the conduction resistance corresponding to the insulation. This is the convective 

resistance and this is the radiative resistance from the surface to the outer surrounding or outer 

air. Now we have to calculate each of the resistances separately. So how we can form or 

calculate the equivalent resistance in this case? It can be 

    
   

    
 

    

     
 

 
  

 
 

   
 
  

 
 

   

 

Simplifying it, 
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Subscripts sf is for skin fat layer and ins is for the insulation layer. Now there are two convective 

and radiative resistances. Both of them are connected in parallel to each other because at this 

point the temperature is the outer surface temperature and on this side the temperature is the 

surface temperature. So the temperature across them are the same, but the amount of power 

transmitting through both of them they are different that’s why you can assume them to be 

connected in parallel and if they are connected in parallel just the way you calculate the 

equivalent resistance for two electrical resistors connected in parallel, we can write them also. 

Now other values are all given, but we have to calculate the hr. 

 

How can we get the hr? Here this hr actually talking about the radiation heat transfer that is 

taking place from the exterior surface of the insulation to the surrounding. So we can write its 

expression to be as 

 ̇      (  
    

 )  

   (  
    

 )(     )(     )  
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So from this given information, we have ɛ here as 0.95, σ the Stefan Boltzmann constant, do you 

remember its value? The value of σ I told earlier also, it is                   . So this value 

of σ that you can put here. 

 



Area is not given, but for the moment we can assume area to be 1, because area is happening in 

each of the resistances. And then we have Te and T∞. T∞ is 10 ºC but while doing this, we have to 

remember that the temperatures need to be expressed in Kelvin as we are talking about radiation. 

So let us convert Ti to K. So it is 35 ºC means it becomes 308 K. This is 10 ºC, so your T∞ 

becomes 283 K. 

 

So we know T∞ or Tsur, but this Te, the T exterior which is acting at this particular point, this is 

not known yet and unless that is known, it is not possible to calculate the value of this hr. So we 

are assuming some value of hr in this case. Let me provide you the value of hr to be equal to 5.9 

W/m
2
.K. This value can be obtained through an iterative calculation. I am directly giving you the 

value. 

 

Once you have the value hr, then you can easily calculate the value of Req. So what will be your 

Req? The expression that I have written from there lets write it again, 
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Now this is the Req that we are getting and it is mentioned in the problem that we want the rate of 

heat loss to be restricted to 100 W. So using this Req, we can write that  



    
     

 ̇
 

Now putting the values for these 

    
       

   
     

 

 
 

 

So once you have got the values, then using that Req what we can write? R equivalent is equal to  

    
 

 
[
   

   
 

    

    
 

 

(    )
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          [     
   

   
 

 

(    )
] 

Now what about the area? How much is the area that is given? The area information is again not 

explicitly given in the problem. Now in the true sense in the problem the value was given, I have 

omitted that because I want to discuss about that. 

 

Like the way I have shown how to calculate the hr, which may need an iterative calculation with 

finally assumed an value. For the A also, we have to take a value and generally the human the 

outer surface of the human body can have an area of approximately 1.8 m
2
. So if we put that 

here,  

      [         
      

   
 

 

     
] 

        

I have consider air here to be the surrounding fluid which has a heat transfer coefficient of 2 and 

hr is 5.9. So this is the insulation thickness that we need for that suit.  

 

And the second parameter that we have to calculate is the skin temperature. That is the 

temperature Ts at this particular point that we have to calculate. Now how can we calculate that 

one? We know the rate of heat transfer now. The same  ̇ is going to flow through all the layers, 

then how can we use that. So if we consider only that inner layer, then corresponding to that 

layer, we can write the conduction equation to be 

     

 ̇
 

   

    
 



From there we can write  

      
    ̇

    
 

     
          

       
        

So you can see the temperature here was 35 ºC, and on the skin 34.4 ºC. So there is very little 

difference. However, following the same way, you can calculate this Te also. And you will find 

obviously difference there. If we want to consider or repeat the same calculation considering 

water as the surrounding fluid, then you have to replace this 2 here by 200. 

 

And if you do the calculation, you will find that in that case the required thickness of insulation 

will be approximately 6.1 mm. Please do this calculation and also I would request you to 

calculate the value of this Te, the exterior temperature. How can you do that? If we consider the 

insulation layer only or heat transfer through the insulation layer, then 

     

 ̇
 

    

     
 

So from there you can get this exterior temperature. Just check what values you are getting 

corresponding to both the materials. What should be the value of this Ts with water as the 

working medium? This one only, the same, why? Look at the expression. In that expression, the 

convective heat transfer coefficient is not coming and as the  ̇ is same regardless of the exterior 

fluid, so the expression remains the same and the calculation procedure is same. 

