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Lecture - 27 

Radiative Properties of Real Surfaces 

 

Hello friends. Welcome to our module number 10, where we are going to talk about the radiative 

properties of real surfaces. In the previous week, you have been introduced to the fundamental 

definitions and concepts of radiation heat transfer, like different kinds of intensities and heat 

fluxes. You have been taught about or you must have learned about the spectral intensity of 

incidence and emission and also different heat fluxes, like the spectral directional emissive 

power, spectral hemispherical emissive power and total hemispherical emissive power like the 

three kinds of definitions that we commonly use for each of the heat fluxes. I hope you have 

understood that. Similar definitions are possible in terms of irradiation radiosity and also for net 

radiative heat flux. And also like I have mentioned earlier also the net radiative heat flux we have 

here defined in terms of net amount of energy received by a surface minus net amount of 

radiation energy that is leaving the surface. 

 

But it is also possible to define it in the other way that is in terms of net amount of energy 

leaving the surface. Now in the third lecture of the previous week, you have been introduced to 

the concept of black body or black surfaces, which actually is the most idealized kind of surface 

that we can have in terms of radiation heat transfer. You know that a surface to be categorized as 

the black surface or black body it must satisfy 3 conditions. 

 

Firstly, it should be a diffuse emitter. That is whatever emission that is coming out of this that 

should not have any kind of directional dependence. It should depend only on the wavelength 

and the temperature of the surface. Secondly whatever irradiation that falls on a black surface, 

100% of that should get absorbed, that means it has an absorptivity of 1 and reflectivity of 0 for 

opaque surfaces that is. 

 



And thirdly which is the most important one probably; that for a given wavelength and 

temperature, the amount of energy emitted by a black surface is the highest among all possible 

surfaces. That is any real surface; any non black surface should emit radiation less then what is 

emitted by a black surface for a given combination of temperature and wavelength. And this 

particular point is very important because there is no black surface in nature. 

 

Ideally black surface is concept is a highly hypothetical one. And because as the black surface is 

assumed to be a diffuse emitter, so we can completely eliminate the direction dependence and 

can talk about the dependence on wavelength and temperature. And we have also learned about 

the Planck’s’s distributions etc, so that we can very easily calculate the spectral intensity of 

emission for a black surface and accordingly the spectral hemispherical emissive power and the 

total hemispherical emissive power. 

  

However, if we are talking about a real surface, then we know that once the wavelength and 

temperature is given its emission is going to be less than or equal to that black surface. In the 

limiting case it is going to be equal to the black surface, but practically it should always be less 

than that. But how can you quantify that? If I provide you one value of wavelength and one value 

of temperature, then you know the upper limit of the emission that we can expect from a real 

surface. 

 

But what should be the actual value, how can we quantify this? That is precisely the thing that 

we are going to learn in this particular module. Similarly, when you are talking about irradiation, 

that is radiation energy being incident on the surface, we know that for a black surface 

everything is going to get absorbed. That means it has an absorptivity of 1 and reflectivity of 0. 

But real surfaces always have absorptivity less than 1 and certain value of reflectivity as well. 

 

For certain surfaces reflectivity can be extremely high also, absorptivity can be quite low. Then 

how to quantify that? Once some energy is being a incident on a surface we know that if the 

surface is a black one then everything is going to get absorbed. But if the surface is a real one 

only a fraction of the incident energy is going to get absorbed and rest is going to get reflected. 



And if it is a non-opaque surface, if it is a transparent surface some part is also going to get 

transmitted. 

 

Then how to quantify those factors? That is the topic that we are going to discuss in this module 

via two lectures today and the next one. And in this lectures, we shall be learning about different 

kind of properties of real surfaces or radiative properties for real surfaces. Now today we are 

going to talk about the emission and in the next lecture we shall be talking about the irradiation 

and corresponding phenomena like absorption, reflection and transmission. 

(Refer Slide Time: 05:11) 

 

When we are talking about an emission from real surface, we plot the Planck’s distribution curve 

for a black surface, which we have plotted in the previous week that is wavelength on this axis 

which is generally plotted in terms of μm and Eλ. What is this symbol suggest? E corresponds to 

emissive power and we have a subscript λ, so what it signifies? It is wavelength dependent that is 

a spectral quantity but there is no directional dependence. So this is spectral hemispherical 

emissive power. So it is going to depend on λT. Or to be more precise, let us write this 

as     (   ) . And this b suggests that we are going to talk about a black surface or blackbody. 

