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Fundamentals of Radiation Heat Transfer 
 

Hello friends, welcome back to the module number 9 of our course, where we are talking 

about the fundamentals of radiation heat transfer. We already had couple of lectures on this 

and I hope you have gone through the corresponding video quite minutely. If you have done 

that then the concepts of the intensities of emission and intensity of incidence is clear to you. 

 

And also by now you know the difference between different kinds of radiative heat fluxes 

that we have defined the emissive power, irradiation, radiosity and also the net radiative heat 

flux. If there is any doubt at the moment, if you have not gone through the previous videos 

carefully, then please pause this video right here, go back to the previous videos and study 

that minutely. 

 

And also it is very important that you go through the books as well like we are following the 

book of fundamentals of heat and mass transfer by Incropera and DeWitt or like in the recent 

edition there are 4 authors; Incropera, DeWitt, Bergman and Lavine. This is the basic 

textbook that we were following but there are several others, very high quality text book on 

heat and mass transfer available like the book of J.P Holman, the book of Cengel and several 

other books also you can still go through any one of the books to clarify the concepts. 

 

Now, once the concepts of radiative intensities and radiative heat fluxes are clear to you, then 

we can go for the discussion of the properties of ideal surfaces in terms of radiation. 

(Refer Slide Time: 01:57) 



 

But before that let us have a quick recap of whatever I was talking about. The first term that 

we have defined here was the intensity of emission or I should say the spectral intensity of 

emission. That subscript λ denotes, it is a spectral quantity and e denotes that we are talking 

about emission and as I mentioned this intensity is also a directional quantity but we are not 

putting any subscript personal directional one, because I itself refers to directional variation. 

So this is a function of λ, θ and φ; polar and azimuthal angle and this is defined as 

    (     )  
  ̇
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Where, this dA1 refers to the area of the source surface. We know that this definition of 

intensity is based upon the projected area of the source. At the same time, we also have both 

spectral and directional dependence. 

 

I am repeatedly mentioning about this just to clarify the concepts because there are several 

terms which looks quite similar and you should be absolutely sure about which term refers to 

what. That is why I repeatedly keep on mentioning about similar terms. From here, we have 

defined the spectral radiative heat flux or also which we can call the spectral directional 

emissive power which was defined as 
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  ̇
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This term in the parentheses is coming from actually the solid angle dω. So this definition of 

this spectral directional emissive power is based by the true area not the projected area. 

Intensity is defined on the projected area, so that whenever we are given as a surface, we 

have to first identify which direction we are talking about in relation with this intensity. 



 

And then we have to identify the projection of the source surface in terms of that direction. 

Like if this is your source surface and we are talking about a direction like this; it is the 

emission going in this direction. Then we have to find the projection of this surface normal to 

this direction that is may be something like this. And therefore using the angle between the 

normal to the surface and the direction of emission, this angle θ, we can easily calculate the 

project area. This θ refers to that particular angle only which you can also call the polar angle 

correspond with the direction. And from that spectral directional emissive power or spectral 

radiative heat flux, we have defined the spectral emissive power where instead of  ̇  notation, 

we move to the standard notation of Eλ which is a function of λ only, because here we have 

just integrated this   ̇    over θ and φ. Or more conventionally we write this as 

  ( )  ∫   ̇  
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And in limits of integration, I hope it is clear now. We are doing this over a hemisphere, so 

this integration is performed over hemisphere that is why instead of writing this way. We can 

easily write this one just a single integration and putting the subscript h to denote that we are 

performing this integration over hemisphere. 

 

And then from there, from spectral hemispherical emissive power, we define the total 

hemispherical emissive power which is this Eλ integrated over the λ limits from 0 to ∞. 
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And therefore, the final definition of total hemispherical emissive power is 
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So, all these 3 terms that we have defined, all these three emissive powers they are based on 

actual area of the source and each of them has their own nature of dependence. Like the first 

one the spectral directional emissive power or the spectral radiative heat flux has both 

spectral and directional variation. 

 

Then we are having the spectral hemispherical emissive power where we have integrated 

over the hemisphere and therefore, it does not have any directional variation, it has only 



spectral variation. And the third one is total directional emissive power which encounters or 

which takes care of both spectral and directional variation into consideration or integrated 

over all possible wavelengths and all possible directions. 

 

So, this way we have defined for the emission. The same way we can define the characteristic 

corresponding to irradiation as well. And in case of irradiation, just following the same 

terminology, we have defined that spectral intensity of irradiation or I should say spectral 

intensity of incidence where we have just changed the subscript from e to i;  

     (     )  
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Here, dG represents the infinitesimal amount of energy that is being incident on this. Again 

this is also based upon the projected area of the receiving surface. I should not say projected 

area of the source rather projected area of the receiver in this case and here also you have 

both spectral and directional dependence. 