 

And you will be getting the same value of Ts and also the same value of Te for both the cases or 

sorry same value of Ts, but the value of Te may be different. Just calculate and check that out.  
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Now I am going to do something known as an alternate approach. The thermal conduction based 

or a thermal resistance based approach is very useful. As we have seen we can easily identify 

each of the thermal resistances, connect them in series and parallel and we can have an 

equivalent thermal resistance circuit to solve for. However, there is one important assumption 

that we have taken while doing this, that is we have assumed the thermal conductivity to be a 

constant. 

 

But your if your thermal conductivity is not constant in the x direction, then if the thermal 

conductivity is not constant in the x direction or if your system is suffering from a change in the 

cross section area in the direction of heat transfer, then that thermal resistance concept becomes 

invalid and then we have to go for this alternate approach. Here I am going to take you back to 

the development process of that heat diffusion equation. 

 

The generalized heat diffusion equation that we developed in a Cartesian coordinate in one of the 

earlier steps of that we got an expression of this form 

 
  ̇ 

  
  

  ̇ 

  
 

  ̇ 

  
  ̇   

 
   

  

  
 

Now if we put our conditions, which we are always doing, that is if we restrict ourselves to one 

dimensional heat conduction under steady state and no heat generation. 

 



Then what we are going to get? This equation becomes simpler the y and z direction can be 

neglected and the transient part also heat generation goes off, leaving us  

  ̇ 

  
   

Which gives  ̇  is not a function of x itself, 

 ̇   ̇( ) 

That means  ̇  or heat transmission rate in the x direction actually remains to be a constant. So as 

long as you are talking about this Cartesian coordinate in plane wall the conduction heat transfer 

rate is a constant under steady state one dimensional scenario without any heat generation. 

 

See here we are not talking about any variable thermal conductivity or constant thermal 

conductivity. It is equally applicable for both of them, because we are yet to introduce the 

Fourier’s law of heat conduction. Then what is your Fourier’s law of heat conduction. We know 

that as per Fourier’s law  

 ̇     
  

  
 

Of course we are using one minus dimensional conditions. So we are straight away writing 
  

  
. 

 

Now if we rearrange the terms a bit, then what we can do? Depending upon whether your 

parameters are variable with space coordinate or constant with the space, then maybe we can 

write this one to be something like  

 ̇ 

  

 
       

Because commonly K is a function of temperature, so we are clubbing K with this and now we 

are putting the integration sign. 

 ̇ ∫
  

 

  

  

  ∫     
  

  

 

And once we know how the area is varying with x and how K is varying with temperature you 

can easily do the calculation. If A is constant and K is also independent of temperature, then this 

one reduces to the earlier concept only. 

 

In that case, what you are going to get? In that case you are going to have  



 ̇ 

 
         

And if you rearrange this one, then 

  

 ̇ 
  (

  

  
) 

The negative sign is there, which indicates that the heat transfer is taking place in the direction of 

reducing temperature and this expression is nothing but the thermal resistance that we have used. 

 

So the concept of thermal resistance can be employed only when we are talking about constant 

thermal conductivity and no area change in the direction of heat transmission, but when either of 

them or both are present, then it is better to go for this alternate approach, where we are making 

use of the information that the heat transfer rate is independent of x direction, as long as we are 

talking about steady state one dimensional heat conduction without any heat generation. 
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To demonstrate this, I have this problem for you. Here we are talking about a conical section 

which is having circular cross section in diametereter D = ax. So in the heat transfer direction, 

this is your x direction, x1 is this point where the value is given to be 50 mm or 0.05 m, on the 

other end is 0.25 m. Temperature is given to be 400 and 600 K respectively. 

 

So we have to calculate the rate of heat transfer through this cone. Here the thermal conductivity 

of the material is also given to be 3.46 W/ m K. Here the thermal conductivity is constant, that is 



independent of temperature, but the area is changing, because the diametereter is changing in the 

direction of heat transmission. Here the direction of heat transmission is actually, in this because 

from 600 to 400, it you will get transmitted. 

 

But we are not talking about this; we are just sticking to the conventional x direction, which is 

from this smaller end to the larger end. So going back to the general expression  

 ̇     
  

  
 

Or, 

 ̇ 

  

 
       

Now in this case, we know that the diameter is equal at any particular location, the diameter D is 

equal to  

     

The value of a is also given. 

