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Hello friends. Welcome back to week number 3 of our course on fundamentals of conduction 

and radiation and this week we are going to talk about the one dimensional steady state heat 

conduction situations. 

(Refer Slide Time: 00:43) 

 

In the previous week, we have developed the basic heat diffusion equation corresponding to 

all the 3 coordinate systems, the Cartesian, cylindrical and spherical coordinate systems.  



Now each of them has their own domain of applications and the complete form of equations 

which we developed that of course has its own applicability. Before proceeding further, let us 

just summarize the equations that I derived in the previous week. 

 

If I write first in the Cartesian or rectangular coordinate system; see in the Cartesian 

coordinate system, our basic heat diffusion equation was of the form  
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Where Kx, Ky and Kz refers to the thermal conductivity in all the 3 coordinate direction and 

 ̇   
 

 is the volumetric rate of energy generation or rate of heat generation inside the system 

per unit volume. 

 

And the term on the right hand side is the transient term which refers to the time rate of 

change of energy content of the system. If we write the same thing in cylindrical coordinate 

system, then you will be getting the one that we have developed as 
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While in Cartesian coordinate system, our coordinate directions are x, y and z; in cylindrical 

coordinate system, it is r which is radius, then the azimuthal angle φ and of course the axial 

direction z. And accordingly we have written this equation. Kr, Kφ and Kz refer to again the 

thermal conductivity in the 3 directions and then we have the general form of the equation. 

And finally in the spherical coordinate system where our correlations are r, θ and φ along 

with radius we have both the polar and azimuthal angles. Then, it becomes 
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Now, these are the 3 equations that we have developed in the last week. But we have not 

talked about their applications or we have not solved them to simulate any real life situation 

because these equations are very complicated. Firstly, they are partial differential equations. 

Secondly, you can see them they are dependent on both space and time. So, there are 4 

independent variables; one is time and then the 3 space coordinates. 



 

Then, we have the direction dependence of thermal conductivity, we have the volumetric 

energy generation and overall it is a very complicated situation and solving them is definitely 

very complicated. Thankfully, in several real life situations in several engineering 

applications, we can visualize the system to be something like having a one dimensional heat 

transfer. 

 

While practically all systems are three dimensional in nature but one dimensional refers the 

rate of heat transmission in one direction is significantly larger than the rate of heat 

transmission in the other two directions. Like if I talk about the Cartesian one, then from the 

general equation we know that there are 3 heat conduction equations we can get. 
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Now, these are the 3 components of the power transmission or heat conduction in the 3 

directions you can say. Now, if the situation is that your  ̇  is way greater than  ̇  and  ̇ , 

then it is very logical that we can neglect the second two terms, we can neglect any heat 

conduction in the y and z direction and consider only the heat conduction in the x direction. 

And if that is a scenario( ̇   ̇   ̇ ) , the heat diffusion equation becomes 
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And along with that if we assume it to be steady state, then what we mean by steady state, 

there is no variation with time; that means any 
 

  
quantity can be said to be equal to 0. 

 

In that case, your equation becomes even simpler. Now, see in the first line when we have 

written the generalized heat diffusion equation in Cartesian coordinate, we had 4 independent 

variables x, y, z and also time. Now, as we have neglected the variation in y and z directions, 

then there is only two independent variables in the second equation x and t. And now once we 

are going for steady state, the time is also not there. Then, we are left with only a single 

independent variable which is x and accordingly this equation which is a partial differential 

equation gets converted to an ordinary differential equation of the form 
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This is when we are talking about a steady state situation. Here, we have dropped the 

subscript x in the definition of K because Ky and Kz are not coming into picture. 

 

We have to bother about heat conduction only in the x direction and therefore Kx is the only 

one that is of our importance. If K is independent of x coordinate, that becomes even simpler 

but we do not need to go into that situation for the moment. Now, the question is in what kind 

of scenario, we can go for such kind of approximation. There are several cases like as I have 

mentioned heat conduction in y and z directions are negligible compared to that in the x 

direction. 