 

Then from there, we can define this spectral irradiation or you can say this is the spectral 

directional irradiation which is nothing but 
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Then integrating this over a hemisphere, we got spectral hemispherical irradiation which is 

this 
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And then we had this total hemispherical irradiation where we are integrating this spectral 

hemispherical irradiation over the entire range of wavelength 

  ∫     
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So, first one also has the both spectral and directional variation, second one has only spectral 

variation and the third one is the total definition which encounters or integrates over both 

directions and wavelengths. And combining this, we have also defined the radiosity and their 

total radiative heat flux. Now, here we can see that while we are defining all this; let us just 

for the moment focus on the emission part. 



 

So, to know the emission characteristic of a surface or of any radiating surface, then we 

actually need to know this particular quantity, Iλe; the spectral intensity of emission that needs 

to be known. Once we know the representation of this Iλe, then we can easily perform rest of 

the calculation. We can easily do the integration over hemisphere; we can easily do the 

integration over the wavelength ranges. 

 

And we can get the values of all these heat fluxes; the spectral directional emissive power, 

spectral hemispherical emissive power and total hemispherical emissive power. Similarly, if 

we know this one somehow Iλ,i , the spectral intensity of incidence then again, the same way 

we can calculate the others. And therefore, the next objective for us should be to get an idea 

about how to estimate this intensities particularly, the intensity of emission. 

(Refer Slide Time: 13:44) 

 

And that takes us to the concept of something known as a blackbody or black surface or the 

blackbody radiation. Now, the concept of a blackbody or black surface is actually a 

hypothetical one. There are 3 conditions that I am going to mention about a black surface. No 

real surface provides all these conditions to be perfect or no real surface can meet all these 

conditions but there are several surfaces which can approximate these conditions to certain 

extent. 

 

And accordingly, they can somehow be treated as black surfaces but the concept of ideal 

blackbody or black surface is purely a hypothetical one, so there are 3 conditions which a 



surface or a body must satisfy to be identified as a blackbody. Condition number 1; a black 

body absorbs all incident radiation regardless of wavelength and direction.  

 

So, whenever some radiation is incident on a black surface, it is going to absorb everything. It 

is not going to reflect anything; it is not going to transmit anything. And therefore, you can 

say the absorptivity for a black surface should be is equal to 1. And its reflectivity is equal to 

0, similarly its transmissivity is also is equal to 0. Transmissivity generally comes into picture 

only in case of transparent surfaces. 

 

Most of the surfaces that we deal with in heat transfer are opaque in nature and therefore, τ 

mostly we take it equal to 0 but reflectivity is definitely there. Only in case of black surfaces, 

reflectivity is also is equal to 0 and α is equal to 1. Secondly; for a specified temperature and 

wavelength, no surface can emit energy larger than a black body, so once we have specified 

one wavelength say, λ and one temperature for the surface; I mean, I am given with a surface 

which is at a temperature T and then I am looking to identify how much amount of emissive 

power or what should be a value of spectral emissive power corresponding to a particular λ; 

spectral hemispherical emissive power that is I am talking about. So, this second condition 

says that this Eλ for a given combination of λ and T should be the largest corresponding to a 

blackbody. 

 

Any real surface which is a nonblack surface will always emit energy less than this particular 

amount corresponding to black body. So, we can say  

  (   )      (   ) 

Corresponding to a given λ, T combination. So, once we have specified the temperature and 

once you have specified the wavelength which is of our interest, then the maximum amount 

of emission or highest value of emissive power we are going to get only from a black body 

which is given by this Eλ,b. 

 

The b subscript presents in a black surface only. So in a real surface, we will always have an 

spectral hemispherical emissive power value less than this quantity. So, I repeat; once I have 

specified the temperature of a given surface and once I also fixed up a particular value of 

wavelength, then the maximum value of spectral hemispherical emissive power will 

correspond to a black surface. 

 



And third condition; a black body is a diffuse emitter. What do you mean by a diffuse 

emitter? The term diffuse as I have mentioned always corresponds to something which does 

not have a directional dependence. Now, here we are talking about diffuse emitter means, its 

emission characteristics does not have any directional dependency. Therefore, if we write this 

     (     ), that is the spectral intensity of emission for a black surface that is going to be a 

function only of λ, it does not have any dependence on θ and φ. 

     (     )       ( ) 

And similarly, one earlier term that we have defined or I should say one earlier derivation 

that we have done that is a relation between the intensity and emissive power for a black 

surface, do you remember that? There we have defined Eλ the emissive spectral 

hemispherical emissive power of a black surface for a diffuse emitter 

    (   )        (   ) 

For the same λ, T combination. So these are the 3 important relations that a black surface 

must satisfy. The closest in reality that we get to a blackbody is something like this, where we 

have an enclosure just look at this picture, whose internal surfaces maintained at a constant 

temperature, so that we have an isothermal surface. 