Now the value of this spectral emissive power for a blackbody or its dependence on the 

wavelength can be given by the Planck’s distribution, once the temperature is specified. 

 



And we know that the profile will be somewhat like this. For different temperatures we can get 

different lines. As the temperature becomes lower the line gets shifted towards this side, but that 

is not of our objective. Our objective is to plot for a single temperature. So a temperature value is 

given and then the spectral emissive power for a black surface is plotted here with respect to the 

wavelength. 

 

We know that there will be certain value corresponding to which you are going to get the 

maximum, which we have identified as the λmax. Though truly speaking this is an optimum value 

of λ which corresponds to the maximum value of this      . We also know how to identify this 

point. How to identify this λmax? Using the Wien’s displacement law we know that 

                

So once we know the surface temperature, then we can also calculate this λmax. Generally it is 

given in terms of micron, if you are using T in terms of K. But this is for a black surface or an 

ideal surface. What we are going to get for a real surface? For a black surface this is a function of 

only λ and T. Now I am going to remove this restriction. 

 

Now I am going to plot only Eλ for any surface. Already we have the profile for a black surface, 

now I am going to add the profile for a real surface. For real surface the direction dependence 

also comes into play and also its wavelength dependence is not precisely what we get from the 

Planck’s distribution. It can be quite random. It can be something in that particular form. 

 

This is the spectral emissive power or spectral hemispherical emissive power that we are getting 

for real surface, which is a function of λ, then direction and temperature as well. And therefore 

for real surfaces for every different wavelength, we may get a different fraction of actual 

emission to the corresponding blackbody emission. Similarly, the emission can also have 

direction dependency. 

 

Like suppose on a surface we are talking about emission coming out of this point. Then if we are 

talking about blackbody emission, then in every direction it is going to emit with equal intensity. 

Here I am talking about just one fixed wavelength only. A fixed value of wavelength, a fixed 



value of temperature, then there is no directional dependency. In every direction, it is going to 

emit with equal intensity. 

 

But if I now plot here for a real surface, we can see a very strong directional dependence. We 

may have very strong emission in one direction. We may have extremely low emission in certain 

other direction, maybe zero emission in certain other direction and very large emission may be 

on one side. That means if we join the tip of these lines, you a very non-uniform kind of 

distribution. 

 

If we join the tip of these black surface emissions then we are going to get it perfect hemisphere. 

As all of these lines are of equal length; representing equal intensity of emission. So the emission 

from real surfaces should have both spectral and directional dependence and therefore we must 

quantify this emission from real surfaces by taking the spectral and directional dependence into 

consideration. 

 

And the parameter we used for that purpose is known as the emissivity. Emissivity I have 

defined in the very first week itself, but that was a very crude definition. You have used the value 

of emissivity also while dealing with the thermal resistance concept of conduction heat transfer, 

if there is any radiation or convection heat transfer is present. 

 

But that was the only crude idea, I repeat again. But we have just used a value of emissivity. We 

actually were talking more in terms of the total hemispherical behavior. But now we know that it 

can have both spectral and directional dependence and accordingly emissivity can also have 

different definition. 

(Refer Slide Time: 10:45) 



 

The definition that you have used earlier that is known as the total hemispherical emissivity. As 

the name suggests, it is total. That means there is no wavelength dependence. It is hemispherical, 

so there is no directional dependence. And the symbol emissivity is represented by ε. We define 

this ε to be the emission that you are getting from the real surface divided by corresponding 

blackbody emission. 

  
 

  
 

Now there is no wavelength dependence, no direction dependence, so ε is a perfect constant; is it 

total hemispherical emissivity? No, it is a function of temperature, because we know that there 

are 3 kinds of dependence we can have in terms of radiation. In first two lectures of our previous 

week, we talked about the dependence on the wavelength and direction. And in the third week 

when we came to the black surface, you also mentioned about the contribution coming from 

temperature. 