 

Now, that is possible when the temperature gradient is 0. Now, in what kind of situation, 

temperature gradient is 0? Let us say we talk about  ̇ . For this  ̇ to be equal to 0, we need to 

have this   
  

  
 to be equal to 0. Now, Ky is a property that is thermal conductivity, so it 

cannot be 0. Then, in that situation, we must have this temperature gradient in the y direction 

to be tending to 0. 

 

Now, when that is possible, one possibility is there is a uniform temperature field acting in 

the y direction, other possibility is the y itself or the length scale in the y direction itself is 

extremely large. The length scale in the y direction is extremely large compared to the length 

scale in the x direction. Then, this is also possible. Like if we are talking about a system 

having length of Lx in the x direction, Ly in the y direction and Lz in the z direction. 

 

And if suppose         , then we can virtually write that any 
 

  
 quantity and 

 

  
quantity 

will be extremely small compared to any gradient in the x direction(
 

  
) because of the 

difference in the length scale. And that is the most common situation where we can neglect 

any variation, particularly temperature in this case in the y and z direction. So the temperature 

gradient in the x direction becomes the only important one to us. 

 

And accordingly, heat conduction in x direction is the one that we have to consider in detail. 

A very common example just look about, look into the wall of the room where you are 

sitting. Just think about the wall. Commonly your wall may be having a height of 3 m, may 



be having a width of 3 m, 5 m, 10 m depending upon where you are sitting. Like common 

houses can easily have a 3 mX3 m walls. 

 

And if you are sitting in a big classroom, then the length can be even larger, 8 to 10 m can 

easily be the length of the wall on one side and similarly the height is 3 m or something like 

that but what about the width? What about the thickness of the wall. The thickness of the wall 

can be something like say 25 cm, 50 cm. 

 

That is we are talking about a dimension of Ly say in the y direction, your length is 5 m; in 

the Z direction that is in the vertical direction, your length this 3 m whereas in the x direction 

your length is say 50 cm that is 0.5 m, which is significantly smaller compared to the other 

two. And 50 cm is also quite thick walls that we are talking about. Common household walls 

may be even thinner than this, something like 25 cm or even lighter. 

 

And in that case, therefore the length scale in the x direction is substantially smaller 

compared to the length scale in the y and z direction. Accordingly, we can say for this kind of 

scenario, the gradient in the x direction has to be much larger than the gradient in the y and z 

direction and therefore heat conduction through your building wall can easily be treated as a 

one dimensional problem. 

 

Similarly, several other examples also we shall be seeing as we shall be solving numerical 

problems later on and you also be getting several scenarios in your books.  

 

Now let’s look about the cylindrical coordinate system. The general equation that we have, 

suppose we are talking about a situation where heat transmission in the radial direction is the 

only one of importance. Like just think about a common scenario, we are having a cylindrical 

rod; just a common rod or a pipe which is having a length of something like 10 m but its 

diameter is something like say 10 cm. Then, we are having 10 m on one side and 0.1 m on the 

other side and definitely the gradient in the r direction, the radial direction has to be 

significantly larger than the gradient in the z direction and quite often we neglect the φ 

variation also. 

 



I have probably mentioned the term, we call it axisymmetric. That is a variation in the φ 

direction can be neglected. So, in that scenario, the one dimensional unsteady form of the 

heat diffusion equation in cylindrical coordinate becomes  
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Again, I am dropping the subscript in the expression for K because I am talking about 

conduction only in the r direction. This is possible when the heat conduction in the r direction 

is significantly larger than the heat conduction in the φ and z direction. If we are further 

talking about a steady state situation, then we can convert this one to an ordinary differential 

equation which is of the form 
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Similarly, in the spherical coordinate system, again we can neglect the variation in the φ and 

θ direction. Just consider a ball, a solid sphere may be. In that case, quite often the variation 

in the φ and θ direction may be neglected and the major variation that you get is only in the 

radial direction. So, if I directly write the expression for spherical coordinate system, heat 

conduction only in the radial direction; and under steady state then this equation becomes 
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This is when your  ̇  is significantly greater than heat conduction in the φ and θ direction and 

any time variation can be neglected. And in this particular chapter in this module, we shall be 

talking primarily about this one dimensional steady state form of the heat conduction 

equation because they are extremely important in several engineering applications and 

secondly they are very easy to analyze or they are very easy to model mathematically. 