 

And then there is a very small aperture through which radiation is able to come in through 

this, into this enclosure. now, once the radiation enters the enclosure, just like shown here 

then, it will strike the surface, the first point it is striking the enclosure surface is here. At this 

point, a part of the radiation energy will get absorbed, remaining will get reflected. 

 

So that reflected fraction like this Iλ,i is the incidence, let us say Gλ is the corresponding 

magnitude of spectral hemispherical irradiation. Once it strikes at this particular point, then 

say αGλ amount will get absorbed and assuming it to be an opaque surface; (1-αGλ) will get 

reflected that is striking at this particular point. 

 

There again some fraction will absorbed further, so at this point may be α(1-αGλ) will get 

absorbed and some (1-α)
2
Gλ will get reflected again. Now it strikes at this particular point 

where again some further absorption will take place, then strikes at this point. This aperture; 

this particular point being corresponding to a very small hole over a very large enclosure, so 

there is very little probability for this radiation to go out through this aperture, rather it will 

keep on striking the enclosure wall repeatedly and thereby getting absorbed sequentially. And 



it is a very much possible that the entire portion of the radiation will get absorbed finally and 

therefore, whatever may be the intensity of this wave irradiation, the entire amount is getting 

absorbed. The number of such kind of reflection it takes that may depend upon the magnitude 

of this wavelength λ, that may depend upon the direction also from which direction this 

irradiation is coming in. 

 

But ultimately, that has to get absorbed thereby, satisfying the first condition that if we just 

see this entire body as a whole, then this is giving us the characteristics of α = 1, ρ=0, because 

whatever energy, whatever intensity or whatever irradiation it is coming in, the entire portion 

is getting absorbed within this cavity or within this enclosure. So, the first condition is 

satisfied. 

 

For a specified temperature and wavelength, no surface can emit energy larger than black 

body which is a condition that comes from quantum mechanics. And also from this cavity 

part it can be proved that if in order to maintain a thermodynamic equilibrium, then whatever 

energy comes in, the same amount of energy has to go out and like shown here, the Iλ,e has to 

be is equal to Iλ,b for such a cavity. 

 

And finally, black body is a diffuse emitter because if we keep a surface like this inside, then 

from all direction, whatever energy gets emitted on this that ultimately, is going to get 

absorbed. And also from all direction this surface is going to receive energy with equal 

intensity which is equal to the spectral hemispherical emissive power of the black surface 

only. 

 

So, such a cavity means a very large enclosure with isothermal interior surface and a small 

aperture or hole somewhere on the surface behaves very close to a black surface. To 

summarize, a black surface should satisfy 3 condition, number 1, its absorptivity should be is 

equal to 1, reflectivity should be is equal to 0; number 2, for a given value of wavelength and 

temperature, the emissive power from a black body has to be the highest among all possible 

surfaces maintained at the same temperature and emitting with the same wavelength. 

 

And number 3, blackbody emission does not have any direction dependence. Therefore, 

spectral intensity of emission for a black surface can be written just as      ( ) as it does not 

have any θ, φ dependence. Now, in order to calculate the value of this one, like in the 



previous slide we have seen that whenever we are looking to calculate the emissive power; 

spectral hemispherical emissive power or total hemispherical emissive power, we need to 

know the value of this     (     ) ; that is the spectral intensity of emission. 

 

Now, when you are talking about a blackbody, this one becomes     ( ) , we are not putting 

the subscript e rather we are putting the subscript b to indicate that we are talking about a 

blackbody emission. The subscript λ indicates it is a spectral quantity, so there is a 

dependence on wavelength but there is no directional dependence. So θ, φ is not present on 

the right hand side. 

 

And we are not using a subscript e, we are rather sticking to the subscript b to indicate that 

we are talking about blackbody emission. Now, let us try to identify the form for this one 

then, so that we can calculate the emissive power for a blackbody; the spectral hemispherical 

emissive power and total hemispherical emissive power. 

(Refer Slide Time: 24:26) 

 

And for that we need to know about the Planck distribution. Now, Planck distribution comes 

from quantum mechanics and something of huge importance, Planck distribution gives us or 

tells us that this spectral intensity of emission from a black body which we now know is a 

sole function of λ or I should say, the function is λ and T. Remember in previous 2 

discussions, we have talked only about the spectral and directional dependence but the 

temperature never came into picture. 

 



But as we are talking about heat transfer, temperature must come into picture. And that is 

where the temperature is coming in through this concept of black surface. So the spectral 

intensity of emission from a black surface is a function of wavelength and temperature but 

not direction because a black surface is a diffuse emitter. Now following Planck distribution, 

it is given as 

     (   )  
    

  [   (
  
    

)   ]
 

There are several constants that I am using here. Here, h is the famous Planck's constant. Do 

you remember its value? In the modern context like in this particular year of 2019, this 

constant has become huge importance or has gained huge importance because there is a 

change in the definition of the unit of kg. Like earlier you know the unit of mass that is; SI 

unit of mass that is kg was defined with respect to the weight of one platinum iridium sphere 

maintained in the museum of Paris. 