 

So there are three possible dependencies. The term total indicates that it does not depend on λ; 

the term hemispherical indicates that it does not depend on the θ, φ combination, but temperature 

dependence is always there. Accordingly, here the numerator and denominator they are also 

functions of temperature. So if we want to know the total hemispherical emissive power from a 

real surface that is going to be corresponding emissivity multiplied by corresponding black body 

emissive power or the total hemispherical emissive power from a black body. And following 

Stefan-Boltzmann law, 



 ( )   ( )  ( )   ( )[  
 ] 

And this is the relation that we have used so far, whenever talked about radiation, where we have 

just taken this total hemispherical definition of emissivity. But truly speaking emissivity can 

have dependence on both direction and wavelength because the emission characteristics can vary 

quite randomly. And accordingly it is important that we should consider both these dependence 

into definition. So the most basic definition of emissivity is generally given in terms of the 

spectral directional emissivity. Spectral directional emissivity is again denoted by ε, but there are 

subscripts that we put in. We put a subscript λ to denote the spectral dependence and also put a 

subscript θ to indicate that there is a directional dependency (   ). 

 

While defining the heat fluxes, we never use this θ. But generally while defining the properties 

we use the θ to exclusively indicate the directional dependence. Now what will be the definition 

of this spectral directional emissivity? Before that it should be a function of which quantities? 

Spectral dependence is there, so this is the function of λ, directional dependence is there, so this 

is a function of θ, φ. And temperature dependence is also there. So it depends upon all three 

kinds of parameters that we have to consider. 

       (       ) 

It is defined in terms of the ratio of intensities. The spectral intensity of emission coming out 

from this real surface for that particular wavelength and in that particular direction for the given 

temperature divided by the corresponding spectral intensity of emission for a black surface. 

   (       )  
   (       )

   (   )
 

Now we know that for a black surface or for a blackbody, there is diffuse emission. There is no 

directional dependency. And therefore θ, φ should go off. So the denominator is a function of 

only λ and T. This is the definition of the spectral directional emissivity. Accordingly, the 

spectral intensity of emission from real surface can be defined as  

   (       )     (       )   (   ) 

And how we can estimate this    ? We have learned in the previous week that     can be 

expressed in terms of the Planck distribution.  

 

I am just trying to recall the relation that we have used earlier, which was of a form like this 



    (   )  
  

  [   (
  
  
)   ]

 

I guess I am writing it correctly. Value of c1 and c2 was also given in the last lecture that we had 

in the week number 9. And from there once the λ and T combination is known, you can calculate 

the spectral intensity of emission from the black surface. 

 

And then once you have some idea about this quantity, you can calculate this spectral intensity of 

emission for the real surfaces. Now this is the most fundamental definition you can have where 

you are considering the variation of wavelength, direction and temperature. But in most of the 

applications we generally go for averaged kind of definitions, where I will take either the 

wavelength as a gross quantity or integrate over the entire direction. Accordingly, we can have 

two kinds of definition. 

(Refer Slide Time: 16:55) 

 

One definition is of total directional emissivity. What should be the subscript here? It is total so 

no spectral dependence, so λ is not coming here, but θ dependence is there, it is a directional 

dependence quantity. So accordingly it will be a function of θ, φ and T. Total directional 

emissivity is defined as when you integrate this one over the entire range of wavelength. That is 

  (     )  
∫    (       )  
 

 

∫    (   )  
 

 

 

Or as we have already integrated over the wavelength range commonly it is represented as 



  (     )  
  (     )

  (   )
 

These are total directional emissivity and in engineering application instead of this, we generally 

go for the other one which is called the spectral hemispherical emissivity. Here we integrate over 

the directions over a full hemisphere. So its notation should be, ε to denote its emissivity, then 

suffix λ to denote it is spectral and it will be a function of λ and T. So what will be the definition 

of this one? Its definition should be then the ratio of  spectral hemispherical emissive power for 

the real surface to the spectral hemispherical emissive power for the black surface at a given 

combination of wavelength and temperature. 

  (   )  
  (  )

   (  )
 

So if we write that using the full integrated form, then this is going to be 

  (   )  
∬     (       )             
  
 
 
     

       

∬     (   )             
  
 
 
     

       

 

This is the spectral hemispherical emissivity. Now most of the cases for most of the surfaces, we 

generally can consider the dependence of this        the numerator to be very less on the azimuthal 

direction and accordingly what I am trying to say is that this      for most of the practical cases is 

not a function of φ or rather it has very weak dependence on φ.  