 

Of course, you can see that the partial differential equation has now got converted to an 

ordinary differential equation, so it can be solved very easily. Secondly, there is an alternate 

approach where we shall be using the concept of thermal resistance where we do not need to 

go for the solution also; we can do it in even easier way. So, let us start with the Cartesian 

coordinate system. 

Another point I am mentioning here, the  ̇   
 

, the volumetric heat generation rate I have 

retained in all the 3 equations here (Cartesian, cylindrical, spherical). I have written this one 

here, the volumetric heat generation rate but I am not going to consider this one for this 



week's lecture. That is this  ̇   
 

also be will be set to 0 for the moment. Next week, I shall be 

including this one back and doing further analysis for that. 
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So, we are going to start with heat conduction in plane wall. Plane wall is synonymous to the 

Cartesian coordinate system and we are talking it as plane wall because the wall, building 

wall is the most simple example or straight forward example of 1-D heat conduction in 

Cartesian coordinate. So, look at the situation what is given. We are talking about a wall, let 

us say this is your x = 0, this is x = L. So, the thickness of the wall is L. 

 

Let us say the area of each of the faces of the wall is equal to A. One side of the wall is kept 

at temperature Ts,1, other side is kept at the temperature Ts,2 and fluids air or some other kind 

of fluid is flowing on both the surfaces, one side you are having a hot fluid flowing with 

temperature T∞,1 and other side it is flowing with temperature T∞,2. It is given that the hot 

fluid side temperature T∞,1 is greater than cold fluid side temperature T∞,2.(         ) 

 

So, you can expect the heat to get transferred from the hot fluid to the left face of the wall. 

Let us say the face number 1, and what should be the mode of heat transfer from the hot fluid 

to the face 1 of the wall? That has to be convection because we are talking about the flowing 

fluid over the solid surface. So, via convection heat gets transferred from the hot fluid to the 

face 1 of this, then 1 to face 2 via conduction because it is a solid wall. 

 

And then from face 2 to the cold fluid which is maintained at temperature T∞,2 via convection 

again. Corresponding convective heat transfer coefficients are given as h1 and h2. But before 



taking into account the heat convection with hot and cold fluids, let us just stick to the 

conduction part. Ts, 1 and Ts, 2 are the temperatures of the two faces of the wall. So, using our 

common sense, we can say that as heat always gets transferred from high temperature to low 

temperature. 

 

So, T∞,1 has to be greater than surface temperature for face 1, Ts, 1 which has to be greater 

than Ts, 2 and that has to be greater than T∞,2.  

(                   ) 

So, from this to this, the mode of heat transmission is convection. Similarly, from this to this, 

the mode of heat transmission is again convection. The second one is characterized by heat 

transfer coefficient of h2. This is characterized by heat transfer coefficient of h1. However, 

our first interest is this one Ts, 1 to Ts, 2, ;which is done by conduction. 

 

So, you have considered A to be the area of the wall and we are considering a thermal 

conductivity say K in this x direction. I am not putting any subscript x because we are talking 

again about 1- D heat conduction. Then, what are the conditions that we are imposing? 

Firstly, 1- D heat conduction; secondly, steady state. So, considering this, we have already 

developed the equation. Then, I am putting a third condition which I verbally mentioned; 

there is no heat generation and fourth we are considering the thermal conductivity to be 

constant, which refers that K is not a function of x. That is an additional constraint that I am 

putting in. So, what was the equation that I developed in the previous slide? That was  
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There is no heat generation. So, we have now 
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So, we have to integrate this equation with respect to x to get the solution. Then, what we 

have?  
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Here,   
             are constants. A very straightforward linear form of equation that is 

temperature variation within the body in the x direction will be linear and exact nature of the 

profile will be dependent upon these two constants C1 and C2. Now, how to identify C1 and 

C2? We are given with the temperature Ts, 1 and Ts, 2. So, let us make use of them.  

