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Lecture – 33 

Radiation Exchange with Participating Media 
 

Hello everyone, so today is the last lecture of this course. Today’s module is radiation exchange 

with participating media. So when we consider the participating media and radiation is taking 

place, then we need to consider absorption, emission, in-scattering and out-scattering and with 

that we will do the energy balance and we will derive the radiative transfer equation. 
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So, consider a pencil of radiation traverses a layer of atmosphere. So you can see that one beam 

is travelling in this direction s and it is travelling through this participating medium of distance 

ds. So when it is passing through this participating medium of distance ds obviously the 

absorption, emission, in-scattering and out-scattering will take place. So you can see that 

absorption and emission is the attenuation of intensity and in-scattering out-scattering are 

augmentation of the intensity. So you consider here let us say this is one participating media and 

in this direction s, your ray is passing through. So obviously, when it is passing through some 

energy will be absorbed by this media, so this is the absorbed part, some will be out scattered and 

obviously, it will attenuate the energy in that direction. 

 



But obviously, it will increase the radiation in other direction. And obviously, due to its own 

temperature, it will emit energy so, it will augment. And from other direction, some radiation 

will come and will go as an in-scattering in this direction and it will gain the energy in the 

direction of s. 
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So, let us see that attenuation by absorption. So how the absorption takes place that we have 

already known that is the Beer's law. So the change in radiation intensity due to absorption of the 

radiation beam within a small element length ds along the direction s depends on the incident 

intensity and the distance travelled. So what we can write from the Beer's law? We know that 

(   )            

    which is part of absorption is directly proportional to the magnitude of the intensity and the 

distance travelled by the ray. So    is the proportionality constant and negative sign is coming as 

your radiation is attenuated. So    is your absorption coefficient. So, now what we can write 
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 is known as optical thickness. So it is denoted by   , which is known as optical 

thickness. So, you can write 
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So,    is known as optical thickness. Now we will see the absorptivity. So absorptivity is defined 

as the ratio of intensity of radiation absorbed till a distance s, to the actual incident radiation at 

s=0. 
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So you can see how the absorptivity and the optical thickness are related. Now  

                                              

                                            

So, you can see now the relation between these two. So if you have the optical thickness is high, 

then absorptivity is almost 1. And if it is optically thin, then absorptivity is very low. That 

means, if you have optical thick media, then most of the radiation will be absorbed by the 

medium, it will not pass and if it is optically thin medium, it is kind of transparent medium, so 

intensity without absorption will actually pass through that medium. So that is why your    is 

becoming 0.01. 
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Now, you see the attenuation by out-scattering. You see this figure, when this energy is coming 

as photons, in this medium obviously it will be scattered to other directions. So it is coming in 

the s direction but when it will pass through the participating media, it will be scattered in other 

direction. So obviously, it will lose the energy, but it will enhance or it will increase the energy 

in other direction. 

 

But what is the difference between these two; one is absorption; in absorption the energy actually 

increases the internal energy of the system; but when it is out scattering it will actually increase 

the energy in the other direction, so that is the difference. So, in this case now, if you see that     

for out scattering will be 

(   )                     

So, it is again directly proportional to the magnitude of the intensity and the distance travelled by 

the ray and     is known as scattering coefficient. 

(Refer Slide Time: 09:50) 

 

Let us now define what is extinction? Total attenuation of the radiation intensity jointly by 

adsorption and scattering is known as extinction. So you can see that your attenuation is taking 

place due to absorption and the out scattering. So obviously, you can see that     is the scattering 

coefficient and    is your absorption coefficient. So, together this is known as    which is called 

extinction coefficient. 

          



And scattering albedo is defined as the fraction of total energy attenuated due to scattering. So it 

is the ratio of energy attenuation due to scattering to the total energy attenuated. Or it is the ratio 

of scattering coefficient to extinction coefficient. It can be defined as  
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Now, we will learn the augmentation by emission. So the beam of radiation augments energy by 

emission from every portion of the material along its path. The energy emitted by the material is 

the material emissivity times the blackbody radiation. And obviously, using Kirchhoff’s law, 

spectral emissivity is equal to the spectral absorptivity. So now at thermodynamic equilibrium, 

the intensity everywhere must be equal to the blackbody intensity. 