    (       )   ( ) 

Accordingly, the φ term can be removed. And from this we can integrate over the dφ to have in 

the numerator as 

∬     (       )             

  
 
 
     

       

 (  )∫     (     )           

 
 

   

 

What about the denominator? Now     the spectral intensity mentioned for the black surface is 

completely independent of both θ and φ because a black surface is direction independent. Or I 

should say black surface a diffuse emitter. Accordingly we can take this     out. So 

∬     (       )             

  
 
 
     

       

     (   ) ∬             

  
 
 
     

       

 

Hence, 



  (   )  
(  ) ∫     (     )           

 
 
   

    (   )∬             
  
 
 
     

       

 

Now we have this      in the numerator and     in the denominator. Look at what we have in the 

previous slide, if we use this one then      in the numerator and denominator cancels and we can 

express it as 

  (   )  
(  ) ∫    (     )           

 
 
   

 
 

  (   )   ∫    (     )           

 
 

   

 

So once we know the spectral directional emissivity and its dependence on the directions and 

wavelength and temperature, we can also calculate the spectral hemispherical emissivity. 

Similarly, the total hemispherical emissivity ε which is a function of temperature only as we 

have defined in the previous slide which is the total hemispherical emissive power from the real 

surface divided by total hemispherical emissive power from the corresponding black surface. 

 ( )  
 ( )

  ( )
 
∫   (   )   (   )  
 

 

  ( )
 

From there we can easily calculate. Again once we know this particular quantity, then we can 

also calculate the total hemispherical emissivity. And once you know the total hemispherical 

emissivity, like I have shown here we can also calculate the total emissive power and we can 

calculate any other quantity as well.  

 

So using this, we can also calculate the spectral emissive power from any real surfaces. There are 

several definitions then we are taking like emissivity has been defined in terms of the spectral 

directional emissivity. Then we can integrate this one over the wavelength to get the total 

directional emissivity or over the direction to get the spectral hemispherical emissivity. 

 

And finally we have the total hemispherical emissivity. This is the one that we have kept on 

using earlier where we had only the concept of the Stefan-Boltzmann law, but have no idea about 

this direction and spectral dependence. But once we have any idea about this particular quantity, 

the spectral directional emissivity, then each of the others can be calculated just like shown here. 



Once we know this using this relation, you can calculate the spectral intensity of emission in that 

particular θ, φ direction. You can also calculate the total emissive power from this. If we want to 

calculate the spectral hemispherical emissive power that is that also you can calculate from here. 

Like if our objective is to calculate the spectral hemispherical emissive power for this surface, 

then this should be  

  (   )    (   )   (   ) 

And how to get this one this       . Blackbody being a diffused emitter, we can make use of this 

    and correspondingly we can change this       . 

   (   )[    (   )] 

And    (   ) can be calculated using previous relation, again from only wavelength and 

temperature. Accordingly different definitions of emissivity are possible. You have to choose 

which one is relevant to your case. 

 

While the spectral directional emissivity is the most fundamental one, for most of the 

engineering applications we may not have to go to that level. We generally can stick to the 

spectral hemispherical emissivity in most of the cases and there also we are seeing that it is being 

hemispherical, there is both θ, φ dependence can be taken care of. And in certain cases if you 

have to go for the total directional emissivity quite often the dependence of the azimuthal 

direction can be written off for this.  
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So if we quickly talk about the directional dependence of real materials then it has been observed 

that like for certain materials if we plot θ here and this εθ, that is the total directional emissivity, 

then it has been found that for certain non conductors it generally shows a very flat line and then 

drops quite sharply, generally beyond a θ value of about 60 degree to go to 0 at about 90 degree. 

These are generally for non conducting materials. This is only an indicative curve. 

 

Certain materials can have slightly different kind of behavior. But this is more or less the general 

trend. It remains constant almost up to 50, 60 degrees and then decays very sharply. Or it can be 

even up to 70 degree also and then decays very sharply and goes to 0 around the 90 degree. 