              

So, if I put this one then 

         

Similarly,  

 

              

So, we have 

             

Now, just we have got        . That is C1 now becomes  
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We know that Ts, 1 is higher than Ts, 2. So, it is better that we write this one as 
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So, what becomes our temperature profile then,  
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And there are several ways this one can be rearranged but probably it is better to express this 

one as  
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So, this is the temperature profile that we are getting through this wall and once we know that 

two end temperatures Ts, 1 and Ts, 2 then we shall easily be able to calculate this one. 

 

It is a straight line joining Ts, 1 and Ts, 2. Now, if our interest is to know the heat transmission 

rate, the rate of conduction heat transfer, that also we can easily calculate. Say, if we want to 

calculate the rate of heat transfer, then we know that 



  ̇         
  

  
 

 ̇      is in the x direction following conduction only. Then, we are having this as  

  ̇            

putting expression for C1  
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This is the heat flux, and finally if we want to have the total heat conduction, then that is 

equal to heat flux into the area that is  
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Let us proceed with this. So, we have just developed that the temperature profile inside your 

solid has become  

  ( )       (         )
 

 
 

And the conduction heat transmission in the x direction we have got to be equal to  

 ̇   (         )
  

 
 

If we rearrange this second equation a bit and write this one as  
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Now, how this particular form is looking like. In the left hand side in the numerator we have 

the temperature difference. In the denominator, we have the conduction heat transmission rate 

or conduction heat transfer rate. Then, how the numerator is looking like? That is the 



potential difference because of which the heat transfer is taking place. What about the 

denominator? Denominator is the result of this potential difference. Then how this form is 

looking like? In the first week itself, we have introduced the concept of thermal resistance. 

So, can you relate this one to that? On the left hand side, we have the potential difference on 

the numerator and the effect of that in the denominator and we can easily relate this to the 

Ohm's law of electricity where we can easily write. 

 

Suppose, if E1-E2 refers to a potential difference between two locations 1 and 2, then 

corresponding result will be equal to 

         

Where, I is current and R is resistance. Or, 

     

 
   

 

Just similarly whatever we are getting there this is also called the conduction resistance.  
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where L is the length scale associated with this conduction heat transfer. That is the thickness 

of this particular block, K is the thermal conductivity and A is the area of this that is 

perpendicular to the plane of this screen. This area basically is we are talking about 

something perpendicular to the screen. So, we can virtually think about using an electrical 

analogy that on one side of the wall you are having potential Ts, 1; on the other side having 

potential Ts, 2. 

 

And in between you are having a thermal resistance of 
 

  
 and accordingly some heat 

transmission  ̇  will be happening between Ts, 1 and Ts, 2. And just like shown here then we 

can easily draw an electrical circuit where this side you have the potential as Ts, 1. This side 

you have the potential as Ts, 2 and in between you have this conduction resistance which we 

have just got as 
 

  
in Cartesian system. 

 

And accordingly we can get the value of  ̇ . So, once we know that these two temperatures 

and we have the information about the thermal conductivity and dimensions of the wall, you 

can directly calculate the heat transmission that is  ̇ without directly solving the ordinary 



differential equation. But now quite often the situation is that we do not know directly the 

value of Ts, 1 and Ts, 2. 

 

Rather our information available is about hot fluid and the cold fluid. That is we know the hot 

fluid temperature T∞,1; we know the cold fluid temperature T∞,2 and we also know their heat 

transfer coefficients h1 and h2; but we do not know Ts, 1 and Ts, 2. Then, somehow we have to 

estimate the value of Ts, 1 and Ts, 2 and then only we can go for this electrical analogy to get 

the value of  ̇ . 

 

Then, how can we estimate Ts, 1 and Ts, 2. So, first we talk about the left hand side. So, at this 

particular juncture, on this side your mode of heat transfer is convection; on this side your 

mode of heat transfer is conduction. As we are talking about only one dimensional heat 

conduction, then entire energy transmission direction is this one only. So, heat is getting 

transmitted only in this direction. 