 

Then the cross sectional area at a particular location will be equal to  

  
 

 
   

 

 
(  )  

If we put it back  

 ̇ 

  
 
 

(  ) 
       

A and K being constant then and also  ̇  is also constant, so we are writing this as 

(
 

 
)
 ̇ 
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Doing the integration and putting the limit 

 (
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Rearranging 
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So you can put the limits here now. This is the expression for  ̇ . We have got a closed form 

expression of  ̇ . In this case, all the values are given. If you put the numbers for this particular 

problem, then  ̇  will come as  

 ̇  
 (    )     

 (
 

    
 

 
    

)
(       )           

So this is the final solution that we are looking for. Why it is the minus sign? It indicates that the 

heat transmissions take place in the negative x direction and that is logical also, because your T2 

is higher than T1. 

 

So you can always expect the heat to get transmitted in this direction. The same is proved by this 

problem also. As long as you are consistent with your symbols, your notations, then your 

solution should also indicate the direction of heat transfer like it is doing here. If your interest is 

to calculate or get a closed form expression for the temperature at any intermediate plane, then 

how can you do that? 

 

There also we can make use of the expressions. In that case, you can perform the integration 

something this way  

(
 

 
)
 ̇ 
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In that case  

   [ ( )    ]  (
 

 
)
 ̇ 

  
(
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And now you can rearrange the terms to get a closed form expression for T at x. So this way you 

can solve using the alternate approach also when you are dealing with the variable cross section 

area or temperature dependent thermal conductivity. So far we have restricted our discussion 

only to plane walls that is only to the Cartesian coordinate, but in several scenarios we have to go 

to the cylindrical or spherical coordinate system as well. So let us check out the 1D steady state 

heat conduction scenario in a plane cylinder. 
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Like I have shown in the very first slide of yesterday's lecture, that under one dimensional 

scenario the see generalized heat diffusion equation in cylindrical coordinate gets used to a form 

like this  

 

 

 

  
[  

  

  
]    

This is of course the same assumptions I should repeat again. We are doing this for steady state, 

one dimension and at the absence of any kind of heat generation. So we have 

 
 

  
[  

  

  
]    

   
  

  
    

With C1 being a constant. Also we know that the rate of heat transmission in the cylindrical 

coordinate direction 

 ̇      

  

  
 

Now what is your area for a cylinder? Let us take one cylindrical object something like this. This 

is the center line and we calculate r in this direction. So if the radius at this point is R and the 

length of the cylinder is L, then this total Ar can be represented as the peripheral area as      . 

Putting the value 

   (    )
  

  
 

 Taking the constants out 



     (  
  

  
) 

Putting the value from earlier developed relation 

 ̇      (  ) 

 

As all are constant in this equation, this  ̇  is constant. It is not a function of r. So in the plane 

wall case we have seen that the rate of heat transfer remains constant. Similarly, in case of plane 

cylinder also as long as you are talking about 1D steady state heat conduction without any heat 

generation, rate of heat transfer is constant, but what about the heat flux. 

 

In case of plane wall, we have seen that if there are no parallel resistor kind of case, then all the 

surfaces sharing the same area and accordingly the heat flux also remains constant. Only if we 

are talking about one layer being divided into parallel layers, we have a division of the heat flux 

and we have a division of the total power transmission according the value of heat flux may also 

change truly; but I am leaving this question open to you. 

 

Do you really feel the value of heat flux will also change in that case? Value of power definitely 

changes but what about heat flux, just think on that, but that is not true for plane cylinder cases. 

In case of plane cylinder as you are moving from one layer to the another layer, the heat flux in 

the radial direction should be equal to 

 ̇   
 ̇ 

    
  ( ) 

So the value of heat flux that keeps on changing at every location, but the power remains the 

same. That is because of the change in the peripheral area. Now let us continue with this one. So 

we get 

  

  
 

  

  
 

Now if the value of temperature has to be finite at r = 0, that is for T to have some finite value, 

because if you put r =0 here, you are getting dT/dr to be infinity at r = 0, but that is not possible. 

Therefore, dT/dr in order to for the T to have some finite value, then this C1 has to be equal to 0. 

So we get  



  

  
   

 

But generally we do not need to analyze cylinder from this way. Rather we are more interested in 

hollow cylinders. 
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Just like the configuration shown here. Here we are talking about an hollow cylinder or an 

annular section where the inner radius is r1, outer radius is r2 and we are going to now analyze for 

this particular one. So we have just seen that 

 ̇      (  ) 

And  

  

  
 

  

 
 

Here actually K also I am considering as a part of C1. So accordingly T if we integrate this one is 

going to be  

 ( )           

So if we are talking about a solid cylinder, then C1 = 0, but if you are talking about a hollow 

cylinder like the one shown here, then of course C1 and C2 both will be present there. So to get 

the values say 

               

               



So putting the numbers,  

               

               

Combining these two, we can write that 

   
         

         
  

And   

        [
         

         
]      

So the expressions for C1 and C2 both we have now. Let us take it back to the expression for T(r) 

that we had. 