 

And we can write, 

(  )                 

But here it is not negative, because it is actually enhancing the intensity or energy in the direction 

s, and here     is the same coefficient as absorptivity but here you can see it is a plus sign 

because it is augmentation. 
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So, now if scattering is absent and only you see absorption and emission, then you can write the 

complete equation of transfer for an absorbing and emitting medium excluding the scattering as, 
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So again we can integrate from 0 to s,  
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Here    is your optical thickness. So if you rearrange you can write 
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So now you can see, this is the intensity due to absorption and the emission when the scattering 

is absent. So, now we will define the emissivity, so what is emissivity? So, let us say that your 

absorption is absent, so you can write   ( ) is 0, because there is no absorption. So emissivity 

now you can write, 
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So, from the previous equation now, if   ( )   , what you can write? 
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Hence 

   
  ( )

   
 (      ) 

So now you can see that we have already derived the absorptivity, so what absorptivity we 

derived? 

      
    

And here also in the absence of scattering and absorption, if emission is taking place, we have 

derived the emissivity as       , where    is your optical thickness. And due to Kirchhoff’s 

law, you know that you can see here,      , so that we have wrote.  
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So, now you see augmentation by in-scattering from the other direction. So you can see that here 

you have this participating media of distance ds and a random direction si. This intensity is 

coming and falling in this participating medium and let us say this is your    , the solid angle. 

And this is   , your solid angle in the direction where we are considering the pencil of rays 

going out in direction s. 

 

So, now you can see that in-scattering augments the intensity of a beam because of contribution 

of scattering from all portions of the material and in all directions. Because in this direction, 

whatever will come from all other direction, it will fall and some portion will come into this 

direction s. Hence it needs to be calculated about all solid angles. 
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So, you can see that out-scattered fraction of intensity gets in-scattered into all other direction 

over the total solid angle 4π. So now we will define one phase function  , which is a function of 

si and s and describes the probability that a ray from one direction si will be scattered into certain 

other direction s. So now we are defining the phase function because from any direction si, 

whatever radiation is coming, some portion will go into the direction s of interest. So, in that 

direction we are considering the radiative heat transfer balance. So this phase function is the 

probability that a ray from one direction si will be scattered into certain other direction s, so that 

is the probability function. With that we will derive what is the intensity by in-scattering. 
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So, we can recall this definition of radiative intensity as energy flux per unit area normal to the 

rays per unit solid angle and per unit wavelength, we may calculate that total spectral radiative 

heat flux impinging on dA from within the solid angle      So we can see this is your ds and this 

is your dA, so what is the volume of this?  

         

And we are considering these as    , which is the solid angle and this is your    and this is the 

direction s in which we are interested in, and from any direction i we are considering and we will 

consider for all solid angle and what is the fraction it is going through the s that will consider. 

So, if you see the total spectral radiative heat flux impinging on dA from within the solid angle, 

   , then what you can write; you can write as  

  ( ̂ )(    ̂   ̂)       

In  ̂  direction area will be     ̂   ̂. So this is the total spectral radiative heat flux. Now, the flux 

travels through dV for a distance 
  

 ̂   ̂
. So with this now you can write the total amount of energy 

scattered away from si,  

      ( ̂ )(    ̂   ̂)      
  

 ̂   ̂
 

It is just similar to what you consider for out-scattering that is (   )                    . So, 

    equivalent is   ( ̂ )(    ̂   ̂)        and ds equivalent is 
  

 ̂   ̂
 . Now after cancelling  ̂   ̂ from 

both numerator and denominator 

      ( ̂ )(   )         

So, now you can see that this is coming from any direction i, so obviously its some fraction will 

go in the direction of s. So that probability function whatever we have considered as phase 

function, so that we have to consider that what is the fraction it is going to the s direction and this 

is only solid angle,    , we have considered, so we have to integrate over whole solid angle.  