 

Now, as the system is under steady state, there is no temperature variation with respect to 

time at a particular location. That indicates that the system has to be in some kind of balance 

and the wall is not having any net energy storage. Also, there is no heat generation inside the 

wall. Then, to maintain this energy balance, it has to be satisfied that the rate of convective 

heat transfer in this from the hot fluid to the wall in this direction has to be balanced by the 

amount of energy conducted from the wall to the interior of the wall, so that the temperature 

remains constant with respect to time. This is just the convective boundary condition nothing 

else. So, let us apply the convective boundary condition on the hot fluid side. 

 

Then, the amount of conduction happening is 

   
  

  
|
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Using Newton’s law of cooling and putting conduction equal to convection. 

 

Now, what is 
  

  
? In the previous slide, we have seen that  

 
  

  
    

So, 
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It is redundant to write x = 0 in second term because this gradient is constant. It is 

independent of x. So, we can now solve this, we can rearrange this entire equation. 

 

So, we have  
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Similarly, if we write the convective boundary condition at x =L. Then we can write 

   
  

  
|
   

    (         ) 

   
  

  
|
   

    [ 
(         )

 
]
   

    (         )     

 

Or just arranging the same way, we have 

 
  

 
(         )     (         )     

So, now we have got two equations. Once we have idea about the information say h1, h2, K, 

A, L and also T∞,1 and T∞,2 then we can solve this equations to get Ts, 1 and Ts, 2 from this. But 

is there at all any need to go for such complicated expressions? 

 

Look at this; both your equation 1 and equation 2 are having the same term on the left hand 

side and what is this term? If I go back this term is this one only, that is the rate of heat 

conduction which is also logical because whatever amount of heat that gets transmitted from 

the hot fluid, the same amount of heat under steady state will be flowing to the other wall, 

other face of the wall. 

 

And then the same amount of heat will be passing onto the cold fluid that is this  ̇  remains 

the same as we are talking about a simple 1-D heat conduction under steady state. That means 

we can write this rate of heat transmission  ̇  on the hot fluid side, this is equal to 

 ̇     (         ) 

Then, interior to the body, interior to the solid block you have 

 
  

 
(         ) 

 



And again on the cold fluid side, it is equal to  

    (         )     

Now, if we rearrange all of them again, we know that  ̇  can be written this way. 

(Refer Slide Time: 36:12) 

 

Now, for the hot fluid side, we have 

 ̇     (         ) 

Or if we just write the way we got the conduction resistance, it will be equal to 

 
(         )

 ̇ 
 

 

   
           

Now, what is this bracketed term? This is just the temperature difference required for the 

convective heat transfer. The denominator is a result of this potential difference. 

 

Then, this is nothing but your convective resistance on the hot fluid side. Similarly, on the 

cold fluid side if we write 

 ̇     (         ) 

That is if we rearrange the same way 
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So, again this case, this is your convective resistance on the cold fluid side and in between we 

have the conduction resistance also which we have got here. 

 

Then, how we can visualize the system? I have already the diagram shown here but still I am 

writing this step by step. So, to start with we have a potential energy source maintained at 



temperature T∞,1. Then, via convection it is transmitting energy to another node maintained at 

temperature Ts,1 and this heat transfer is happening through a resistance, a convective 

resistance which is 
 

   
 and  ̇  amount of heat is getting transmitted. 

 

So, once this heat reaches Ts, 1 then this is getting transmitted through a conduction resistance 

to another node maintained at Ts, 2 and this conduction node is having a resistance which we 

have got here as
 

  
 and then from this Ts, 2 again via convection, energy is getting transmitted 

to the low temperature side which is maintained at T∞,2 and this heat transfer is getting 

facilitated to another convective heat transfer resistance that is 
 

   
. 

 

Then, if we just want to have a direct relationship between heat transmission from T∞,1 to T∞,2 

then how we can do this? Just neglect the intermediate temperatures. Then, we can directly 

think about that  ̇  amount of heat is getting transmitted from T∞,1 to T∞,2 and that is 

happening through 3 different resistances. That is we can write now a generalized expression 

of heat transmission. We can visualize that there are 3 resistances, 2 convective resistances 

and 1 conduction resistance in between and these resistances are connected in series here 

because the same heat transmission rate is applicable for all of them. 