 ( )  [
         

         
]          [

         

         
]      

      [
         

         
]   (

 

  
)  

So you get a solution for the temperature distribution within the cylinder. But now can we make 

use of the thermal resistance concept here? Of course we can. For that let me erase these things. 

For that I have to make use of the expression for that heat flux or rather power that I had 

originally. So we have seen that the expression for  ̇  at any location can be given as  

 ̇      (  ) 
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So putting that into use, we have  

 ̇      (
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If we rearrange them 

         

 ̇ 
 (

  (
  
  

)
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Another way we can do it just to get a better feel, just start from the basics, because this 

expression actually is not good representation. It is dependent on the C1 expression. 

 

Then  ̇  at any location will be  

 ̇      (  
  

  
) 

  (    ) [(
         

         
) (

 

 
)] 

The expression of dT/dr you can get by differentiating T(r) expression with respect to r.  

 (    ) [(
         

          
)] 

Why I am repeating the same thing? I did it earlier but I erased and I have done it again because 

the expression for C1 that we have used the K was included there, which gave a wrong 

expression actually. 

 

That is why it is always better to be starting from the basic principles and which is at this form of 

the heat flux. Now if we rearrange it again 

         

 ̇ 
 

  (
  
  

)

    
          

This is the thermal resistance that you are getting associated with the conduction in a plane 

cylinder. So the nature of the expression is definitely different for plane walls, you got just 

L/KA, very straightforward expression. Here we are getting a logarithmic expression involving 

both radius r1 and r2, the length of the cylinder L and also a thermal conductivity of the 

corresponding material K. What will be the convective resistance on any one of the surface? The 



rate of convective heat transfer at r equal to r1, how much will be that. If h1 is the corresponding 

heat transfer coefficient, it will be  

 ̇    |       (     )(         ) 

Rearranging 

         

 ̇
 

 

       
 

 

This is the convective thermal resistance. Similarly, at the outer surface 

 ̇    |       (     )(         ) 

 
         

 ̇
 

 

       
 

So we can see that the system that is shown in this case a hollow cylinder with a fluid passing 

through the inner surface or passing to the inner hole and another fluid flowing over the outer 

surface can be represented as a combination of 3 resistances. This is the corresponding 

conduction resistance 
  (

  
  

)

    
 and this is the convective thermal resistance on the inner side 

 

       
. 

This is the convective thermal resistance on the outer side 
 

       
. 

(Refer Slide Time: 56:18) 

 

The same thing can easily be extended to the composite cylinder. So when the cylinder is having 

multiple layers, look at them. There are three layers plus there are two convections on inner and 



outer surfaces. So for the layer A, we can write that the resistance corresponding to layer A, it 

has an inner radius of r1 and outer radius of r2. So it will be equal to 

   
  (

  
  

)

     
 

 

For layer B,  

   
  (

  
  

)

     
 

Similarly, for material C  

   
  (

  
  

)

     
 

These are the three conduction resistances. On the inner side where the radius is r1 we are having 

convective heat transfer characterized by the coefficient h1. This is the corresponding convective 

heat transfer coefficient, convective thermal resistance. 

 

These are convective thermal resistance on the outer side. So we have a combination of five 

resistances. So we can easily calculate R equivalent as a combination of these five resistances 

and that can be expressed as the ultimate temperature difference, that is 

    ∑  
         

 ̇
 

 

  
 

Now you can see here while the     is same for all the surfaces, the value of U can keep on 

changing, because the value of area also changes. 

 

Like if we want to define the value of this overall heat transfer coefficient corresponding to the 

inner surface this one, then the value of corresponding area like U corresponding the inner 

surface into A corresponding to the inner surface, if we want to define this way, then 

       (     ) 

Whereas if we want to define the overall heat transfer coefficient corresponding the extreme 

outer surface  

       (     ) 

 



But,  

             
   

So as r1 and r4 are different according to the value of UI and UO also will be different. UI will be 

larger than the value of UO. So overall heat transfer coefficient may have different magnitude 

depending on your choice of the area. It is not that much relevant for plane walls, but when you 

are into the cylindrical coordinate, then this is very much important. 

 

I shall be explaining a bit further on this curvilinear coordinate system in the next lecture. We 

shall be solving numerical problems involving composite cylinders and also we shall be dealing 

the situation of spheres and we shall be calculating the thermal resistance corresponding to the 

spherical coordinate system. So today we have discussed about the concept of contact resistance 

and we have learned an alternative way of using the conduction heat transfer analysis. 

 

When the thermal conductivity and cross section area are not constants and then we have 

discussed about the heat conduction with plane and composite cylinders. 

(Refer Slide Time: 1:00:02) 

 

So that is it for the day. I shall be continuing tomorrow with the next part of this lecture. Thank 

you very much. 