Whereas for conductor materials it generally is constant, then increases and again decreases 

towards 90 degree. This line is for conductors. 

 

It has been observed that for conductors again it is approximately constant up to a range of about 

40 degree, it does not change too much. This is not to scale of course this diagram; up to 40 

degrees, there is not much change but then increases sharply and then beyond that 60 degrees 

about 70, 75 degree it again drops sharply towards 0 at 90 degree. So accordingly we can see 

there is a very strong directional dependence and we need to have this εθ or its variation with θ, 

and to know that mathematical relation to perform any kind of integration. But one thing 

generally we can find that the value of εn, which actually refers to ε at θ =0º. εn refers to normal 

direction. Like if this is your surface and this is the normal to that surface, then we have defined 

θ just like this. This particular angle is the θ. 

 

We are measuring θ this way, starting from this going toward this side. So θ =0º actually refers to 

the vertical line where θ =90º refers to the horizontal line. Means the surface actually is a vertical 

one and θ =0º refers a horizontal surface with this normal pointing upwards. Or at least the 

configuration that is shown here, θ =0º refers to the normal direction. 

 

So εn accordingly refers to the normal direction. But it has been found that there is a strong 

directional dependence. But once we perform the integration that is once we perform this 

integration ∫             
 

 
   

 like the one that we had in the previous side in terms of   , 

this one does not vary that much from this εn. It remains quite close to this εn. 



 

And accordingly over a large range, we can almost use this value of εn with certain corrections to 

replace the value of ε over the entire range. Means what I am talking about this for a 

nonconductor this is your εn. So up to about 60 to 70 degree, it is exactly equal to εn and then 

varies a bit towards the later side. Accordingly, we can define ε λ, which is a function of both λ T 

  (   )      (   ) 

This is the spectral hemispherical emissivity. Similarly, we can define the total hemispherical 

emissivity also. Total hemispherical emissivity can also be approximated as the normal value of 

total hemispherical emissivity for most of the cases without too much error. 

 ( )    ( ) 

If we are dealing with conducting materials, generally it has been found that  

    
 

  
     

For non-conductors, it is even better. 

     
 

  
   

So it is a very small range that we generally deal with. And for most of the cases therefore this 

assumption is not a bad one. We can eliminate the directional dependence just by considering the 

normal value of emissivity or emissivity in the normal direction. 
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Spectral dependence is shown here for certain common material. You can see there is no specific 

trend in materials like stainless steel, tungsten, etc.; their spectral normal emissivity that is. Now 



we are going to plot only normal emissivity. So spectral normal emissivity, ελn continuously 

decreases with increase in wavelength. But not for all material, like aluminum oxide at 1400 K it 

generally is a flat line and then rapidly increases to indicate a maximum somewhere here and 

then drop sharply. Also you can see that depending upon the nature of the surface, external 

surface the value of emissivity can vary strongly. Like two cases are shown for stainless steel; 

stainless steel at 800 K when the surface is polished stainless steel at 1200 K when the surface is 

heavily oxidized. 

 

You can see if we pick up any particular value of wavelength, say if we pick up this wavelength 

value of 2, then for polished surface while the emissivity is somewhere here, which is around 

0.4, but if we go to the highly oxidized stainless steel surface this value is somewhere here, 

which is in the range of 0.76, 0.77. And accordingly by modifying the nature of the surface, we 

can easily change the value of the emissivity as well. 

 

But in general the non-conductors have higher emissivity like we have seen in the previous slide 

itself. Most of the cases non-conductors have higher emissivity compared to the conductors.  
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This is the temperature dependence for certain common materials again. You can see for 

materials like tungsten or polished stainless steel, even oxidized stainless steel also, it increases 

with increase in temperature the total normal emissivity. For silicon carbide it is more or less flat 



line, then starts decreasing beyond 1100 K, whereas for aluminium oxide it is a continuously 

decreasing trend. Means as the temperature increases its total normal emissivity or emissivity in 

the normal direction that keeps on reducing. So this way you can refer to the books to find the 

values of emissivity for certain other materials as well. 

 

Like non conducting materials something like say carbon, graphite can have quite high 

emissivity in the range of 0.6 to 0.9 whereas our human skin, human skin is a highly emitting 

surface. Its emissivity will be in the range of 0.8 or even higher. And with the change in 

temperature as we can see from the screen, the emissivity value also can vary quite a bit. 
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So now we shall be solving a couple of numerical problems to see whatever we have learned. 