 

But the temperature difference across each of them that is different. That is the heat 

transmission rate is same for all of them but the potential difference across each of them is 

different. Therefore, we can say that they are connected in series. Very similar to the 

electrical systems and now when we are having a several resistances connected in series, how 

we get the equivalent resistance? We just add them up. So, just the same thing we can do 

here. We can say 
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So, once we know each of the individual resistances, we can easily get the equivalent 

resistance. And we can directly calculate the value of  ̇  without needing to know the values 

of Ts, 1 and Ts, 2. We just need to know the two end temperatures and all the resistances. Then, 

this Ts, 1 and Ts, 2 are never coming into picture. We can directly get the value of  ̇  using 



only the two end temperatures. Now, if once we know the value of  ̇ , then if we want to 

calculate the value of Ts, 1 how can we do this? 

 

So, just consider the first convection part. In that case like we wrote earlier  

 
(         )

 ̇ 
           

 

   
 

we can separate out the terms from here,  

 (         )  
 ̇ 

   
 

           
 ̇ 

   
 

Similarly, if we want to calculate Ts, 2, then we can do that using the convective heat transfer 

on the cold fluid side. For that case, we can write 
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 (         )  
 ̇ 

   
 

           
 ̇ 

   
 

So, we do not need to know the values of the two faces, Ts, 1 and Ts, 2 to get the  ̇ , rather 

using the value of  ̇  we are getting their values later on. So, this way any one dimensional 

steady state heat conduction scenario at least in Cartesian coordinate can easily be reduced to 

such kind of series of conduction and convection resistances. 
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Just look at this, something known as a composite wall. Here instead of 1, there are 3 layers 

of solids inside the wall. Each of them are having different thermal conductivities. So, we can 

think about there are 3 different conduction resistances acting in series with each other. Look 

at the first part the block A of the solid. The temperature is Ts, 1 at one side and T2 on the 

other side. 

 

It is 1-D and steady state. Please remember that whatever we are discussing that is applicable 

only for one dimensional steady state heat conduction. Then, if we consider that  ̇  is the 

amount of heat transmission that is taking place by conduction, then for block A we can 

directly write using the concept of thermal resistance. Let us start from the hot fluid side. So, 

if we write for hot fluid side, then we can write 

 
(         )

 ̇ 
 

 

   
           

Let us say A refers to the area of this wall, then the first layer, the layer number A, it is 

having subjected to conduction, so 

(       )

 ̇ 
 

  

   
 

Then, layer B  

(     )

 ̇ 
 

  

   
 

Then, we have the third layer, layer C it is having  

(       )

 ̇ 
 

  

   
 

So, this is this third conduction resistance we have. And finally on the cold fluid side, we are 

having convection. 

(         )

 ̇ 
 

 

   
 

And if we want to write in overall sense, then we can directly write that R equivalent is equal 

to the summation of all the 5 resistances that is 

    
 

   
 

  

   
 

  

   
 

  

   
 

 

   
 

And then using that idea we can directly write the overall temperature difference 

(         )

 ̇ 
     



Then, from the knowledge of these two fluid temperatures T∞,1 and T∞,4 and from each of 

these resistances, you can calculate the value of  ̇ . 

 

And then using  ̇ , you can easily calculate all these intermediate temperatures Ts, 1; Ts, 4; T2; 

T3 etc. They all can be calculated. So, this way we can connect several resistances in series 

and we can do the analysis very easily without bothering about the need to solve any ordinary 

differential equation even. But I keep on repeating there are several assumptions that we are 

considering. 

 

The assumptions which I wrote earlier I am just repeating it here again. This is applicable 

strictly for one dimensional heat conduction and under steady state, no heat generation and 

the thermal conductivity is also a constant. Only when all these 4 conditions are satisfied, 

then only we can go for such kind of thermal resistance concept and we can easily form 

resistance circuits using the electrical analogy. 