 

However, it has been found that over several years there is some microgram decrease in its 

total mass and accordingly, there was a need to replace that by a universal constant and that 

has now been replaced by this Planck’s constant. This Planck constant is a new criterion of 

defining the mass of kg. So, what is the value of this? It’s value I am sure many of you 

remember, it is 6.626 X10
-34

 J.s. 

 

What is    ?     is the Boltzmann constant. And what is the value of    ? It is 1.381X10
-23

 

J/K. From where this one came in, can anyone say, from where this particular value came in 

for this? 10
-23

 comes from the Avogadro constant which is 6.023X10
-23

 and what should be 

the numerator? I am keeping that to you. 

 

Just think about this what can be the possible value okay. There is another constant left that is 

c; c is the velocity of light in vacuum which is of course approximated 2.998X10
8
m/s. So we 

have h, c and     are constants. So it is just a function of λ and T only wavelength and 

absolute temperature; T, here is absolute temperature. 

 

In radiation we always talk about absolute temperature whereas in conduction we can still use 

the temperature in Celsius but we cannot use in radiation. Here everything is in terms of 

absolute temperature. So, now we have the expression for this      , then how can you 



calculate this Eλ b from there; the spectral hemispherical emissive power for a given 

wavelength and temperature, how can we calculate? 

 

We know that a black surface is a diffuse emitter, so therefore 

    (   )        (   )  
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Or more commonly, it is represented as 

    (   )  
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Where,  

       
         

  

  
 

I have noted the values for this. You can easily combine these numbers also to get the values. 

What will be the unit for this? You know the unit for h is J/s and unit for c is m/s, so from 

there what will be a unit? There is another way of calculating the unit, even in fact that is a 

better way, instead of coupling this       . 

 

Because though π is dimensionless but here π is giving some wrong suggestion to this. The 

left hand side of this expression Eλ,b what is the unit of that? That is spectral hemispherical 

emissive power. So its unit will be W/m
2
.µm. As it is hemispherical, so when there is no 

directional dependence but it is spectral, so µm is there. 

 

On the right hand side, then the unit must be the same. But there is a λ
5
. The exponential part 

should be unit less, so this c1/λ
5
, this portion should have the unit of W/m

2
.µm. From there 

then what should be the unit for c1? So, you can easily calculate, it should be W.µm
4
/m

2
. 

 

So accordingly, the value of c1 comes to be is equal to 3.742X10
8
 W.µm

4
/m

2
. And c2 again, 

hc/KB, you have the value of h, you have the value of c and KB, so from there we get it to be 

1.439X10
4
. And what should be a unit for this c2? Unit for c2 and unit for λT should be the 

same. Then it should be equal to µm.K. 

 

So, these are two very standard constants. So once I specify some value of T and λ, you can 

easily calculate the value of corresponding Eλ,b and also      . So, from here then, using the 



Planck distribution which is this and from there we get this one which is also known as the 

Planck's law. 

 

The spectral hemispherical emissive power for a blackbody that we are getting using the 

Planck’s distribution where we are having two constants c1 and c2 to deal with. Then for 

different temperatures therefore, like there are several things that we can note from this. 

Observation number 1; so, if a temperature is given, if we specify the temperature of the 

surface, then this intensity of emission and also emissive power that will continuously vary 

with λ. 

 

So, emission varies continuously with wavelength that is the first observation. However the 

nature of variation is difficult to comprehend from this, either we have to plot this one or we 

have to do some further mathematical manipulation to get the exact nature of this dependence 

of Eλ,b on λ but we can say that it can definitely keep on varying continuously. 

 

Observation number 2; as the temperature increases then what will happen? Look at this 

expression; this was the final expression that we had. Temperature appears in the 

denominator of the exponential term which actually appears in the denominator of this whole 

expression. So, if temperature increases then what will happen? If temperature increases, then 

the magnitude of the exponential term will decrease. Accordingly, there will be decrease in 

the denominator of the overall term. 

 

So, Eλ,b will increase. So, this Eλ,b continuously increases with temperature or I should say 

temperature increases this one also will increase. But that same thing we cannot conclude 

about λ. But for temperature, we can surely say that a surface with a higher temperature will 

lead to larger emissive power or larger black body emissive power.  

(Refer Slide Time: 35:15) 



 

Now, if we plot this Eλ,b with λ for a given temperature, then this is what we are going to get. 

Here we have the wavelength λ and this is the spectral hemispherical emissive power for a 

black surface Eλ,b. Often for black surface or black body, so we do not mention the 

hemispherical term because it is a diffuser emitter. So by default it is always giving you 

hemispherical idea. 