The spectral distribution of spectral hemispherical emissivity for a diffused is maintained at 

1600K is shown below. So we know that the temperature of the surface is 1600 K and the one 

given is the spectral hemispherical emissivity. So it is a function of only λ and T. Of course T is 

constant in this case that is your 1600 K. 

 

Determine the total hemispherical emissivity. So you have to calculate the total hemispherical 

emissivity ε, which should be a function of only temperature. This one you have to find and total 

hemispherical emissive power. The second part I am coming later on. So the values are shown 

there that is 



               

               

         

So this surface is not able to emit anything once the wavelength crosses 5. So you have to 

perform this calculation. We have to find the total hemispherical emissivity. So how we define 

that? Total hemispherical emissivity it was defined in the previous slides. 

 

So it is equal to the actual emissive power from the real surface divided by the corresponding 

black body emissive power. 

  
 (   )

  (   )
 
∫   (   )     
 

 

  (   )
 

Accordingly we can break this one into two parts. 

 
  ∫      

 

 

  (   )
 
  ∫      

 

 

  (   )
 

Now if we just forget about the ε1, ε2 can you identify the other two terms? In the previous week, 

we introduced you to the concept of band emission. The same can be used here.  

   [    ]    [         ] 

Now we have 

                          

                          

And then we can make use of the table that I introduced in a previous week for    , the value of 

F, I have identified or I have noted this down.      is coming as 0.318,      is 0.856. So if you 

put the numbers 

               (           )        

This is a total hemispherical emissivity for this surface. And now if you want to calculate the 

total hemispherical emissive power E (T) will be equal to 

 ( )   ( )  ( )   ( )  
  

       (         )(    )            

So this goes the first part of the problem, where we have calculated the total hemispherical 

emissivity and then you we have used that to calculate the total hemispherical emissive power. 

 



Now you have to identify the wavelength corresponding to the maximum spectral hemispherical 

emissive power. Now if it is a blackbody then we know that from Wien’s displacement law, we 

can identify the solution. 
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From the Wien’s displacement law, we know that 

                

So in this case had it been a blackbody, it would have been 

     
    

    
         

So had it been a black body, the maximum value of this spectral emissive power would have 

appeared at this 1.81 μm. But this is a real surface and so it is not guaranteed that the optimum 

value appears at this particular point only. So let us try to calculate the spectral emissive power at 

this particular wavelength. If we want to calculate spectral emissive power Eλ for this λmax, then 

that will be equal to 

  |       (   )|       (   )|       (     (   )) 

Now if   (   )  is given in this case that is 1.81 μm falls within this range. It will be somewhere 

here. For λ =1.81 we can stick to ε =ε1; that is 0.4. Now how to get the     ? 

 



Remember that chart that I have shown earlier. There we had columns like this. You had λT here 

you at this      here and you had a quantity here as 
   

   
 . So once you know the λT combination, 

then we can calculate that     as well. And from there you can get this solution of Eλ. So  

  (     (   ))     (
   
   

)     

Now you have to identify this quantity or rather we have to just bring this from the chart. So 

what value should we use here? Corresponding to 2 micron, if we use then 

                     

So in this particular case for λT=          , the value of 
   

   
  is coming to be 0.706X10

-4
. So 

putting it 

  |         (        
  )(         )(    )              

So this is the way we can solve one problem, use and identify the maximum value of this. Here 

we can easily get compare the value corresponding to this one and we have calculated here for 

λ=2 micron. And this value is coming to be higher. 

 

And accordingly it is proved that this particular system is going to be having its maximum at λ=2 

micron. 
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So that is where I would like to stop for the day, where I have introduced the properties of real 

surfaces. Actually only one property we have discussed which is the emissivity and different 



definitions of emissivity was proposed, considering the spectral and directional dependence. We 

have also solved one numerical problem. In the next class, I shall be solving another numerical 

problem. 

 

And then I shall be discussing about different properties of real surfaces in relation with the 

irradiation. So till then please revise this lecture and if you have any confusion, please write to 

me. Thank you very much. 