*1-D 

*steady-state 

* ̇   
 

   

*   ( ) 
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So, this is just the one that I talked about earlier. So, in this case as I have written  

(         )

 ̇ 
     



Quite often instead of writing this way, we write in another alternate form just somewhat to 

be consistent with the Newton's law of cooling. In case of convection, how we 

represent,  ̇     you know, we always write as  

 ̇          

We have seen how we can represent the radiation also following this form. For conduction, 

we generally do not go for a form like this but when we are talking about such an equivalent 

circuit, occasionally we would like to have a form somewhat analogous to this particular 

form of Newton's law of cooling. So, if we write now  

 

 ̇  
         

   
 

 

Remember what we are trying to do here that is applicable only for this combination of 

resistances, the total circuit, not on individual resistances because for individual cases the 

mode can be conduction or convection, we can analyze them separately but only for the 

overall circuit we are trying to identify this. So, 

 ̇  
         

   
 

  

   
 

And if we compare this one with the Newton's law of cooling, then we can write this one as 

something like  

 (  )   

Where, 

   
 

   
 

And this U is known as overall heat transfer coefficient, just what I was talking about. 

(Refer Slide Time: 50:54) 



 

U is the overall heat transfer coefficient and A is the area at which this heat transfer 

coefficient is defined. As long as we are dealing with planar area like this, the choice of the 

area does not matter because all surfaces are having the same area. 

 

But as we shall be moving to the cylindrical and spherical systems in the next class, then you 

will see that the area can keep on changing with the change in radius and therefore the value 

of U that you are defining that depends upon the choice of the area; while the UA product 

remains the same but the value of U can vary depending upon the magnitude of the area 

itself. Now, before I complete here what is the dimension of this U? 

 

Okay, before going to the dimension of U, let us try to get the dimensions of this R, the 

thermal resistance. What will be the dimensions of R? We know 

    
  

 ̇
 

So, from there can we form?    is Kelvin and what about  ̇ , that is the heat transfer rate 

which is Watt, so that is Joule second. So, we can easily write in this form or generally go for 

Kelvin per Watt. 

 

That is the dimension for this thermal resistance. You can easily form it from the others also. 

Like say for R conduction we know that it is 
 

  
. If we try to form it from there, L is a length 

scale so it is m, K is a thermal conductivity. What is the unit of thermal conductivity? We 

have developed this earlier. So, that is Watt per m Kelvin and A is area which is m
2
. 

 



So, equivalent from there we are getting Kelvin per Watt and if we try to do the same using 

the convective heat transfer thermal resistance
 

  
. So, h you know has the unit of W/m

2
.K and 

area is m
2
. So, we are getting it to be K/W. So, thermal resistance has an unit of K/W in SI 

scale or you can say temperature divided by heat flux as the dimension. 

      
 

  
 

     

    
 

 

 
 

    
 

  
 

    

    
 

 

 
 

 

Then, what about this U? So, UA is equal to  

   
 

   
   

 

    
 

So, from there if we trying to form the dimension R equivalent  

   
 

   
   

 

    
 

 

   
 

 

    
 

It’s just very similar to the unit of the convective heat transfer coefficient and that is, that 

should be also. 

 

Because the idea of this overall heat transfer coefficient comes only from the Newton's law of 

cooling and therefore this U is nothing but an analogous form of that h for overall circuit 

representation. So, its dimension is W/m
2
K and also one thing that I would like to mention 

here, though we do not go that route but sometimes this R, that we representing as 
  

 ̇
, 

occasionally, instead of  ̇, we can also represent this one as   ̇, or heat flux. In that case, the 

unit of R will be equal to K.m
2
/W. Because heat flux is having an unit of W/m

2
. But this is 

something that we shall not be doing. But in certain cases we use it, therefore to separate 

them out occasionally we also put in R”. To indicate that, here the thermal resistance is 

defined in terms of heat flux. 