 

So, of this amount, the fraction 
    

  
  is scattered into the cone    around the direction s. So, the 

amount of energy flux from the cone     scattered into the cone    is  

      ( ̂ )(   )        
    

  
   



So this is the fraction will go in the direction of s. So we considered whatever the radiative heat 

flux is coming from direction si, now this is the portion whatever we have written that is going to 

the direction s. Now we have to consider whole solid angle, so you have to integrate over all 

solid angle   . 
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So that will now write. We can now calculate the energy flux scattered into the direction s, from 

all incoming direction si by integrating. So, in     which is going in direction s, which is your 

out-scattered should be equal to whatever is coming from all other directions. 

(  )          ( ̂ )(   )      ∫      ( ̂ )(   )        
  ( ̂   ̂)

  
  

  

 

So what we have done? We have just equated whatever total energy is going in the direction of s 

that is your (  )          ( ̂ )(   )       which is actually summation of all the directions, right 

which is coming in the direction s. So cancelling the common terms from both sides 
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So, now we have derived all these intensities, due to you can see attenuation by absorption we 

have written 

(   )            

Then you have done due to out-scattering, 

(   )                     

And due to emission 

(  )                 

And attenuation by in-scattering just now we have derived 

(  )          ( ̂ )    
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So we have seen now that these are the attenuation by absorption and out-scattering and 

augmentation by emission and in-scattering, now we will do the energy balance okay. 
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So, now you can see this beam of rays going in the direction of s through this participating 

medium of distance ds, it is going from s to s+ds, so the distance is ds. And this is the area is dA. 

The change in intensity is found by summing the contribution from emission, absorption, 

scattering away from the direction s and scattering into the direction of s. 

 

So that if you can write so, you can essentially write as 
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The first term in the bracket represents the location at which intensity is calculated. Second term 

represents the direction taken and the last term is the time. So this is the simple energy balance 

where the difference between the intensity at s+ds and s, okay at time obviously, when it will go 

to s+ds, so it will be t+dt, okay. 

 

So the difference will be the summation of all these augmentation and the attenuation. So we 

have written that. So first part is your emission, okay second is your absorption then, third is 

your out-scattering, okay and fourth is your in-scattering. So this is the energy balance we have 

done. And you can see that it is Lagrangian in nature because you are going in the direction s; 

from s to s+ds. 

 



So, with this now you can see that the ray travels at the speed of light. So if rays travels at the 

speed of light let us say c, then what is the relation between ds and dt? It will be 

       

Now, we will use the Taylor’s series expansion. So, if you use the Taylor’s series expansion then 
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So you can neglect the higher order terms and divide by ds 
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So, now in the previous equation we divide by ds and we equate that to this equation. And also 

we can write 
  

  
 
 

 
, which we have found out earlier. Then it will be 
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So, now we have derived, you can see from the energy balance, we have derived this equation 

which is known as radiative transfer equation or it is known as RTE. So from the energy balance 

considering a participating media of volume dAds, we did the energy balance and using this 

Taylor’s series expansion, we have derived this equation which is known as radiative transfer 

equation. 

 

And you can see the first term in the left hand side, so if speed of light is very high, then in 

practical situation whatever time you considered, it is very small compared to the speed of light. 

So the phenomena what is happening, that time duration if you consider, so that is kind of quasi 

steady, right because it is very small compared to the speed of light. 
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So, this term generally it is neglected okay, because it is almost 0 because it is Quasi steady. So 

with this now, we can see that now this 2, this     and    you can consider as a extinction 

coefficient     and you can rewrite this equation. 

 

 

   
  
 
   
  

          (     )  
   
  
∫   ( ̂ )  ( ̂   ̂)
  

    

 (Refer Slide Time: 38:29) 

 

And now, what are the assumptions we have considered during the derivation? Let us 

summarise. So the medium is homogeneous. The medium is at rest compared to the speed of 

light, so that I am calling as Quasi-steady. The medium is non-polarising and the state of 



polarisation is neglected. The medium is at local thermal equilibrium, okay is that is very 

important and the medium has a constant index of refraction. 