 

And you can see there are different red lines plotted for different temperatures. Like this is 

for 100K, this is for 1000K. Similarly, we have different lines. And this shaded portion 

corresponds to the visible spectrum. Like it is from 0.4 micron to 0.7 micron of wavelengths, 

so this is the visible spectrum that we have. You can clearly see that for any given 

temperature, the spectral hemispherical emissive power for a black surface is largest 

corresponding to one particular λ. 

 

It is largest corresponding to one particular λ like if you talk about 100 micron, then 

somewhere here it is largest. If we talk about 300 micron means, this is somewhere here it is 

largest. At 1000 micron this is somewhere here it is maximum. So observation number 3 we 

can say that for a given temperature Eλ,b has a maxima corresponding to a certain wavelength. 

So with temperature; with increase in temperature black body emissive power or black body 

spectral hemispherical emissive power always increases but that is not the case with 

wavelength, it shows a maximum in the wavelength for a given temperature. 

 

Then, how to identify that maximum? Before that let us observe another thing, we know that 

as the temperature increases, the emissive power also increases. So, if you look at this graph 



here, you can see for 50K, your maxima was corresponding to somewhere here, for 100K, the 

maxima corresponds to a wavelength of something like this, for 1000K, it corresponds to 

something like here. 

 

That means as the temperature is increasing, the wavelength corresponding to the maxima in 

spectral hemispherical emissive power that is continuously decreasing. As the temperature is 

increasing the λ optimum or λ corresponding to the maxima in this emissive power that keeps 

on reducing. So that is our third observation; λopt decreases with increasing temperature. 

 

As the temperature of the surface increases, the optimum value of λ decreases. Accordingly, 

we can say that the larger fraction of the emitted energy or I should say the wavelength band 

corresponding the larger fraction of emitted energy that also keeps on shifting. Like if you 

talk about that 100K surface temperature, then maybe we can identify band something like 

this within which the largest portion of emission energy is restricted. 

 

For 800K, you may identify a band somewhat like this within which the largest fraction of 

energy is emitted. For 2000K, the band gets shifted further to the left, so this way as the 

temperature is increasing, the wavelength band correspond to the maximum emissive power 

that also keeps on shifting towards lower wavelength side. 

 

Then, let us try to identify for a given temperature at which wavelength this will be 

maximum; this emissive power. To perform this we have to now differentiate this Eλ,b 

functions of λ, T for a given temperature or keeping T constant and equate that to 0. 

 

  
(    (   ))|

          
    

If you do this, then you will find that 

                   

Here, remember this      does not indicate any maximum value of λ, rather it is optimum 

only but still I am using max because most of the textbook call it a max. It is not the 

maximum value of wavelength rather it is a value of wavelength corresponding to the 

maximum value of spectral hemispherical emissive power for a black surface. 

 

Therefore, once we know the temperature we can straight away identify the value of the 

wavelength which should correspond to the maximum value of emissive power. This dotted 



red line shown on the graph corresponds to this particular criterion, which is known as 

Wien’s displacement law. 

 

So, once we know the temperature of any surface, we can easily calculate the corresponding 

value of λ optimum. Like say, if T=100K, then the optimum value of λ which we are calling 

      will be is equal to  

     
  
 
          

And you can see from this graph, the maximum corresponds to something here. This graph is 

plotted on a log-log scale, so be careful about the axis. So, if we put say T=1000K, then 

     
  
 
          

So, your optimum will be somewhere. This dotted line passes through all these      points 

or all the points correspond with the maximum emissive power for a given temperature. So, 

as we are increasing the temperature, your      that also keeps on reducing continuously. 

 

If we put now T=5800K, then 

     
  
 
 
    

    
        

Now, what is your visible spectrum; 0.4 to 0.7 microns. So this is right in the middle of the 

visible spectrum somewhere here. This 5800K corresponds to the maximum emission within 

this 0.5 micron range. And therefore, its maximum emissive power will be emitted within this 

visible spectrum zone and what is this temperature then? 

 

This is the temperature corresponding to the solar radiation. You can visualize that this 

5800K is the approximate temperature of the outer surface of the Sun from where the solar 

radiation is originated and is able to reach the surface of the earth. As the optimum value of 

wavelength or wavelength value corresponds to the maxima in emissive power falls right in 

the middle of the visible spectrum, therefore, we are able to see the solar light and 

accordingly, we can make use of this. But if we are talking about a surface which is at a much 

lower temperature; say, any surface at a temperature lower than 1000K, will have a maximum 

part of its emission restricted to the IR side and therefore, we shall not be able to see that. But 

only when the temperature crosses 1000K or more, then only the emissions are quite close to 

the visible spectrum. 

 



Like, if we talk about say a tungsten filament lamp which has a temperature of about 2900K, 

then if we plot it, then correspond to 2900K it will be coming somewhere here. So, you can 

see the maximum is still on the IR side but the curve may have a significant portion falling on 

this visible spectrum particularly on the red side of this. 