 

So, I repeat again, R the thermal resistance generally put an Rth or Rconv, Rcond etc. So, this 

thermal resistance is defined as 

    
  

 ̇
 

 

 
 

And  



     
  

  ̇
 

    

 
 

So, this is about the overall heat transfer coefficient in the concept of thermal resistance and 

their combination. But we have so far seen how to connect the resistances in series but it is 

also possible to connect them in parallel, just like shown here. 
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In series connection  we have seen that the heat transmission rate through all the resistances 

will be equal but the effective temperature difference is different, whereas in case of parallel, 

the temperature difference has to be the same but the heat transmission rate will be different 

just like shown here. You can think about it is a wall having 3 layers. 

 

This is your layer E which is having a thickness of LE and conductivity of kE. The third layer 

the layer H is having a thickness of LH and thermal conductivity of KH but the intermittent 

layer that has been broken into two parts like you may have seen sometimes we are having 

walls say in laboratories or etc where lower part is made of concrete or made of some other 

material and the upper part is made of glass, it is something similar to this. 

 

Here, the lower part and upper part are made of different materials. So, the lower part G 

having conductivity of kG and this is having, the layer F is having conductivity of kF, the 

lengths are equal but their areas are different, while the overall area is this A. Let us say this 

area we mentioned about say A2 and this area we take as A1 such that  

        



The temperatures are given as T1 and T2 at the two extremes. Let us say here the temperature 

is TA and here the temperature is TB. Then, for the layer E, how we can write the 

corresponding conduction resistance. In that case, the effective temperature difference is 

 
     

 ̇ 
 

  

   
 

 

Similarly, the last layer, layer H effective temperature difference is  

 
     

 ̇ 
 

  

   
 

But the intermediate portion here the  ̇  now gets divided into two parts, one part flows 

through this F and other part flows through this G. So, if the  ̇  ,which is coming here that 

gets divided into two parts. 

 

Let us say this is  ̇ and this is  ̇  such that this  ̇  is equal to 

 ̇   ̇   ̇  

Then, for the layer F what we have,  

 
     

 ̇ 
 

  

    
 

Similarly, for the layer G 

 
     

 ̇ 
 

  

    
 

So, these two resistances can be viewed to be in parallel just like shown here. Here, in this 

diagram it is shown as A/ 2 because they have assumed both A1 and A2 to be half of A. But I 

am writing in a general form which is A1 and A2. If we just further analyze the resistances 

corresponding to F and G, then from there we can write  

        ̇     ̇    

So, that same temperature difference is acting across them but the heat transmission rate is 

different. Now, how to get an equivalent resistance for this particular layer? Just like in 

electrical circuit we do that; the same we can do in this case. That is this resistance is your 

RE, this is RH, this is RF and this is RG. So, first let us form an equivalent for this F and G 

part. 

 

So, this is your T1 resistance is RE, this is T2 resistance is RH and as per our notation this is 

TA, this is TB and this intermediate resistance is let us say RFG. Now, what will be RFG? We 



can get it from here or we can also use our electrical energy. So, from there we can directly 

write that it will be equal to 

    
     

     
 

 

Accordingly, the equivalent resistance for this entire circuit will be equal to 

              

    
     

     
    

So, this will be the equivalent resistance for this circuit where two resistances are connected 

in parallel. This way we can form conduction heat transfer circuits for one dimensional 

steady state scenario following any kind of series and parallel configurations. So, I would like 

to stop here today. 
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In the next class, I shall be introducing you the concept of contact resistance and then we 

shall be solving a few numerical problems to see the application of this conduction and 

convection resistances in case of Cartesian coordinate to demonstrate their application. So, to 

summarize our day, we have started with one dimensional heat transfer scenario, discussed 

the scope of that starting from the generalized heat diffusion equation in all 3 all 3 coordinate 

direction. 

 

Then, we continued with the Cartesian one and discussed the heat conduction in plane wall 

under 1-D steady state condition. Then, the concept of thermal resistance and the network of 



thermal resistances by connecting the resistances in series and parallel were discussed and the 

overall heat transfer coefficient was also introduced. So, that is it for the day. 

 

In the next class, as I have mentioned I shall be starting with this thermal resistances and their 

circuits and I shall be solving a few numerical examples to demonstrate their use. Thank you 

very much. 