 

So, you can see this equation, now if you consider that medium is almost at rest, so this you can 

put as 0, and you can write this equation 
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So this is your RTE; radiative transfer equation. And generally, we use this equation because we 

neglect the first term as the speed of light is very high.  
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So, with these assumptions, now we can see that what is your goal? So, now you can solve this 

equation and you can find what is    . So, you will get the intensity. But when you solve the 

energy equation you can see in the energy equation one term is there. So it is the energy 

equation, this is the temporal term, this is the convection term, this is the diffusion term and this 

is your radiative heat flux, qR, okay. 

 

And this qR; radiative heat flux we have to calculate from the intensity. And to get the intensity 

you have to solve this equation, radiative transfer equation. If you solve this equation, you will 

get the     and this     you will be used to calculate the radiative heat flux, qR. So, you can see 

this radiative transfer equation is an integro-differential equation okay. 



 

Because it is a differential equation you can see as well as there is a integration. So this is known 

as integro-differential equation, where      has to be calculated from the temperature field and is 

initially unknown. So      is the blackbody intensity which you need to calculate from the 

temperature. And how you will calculate the temperature; you need to solve this full energy 

equation. 

 

So, once you solve this energy equation, you will get the temperature and from this temperature, 

you can calculate the      But at the same time, in the energy equation this is your divergence of 

qR which is your radiative heat flux. So, now radiative heat flux, how will calculate? The 

divergence of radiative heat flux needs to be evaluated from the radiative energy balance over a 

volume element. 

 

The spectral radiative heat flux vector along a direction s inside a participating medium can be 

obtained by integrating the contribution of intensity from all solid angles. So qR you can write 

  ⃗⃗⃗⃗  ∫    ̂  
  

 

Now, this is your radiative heat flux and divergence of qR you need to calculate and divergence 

of qR you can write 

    ⃗⃗⃗⃗  ∫   (   ̂)  
  

 

So you can see that to calculate the     , you need to know the temperature and for that you have 

to solve the energy equation; this equation. And at the same time, when you will solve the energy 

equation, you need to calculate the radiative heat transfer or radiative heat flux. So this radaitive 

heat flux, you will calculate in terms of the intensity. 

 

And this intensity will calculate from the radiative transfer equation, which you derived. So these 

divergence of qR now we can relate in terms of the intensity and once you solve for     using the 

radiative transfer equation, you will able to calculate divergence of qR. So these are coupled. So 

when you are solving the intensity equation which is radiative transfer equation, you need to 



know the temperature to calculate the     . And when you are solving the temperature equation, 

which is energy equation, you need to know the intensity. 
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So, now let us summarise okay, the equation which is your radiative transfer equation, RTE.  
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So you can see     is function of space as well as the direction. The first term we have neglected, 

because the phenomena is at rest you can consider compared to the speed of light. 

 

And it is your      which is again maybe function of r and    is your extinction coefficient. 

okay which is your        and what is   ;    is your absorption coefficient and     is your 

scattering coefficient. Now       , which is function of again space.      is obviously blackbody 

radiant energy and    is your absorption coefficient. Plus 
   ( )

  
, where      is your scattering 

coefficient and ∫   (   ̂ )  ( ̂   ̂)  
    . So    is your scattering phase function and    is 

solid angle, and obviously,     is radiant intensity, i is special position, s is your angular position 

and   is wavelength. 

 

So this is one integro-differential equation because you have the integration from also in this 

equation. So, with this now we will conclude that already initial classes of radiative heat transfer 

you have learned how the radiation exchange take place when you have vacuum or non-



participating medium. Now, in last 2 or 3 classes, we have learned if there is a participating 

medium that means the medium participates in the radiation then you need to consider 

absorption, then emission, then in-scattering and out-scattering. And the intensity equation which 

is actually radiative transfer equation that today we have derived. So this is the last lecturer as I 

told. If you have any doubt then we will discuss during the discussion time and I hope that you 

will enjoy this lecture, thank you. 