 

So, we generally able to see white light from a tungsten filament lamp though the major 

portion or at least the maxima of its emissive power actually falls on the IR zone. So, the 

Wien’s displacement law gives us or tells us that the value of temperature of the surface and 

the wavelength corresponds to the maximised spectral emissive power is a constant whose 

values is 2898 µm.K, which is our observation number 4 for this. 

(Refer Slide Time: 45:10) 

 

Now, we know the spectral hemispherical emissive power for a black surface. Then let us try 

to calculate the value of total hemispherical emissive power. So we have just seen that the 

spectral hemispherical emissive power       corresponding to λ T,  

    (   )  
  

  [   (
  
  
)   ]

 

So, if we have to calculate the total hemispherical emissive power for the black surface for a 

given temperature, then what we have to do? We know that we have to integrate this spectral 

hemispherical emissive power over the entire range of wavelength from 0 to ∞. 

  ( )  ∫     (   )  
 

   

 

 ∫
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This integration can easily be performed. And if you perform this, then you are going to get  

  ( )   
  

Or  

  ( )    
  

Where, the value of this σ is coming as 5.67X10
-8

 W/m
2
.K

4
. 

 

Now, what is this? This is the Stefan Boltzmann law. So using the Planck constant and 

corresponding expression for spectral hemispherical emissive power for a black surface, we 

can calculate the total hemispherical emissive power for a blackbody with a given 

temperature and that comes out to be a Stefan Boltzmann law. 

  

And that σ is the Stefan Boltzmann constant. And blackbody being a diffuse emitter, we can 

easily calculate corresponding total intensity 

  ( )  
  ( )

 
 

So this is the total intensity of emission associated with the black surface which again does 

not have any kind of spectral dependence. Directional dependence is already not there 

because this is a diffuse emitter. And now, we have the intensity of total radiation or maybe 

the total intensity for a blackbody emission. 

 

So this is a very important relation. We can see that just from the knowledge of temperature 

and wavelength, we can easily calculate the total hemispherical emissive power; in fact for 

total hemispherical emissive power that being integrated over the range of wavelength, we do 

not need any information about the wavelength at all. We just need to know the temperature. 

And we can easily get then the total hemispherical emissive power for a black surface and 

total intensity of emission from a black surface, just from the knowledge of temperature. 

(Refer Slide Time: 49:28) 



 

Finally, there is something known as the band emission. Quite often though the total emission 

we can get from black surface that is a total hemispherical emissive power. But maybe our 

interest is not to know the total hemispherical emissive power rather our interest is only to 

know a part of this. I mean we are interested only to know this Eλ,b only over a range say, λ is 

equal to λ1 to certain λ2. Or  

∫     (   )  
  

    

 

We just want to know within a specified band of wavelengths, the total emissive power that 

we are getting from this black surface which is maintained at a temperature T. Then how to 

get that? To get this one, we have to make use of the concept of this band emission. 

 

The band emission talks about the fraction of energy emitted within a particular band of 

wavelengths that is from 0 to λ. We know that total emission is given by the Stefan 

Boltzmann law. Then we generally use a symbol      , it indicates that the fraction of energy 

emitted by this black surface maintained at a given temperature T within the wavelength 

range interval of 0 to certain λ. 

 

Then, what will be that? That will be equal to 

     
∫     (   )  
 

   

∫     (   )  
 

   

 

And we know that the denominator can be specified using the Stefan Boltzmann law, so 

getting that into picture 



     
∫     (   )  
 

   

   
 

Now, with small manipulation we can change this to a form like this 

 ∫
    (   )

   
 (  )

  

 

  (  ) 

And now, it becomes a function of λT, from where we can calculate. We can see that this σT
4
 

that we have in a denominator, σ is a constant but we are getting this T
4 

inside this 

integration, so that it became a function of λT. 

 

So, once we know the λT product, then we can easily calculate the value of this       and 

what this is giving? This is giving you the fraction of energy emitted within the wavelengths 

interval 0 to λ and this is how it will look like. This is λTX10
-3

 plotted in the horizontal axis. 

And this is the energy band. As the λT product keeps on increasing, it goes from 0 to 1. 

 

This way we can easily calculate the fraction of energy emitted within a certain wavelength 

band as well. Like suppose, if our interest is to know the fraction emitted from a wavelength 

λ1 to another larger wavelength of λ2, then what we have to do? We just have to calculate the 

difference of energy emitted in range 0 to λ2 to the energy in range 0 to λ1. And take its ratio 

with the total amount of energy emitted over all wavelengths. 

       
∫     (   )  
  
   

 ∫     (   )  
  
   

∫     (   )  
 

   

 

. 

 
∫     (   )  
  
   

∫     (   )  
 

   

 
∫     (   )  
  
   

∫     (   )  
 

   

 

             

  (   )   (   ) 

So, if we know the value of this F, then we can easily calculate the other quantities. You can 

easily calculate the energy band because the denominator is always given by σT
4
. Like 

somehow say if we know the value of this particular quantity or maybe if we know the value 

of this particular quantity, then on the right hand side, we know that the denominator is σT
4
, 

this one; so we can easily get the numerator which is going to give you the band that you are 

looking for. And the values of this F have already been calculated using digital computers 

and standard tables are available. 
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And I have taken a sample table from the book of Incropera, DeWitt, just to show you as an 

example. Here, you can see the values of λT are given on this side. I have curtailed this one at 

this 2898, but it keeps on going to very high values of this λT, generally up to 10
5
. Then this 

is the F, so if we pick up any value say if we take λT =1000, then the corresponding value of 

F is 0.000321. 

 

And additional quantities are also given, like this quantity gives         
  and on the fourth 

column, we have this 
    (   )

    (      )
. See here at the bottom this corresponds to 1, because λmax 

you have to correspond to the value where the emissive power is the maximum. So here it is 

equal to 1 only. 

 

This fraction continuously keeps on increasing, till it become 1 about a value of λ T equal to 

10
5
, this becomes almost is equal to 1, whereas this value increases becomes a maxima here, 

maxima of 1, then again it decreases and goes to 0. So this table generally is very useful in 

solving any problem associated with the radiation particularly, the spectral and directional 

dependence when you want to take care of. 
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Let us finish this chapter by performing a simple energy balance and then solving one simple 

problem. This figure, I have shown you earlier also, here we have a very large cavity; inner 

surface is maintained at temperature Tsur and we have a solid maintained at temperature Ts. 

Let us assume the solid to be black body. 

 

And this enclosure or the surrounding being it is very, very large compared to the solid, so we 

can treat this surrounding also to be a black body. So whatever energy is being emitted by the 

solid that is being received by the surrounding and also the solid is receiving energy only 

from the surrounding. And the surrounding is receiving energy from the solid and giving a 

part to the solid as well. 

 

So, let’s perform a simple energy balance following radiation only because you are having a 

vacuum inside, so there is only energy transmission mode is radiation. So if we write an 

energy balance for the solid, then net radiative heat flux from the solid can be written as 

 ̇   ∭                   

           
 
 

            

 ∭                   

           
 
 

            

 

If this solid is not assumed as a black surface, then instead of       we should have radiosity. 

Then it should be       . But as we are talking about a black surface there is no reflection. So, 

this reflection part goes off. And remember here I have told earlier also the net radiative heat 

flux we are defining as the net energy gained by the solid in this case but you can write the 

other way also. In that case the emission will come first and incidence will come second. 

Now, we know that we have assumed the solid to be a black body. 



 

As the solid is a black body, then for the solid  

    (     )      (  ) 

Where, the solid temperature is Ts. Surrounding is a black surface and as the solid is 

receiving energy that is irradiation only from the surrounding, so  

    (     )      (    ) 

And both of them are independent of θ and φ. And accordingly, it we can separate the 

components out, that is 

 

[
 
 
 

∬             

       
 
 

       
]
 
 
 

[∫     (    )  
 

   

]

 

[
 
 
 

∬             

       
 
 

       
]
 
 
 

[∫     (  )  
 

   

] 

So, you can easily integrate. These space integrations will become equal to π. So 

  [[∫     (    )  
 

   

]  [∫     (  )  
 

   

]] 

So the terms inside integration are the total hemispherical emissive power for a black surface 

maintained at temperature      and   . So, this becomes 

 [     
     

 ]   [    
    

 ] 

The π you remember, it has to be considered or to be multiplied with I to get a final value of 

Eλ,b. 
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And that is what we are getting finally as the simple form in terms of Stefan Boltzmann law. 

So, I shall be rounding off quickly by solving 2 numerical problems. First one is 

corresponding to a large isothermal enclosure maintained at a uniform temperature of 2000K, 

so we have a large enclosure maintained at a uniform temperature of 2000K. Several things 

we have to calculate, first the emissive power of radiation that emerges from a small aperture. 

 

There is a small aperture we have kept, we have to calculate the emissive power that comes 

out through this. Now, inner surface is maintained at a temperature of 2000K. So this being a 

very large enclosure we can easily treat this one as a black body and therefore, the emissive 

power that is coming out of this for part A, can easily be calculated as Eb, the total 

hemispherical emissive power corresponding to this temperature that is  

    ( )    
  (         )(    )               

Remember this temperature has to be in K if it is given in Celsius then please do the 

conversion. There are several small calculations, please follow them carefully. And also we 

have to calculate the irradiation experienced by a small object place inside the enclosure. If 

you have a small object kept here, we have to calculate G falling on this, and the G again will 

be  

    ( )         
      

Because it is kept inside a black surface and only radiation it is receiving is actually the 

emission from the black surface. Part B; the wavelengths below which and above which 10% 

of the emissions are concentrated. So first part is we have to calculate the wavelength say, if 

this is your Eλ,b, this is your λ we know that the curve will be something like this. 

 



For the first part you have to calculate the wavelength below which 10% of the emissions are 

concentrated. So we have to calculate this one, so that this area is 10%. Then exactly what we 

are looking to identify? We have to get       to be is equal to 0.1. So let us go back to the 

table.      equal to 0.1, where we are getting that? 2200 is giving you 0.100888. 

 

So, this value from the table then, 

            

To have a very precise value we could have taken 2200 also. Accordingly 

   
    

    
        

So, this way we can calculate. We can calculate that below 1.1 µm, only 10% of the emission 

will be there. 

 

Second part you have to calculate the wavelength above which 10% of the emissions are 

concentrated. So, this is the other range that means, if that wavelength is λ2;       we have 

0.1. So from there we can write that  

                  

           

That is below λ2, 90 % of the energy will be restricted. 
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Now, the table that I have shown there it is restricted only up to 0.25. So I just got the 

numbers, you please refer to the books to get the value of λT for           

 



             

            

That means we can see that between this small wavelength range of 1.1 micron to 4.69 

micron; 80% of the emission will be restricted. And this is on which side? This is 1.1 micron, 

so this is actually on the IR side. 2000K it starts with and the 80% of the emission is 

restricted between 1.1 and 4.69 micron. Let’s quickly solve part C of this problem. 

 

The maximum spectral emissive power and wavelength corresponding to that so, we know 

that the maxima will always correspond to using the Wien’s displacement law,  

                

So  

     
    

    
         

So using this we can calculate the value of Eλ,b. But there is another thing that we can do. 

Look at the table that I have shown. There is something shown here as         
 . We can 

make use of this. We know that for 2898, this is a value of this quantity. Then as you know 

the temperature you can calculate       from there. So, 

                 
  (   ) 

 (             )(         )(    )  

And  

            

         
 

      
 

This is the maximum value of spectral hemispherical emissive power that we can get from 

this black surface. So this way we can make use of the other columns of this one as well. 
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And another problem let us very quickly solve it to wrap up the chapter. We have a black 

surface maintained at this temperature. We have to determine the emitted radiation heat flux 

over all directions corresponding to θ equal to 0 to 60 and λ equal to 2 to 4 micron okay. Here 

all directions actually refer to all directions of φ. But θ variation is there. So you have to 

calculate the radiation heat flux. 

 

So, how to do this? Here we can make use of values of F again because λ is given from 2 to 4 

micron. And the θ integration we have to perform between 0 and 60. So how can we do this? 

Do we at all need to perform the θ integration? We are talking about a black surface which is 

a diffuse surface. So it does not matter what θ values that is given to us. 

 

So, the energy that we are trying to identify is actually within this range of λ equal to 2 to 4 

micron; φ equal to 0 to 2π; θ equal to 0 to 60º. So, 

  ∭                   

              

            

 

Now, from there       being independent of θ and φ we can separate that out. 

 [∫       
 

   

] ∬             

       
 
 

         

    
 

  
 

First part we can make use of that F. Just give λ1 =2 micron, λ2 =4 micron. From there, you 

can get the first part. Second part you can perform the integration and I am just going to give 

you the final number, which is going to come as 10
5
 W/m

2
, please try to do the calculation 



using the table and get the final solution on your own, that will give you a good exercise of 

using these integrations. 
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So that takes us to the end of our discussion of module 9, where we have learned about the 

fundamentals of radiation heat transfer. We started talking about the importance of radiation 

heat transfer and the spectrum of thermal radiation. Then the spectral and directional 

dependences were talked in detail. We developed the expressions for intensities of emission 

and incidence and correspondingly we got different kind of radiation heat fluxes. 

 

Then, using the definition of spectral intensities, we developed the relations of emissive 

power irradiation, radiosity and net radiative heat flux. And today you have been introduced 

to a concept of blackbody or black surface where the Planck distribution is a very important 

one because that gives us the spectral hemispherical emissive power for a black surface. 

Using which we got the idea about the Wien’s displacement law and the Stefan Boltzmann 

law; to calculate the total hemispherical emissive power from a black surface. 

 

So that is it for module number 9. Please repeat the lectures go through the corresponding 

chapter in the books and also try to solve the assignments, so that you do not have any doubt. 

In the next week we shall be moving to the real surface where whatever you have discussed 

in this module, particularly about the black surface that will be used to calculate the 

properties and parameters for real surfaces. 



And to go through that module 10, you need to have clear idea about all the definition that we 

have discussed here. So please revise the lectures and if you have any query, write back to 

me, thank you very much you.  


